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Diagnosis and treatment of dilated cardiomyopathy (DCM) is challenging due to a large variety of causes
and disease stages. Computational models of cardiac electrophysiology (EP) can be used to improve the
assessment and prognosis of DCM, plan therapies and predict their outcome, but require personalization.
In this work, we present a data-driven approach to estimate the electrical diffusivity parameter of an EP
model from standard 12-lead electrocardiograms (ECG). An efficient forward model based on a mono-
domain, phenomenological Lattice-Boltzmann model of cardiac EP, and a boundary element-based map-
ping of potentials to the body surface is employed. The electrical diffusivity of myocardium, left ventricle
and right ventricle endocardium is then estimated using polynomial regression which takes as input the
QRS duration and electrical axis. After validating the forward model, we computed 9500 EP simulations
on 19 different DCM patients in just under three seconds each to learn the regression model. Using this
database, we quantify the intrinsic uncertainty of electrical diffusion for given ECG features and show in a
leave-one-patient-out cross-validation that the regression method is able to predict myocardium diffu-
sion within the uncertainty range. Finally, our approach is tested on the 19 cases using their clinical
ECG. 84% of them could be personalized using our method, yielding mean prediction errors of 18.7 ms
for the QRS duration and 6.5° for the electrical axis, both values being within clinical acceptability. By
providing an estimate of diffusion parameters from readily available clinical data, our data-driven
approach could therefore constitute a first calibration step toward a more complete personalization of
cardiac EP.

Keywords:

Cardiac electrophysiology
Statistical learning
Lattice-Boltzmann method
Uncertainty quantification
Electrocardiogram

© 2014 Elsevier B.V. All rights reserved.

1. Introduction causes of heart failure is dilated cardiomyopathy (DCM), a condi-
tion with weakened and enlarged ventricles and atria, leading to
an ineffective pump function that can directly and indirectly affect

the lungs, liver, and other organ systems. The prevalence of DCM

1.1. Clinical rationale

With around 17.3 million deaths per year (Mendis et al., 2011),
the global burden of cardiovascular diseases remains high and
causes a significant social and economic impact. According to
recent estimates, about 2% of adults in Europe (McMurray et al.,
2012) and 2.4% of adults in the US (Roger et al., 2012) suffer from
heart failure alone, with the prevalence rising to more than 10%
among persons 70 years of age or older. One of the most common
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amounts to around 0.9% of adults in the US (Ferri, 2013), and the
disease is the leading indication for heart transplantation in youn-
ger adults. Due to a large variety of individual causes and disease
stages, diagnosis and treatment of DCM remains an open challenge.

Cardiac arrhythmia, i.e. irregular electrical activity of the heart,
occurs frequently in heart failure patients, particularly in those
with DCM (McMurray et al., 2012). But also beyond DCM, the prev-
alence of cardiac rhythm disorders has increased significantly in
the last decade following an improvement in patient care
(Marcus et al., 2013). Depending on the kind of rhythm disorder,
which is commonly diagnosed using electrocardiography (ECG),
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the treatment of arrhythmia includes drug therapies, radio fre-
quency ablation and the implantation of artificial pacemakers
and cardioverter-defibrillators. Unfortunately, around 30% of
patients are non-responders to these invasive treatments, and in
up to 50% of the cases, recurrences are identified (Auricchio
et al,, 2011).

As a result, tools for a more predictive assessment of cardiac
electrophysiology (EP) are needed. Computational assistance is
not only required for a superior patient management and diagnosis
but could also benefit therapy planning, outcome prediction and
intervention guidance. While improved risk stratification could
help avoiding unnecessary surgeries, the potential of optimizing
invasive procedures, for instance by choosing optimal electrode
locations, can potentially lead to an increased success rate and
fewer non-responders. For this purpose, computational models
can be employed to study and evaluate patient-specific electro-
physiology in silico.

1.2. Technical background: computational models of cardiac
electrophysiology

1.2.1. Models of cardiac action potential

A wide range of computational models of cardiac EP with differ-
ent biological scales and theoretical complexity has been proposed
since the seminal work of Hodgkin and Huxley (1952). Especially in
the last decade, the community has witnessed tremendous pro-
gress in modeling efforts (Clayton et al., 2011). Depending on their
level of detail, EP models can be classified into three groups: Bio-
physical, phenomenological and Eikonal models.

Biophysical cellular models capture cardiac electrophysiology
directly at cell level by describing biological phenomena responsi-
ble for myocyte depolarization and repolarization. More precisely,
ionic interactions within the cell and across the cell membrane
(ion channels) are considered (Noble, 1962; Luo and Rudy, 1991;
Noble et al., 1998; Ten Tusscher et al., 2004) and lead to complex
equations, commonly one per molecular process. Although it has
been shown that biophysical models can reproduce different elec-
trophysiological behaviors such as action potential restitution and
conduction velocity, the large amount of parameters limits their
usage in clinical applications due to the difficulty of personalization.

Cell models are then integrated at the organ level using reac-
tion-diffusion partial differential equations (PDEs). Two major cat-
egories can be distinguished. While mono-domain approaches
neglect interstitial effects and consider the myocardium as single
excitable tissue (Coudiére and Pierre, 2006), bi-domain strategies
superimpose intra- and extra-cellular domains and take different
electrical properties into account (Bourgault et al., 2009). In the
absence of external stimuli, mono-domain models have been
shown to produce almost identical results as their bi-domain coun-
terparts (Potse et al., 2006).

Phenomonological models, historically the first models to be
proposed by FitzHugh (1961), work at a more macroscopic level.
Derived from experimental observations, the action potential is
described by a small number of parameters with direct influence
on its shape, disregarding the underlying ionic interactions (Aliev
and Panfilov, 1996; Mitchell and Schaeffer, 2003). Having only few
parameters with direct effect on measurable output facilitates
model personalization, and the lower computational cost when
compared to biophysical models offers a reasonable compromise
between modeling capacity and performance. The distinction
between mono-domain organ level integration schemes such as in
Aliev and Panfilov (1996), Fenton and Karma (1998), Mitchell and
Schaeffer (2003) and bi-domain approaches such as in Clayton
and Panfilov (2008) can be applied to phenomonological models,
too. Recent numerical advances based on Lattice-Boltzmann
methods (Rapaka et al, 2012) or Finite Element methods

(Talbot et al., 2013) exploit the massively parallel architecture of
modern graphics processing units, and allow near real-time
performance and user interaction.

Eikonal models (Franzone et al., 1990; Keener and Sneyd, 1998;
Sermesant et al., 2007) solely concentrate on the propagation of
the electrical wave to stimulate muscle activation. The formation
as well as the shape of the action potential in myocytes is
neglected. Governed only by the anisotropic speed of wave propa-
gation, the local time of wave arrival throughout the myocardium,
can be computed very efficiently using fast marching methods
(Sethian, 1999; Wallman et al., 2012). While it has become possible
to simulate wave reentry phenomena with Eikonal models (Pernod
et al., 2011), capturing other complex pathological conditions such
as arrhythmias, fibrillations or tachycardia is more challenging.

1.2.2. Model personalization

In order to apply the aforementioned EP models in clinical set-
tings, patient-specific physiology has to be captured by personal-
ized model parameters. Finding those is challenging in the
clinical workflow as the estimation from patient data implies solv-
ing an inverse problem. In this context, the forward model denotes
the computation of the electrical wave propagation from the heart
to the point of measurement (catheter electrode, body surface),
and the inverse model the back-projection of measurement data
onto the heart and the inference of model parameters (Gulrajani,
1998).

Inverse problem techniques are computationally demanding
because they comprise an optimization problem and therefore
require a large quantity of forward model runs (Modre et al.,
2002; Chinchapatnam et al., 2008; Ddossel et al., 2011). Alterna-
tively, data-driven algorithms have been investigated to tackle
model personalization. Linking activation patterns with the result-
ing cardiac motion that can be observed in clinical images, Prakosa
et al. (2013) train a machine-learning algorithm to estimate depo-
larization times for cardiac segments from regional kinematic
descriptors. Jiang et al. (2011) apply statistical learning to map
body surface potentials onto the epicardium. Konukoglu et al.
(2011) derive a surrogate EP model based on polynomial chaos
theory to personalize an Eikonal model. Wallman et al. (2014) infer
tissue conduction properties using Bayesian inference to be
patient-specific. The advantage of these statistical methods is the
possibility to quantify uncertainty and to optimize the location of
measurements. Machine learning techniques could therefore con-
stitute efficient strategies for model personalization. However, a
sufficient sampling of the parameter space is needed for these
approaches to yield meaningful results. In this study, we aim to
achieve an estimation of model parameters only from sparse elec-
trocardiogram data.

1.2.3. Models of electrocardiogram and torso potential

From the perspective of data acquisition, endocardial mapping
(Sermesant et al., 2009; Relan et al., 2011) facilitates the parameter
estimation as it provides dense potential measurements but it is
pre-operatively often avoided as it is invasive. A non-invasive
alternative is to back-project electrical potentials measured at
the body surface in the form of electrocardiograms (ECG), to the
epicardium. Considering the ill-posedness of the parameter esti-
mation, the use of body surface mapping (BSM) has been investi-
gated (Dossel et al., 2011; Wang et al.,, 2011; Han et al., 2013). In
contrast to standard 12-lead ECG, BSM is however not yet widely
available as diagnostic modality.

If body surface ECG data is used for parameter estimation,
regardless of the number of traces, a model of electrical potentials
at the surface of the torso is needed. In terms of the forward model,
current approaches employ both Finite Element (FEM) and
Boundary Element (BEM) methods. While the former intrinsically
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allow varying conductivity within and across different organs (Li
et al., 2007; Geneser et al., 2008; Liu et al., 2012), the latter either
assume constant isotropic conductivity throughout the entire torso
(Barr et al., 1977; Shou et al., 2009) or integrate additional surface
meshes delineating neighboring organs (Potse et al., 2009). Fur-
thermore, in a numerical study by Boulakia et al. (2010), decou-
pling the computation of cardiac electrophysiology and body
surface potentials has been shown to preserve the shape of ECG
features well.

1.3. Aim of the study

The personalization of computational EP models, i.e. the estima-
tion of patient-specific model parameters, remains challenging
because of lack of dense data and the ill-posedness of the inverse
problem. We therefore propose in this work to estimate EP model
parameters from standard 12-lead electrocardiograms (ECG) only
using a data-driven method that provides insight into estimation
uncertainty. In particular, our method is based on statistical learn-
ing and employs polynomial regression to map ECG features to
model parameters, instead of finding a solution of the inverse
problem numerically. The key contributions of this work are:

i. A fast forward model of cardiac electrophysiology and elec-
trocardiogram based on a Lattice-Boltzmann formulation
and the boundary element method.

ii. A novel data-driven approach to automatically and effi-
ciently estimate heart electrical diffusivity from 12-lead
ECG features.

iii. The quantification of the intrinsic uncertainty of the inverse
problem, i.e. the uncertainty of myocardial diffusion given a
set of ECG features, through statistical learning.

iv. The evaluation of our estimation framework on 19 DCM
cases.

This study extends our previous work (Zettinig et al., 2013a) as
follows:

i. In a detailed quantitative evaluation and convergence anal-
ysis of the employed forward model and its parts, we show
the influence of various model parameters on the ECG
features.

ii. Results of benchmark experiments allow insights on the
computational performance of our approach.

iii. A comparison with other statistical learning techniques jus-
tifies the choice of multivariate polynomial regression.

iv. For a quantitative evaluation of the diffusion estimation
method, we use a significantly more extensive dataset of
synthetic and real case data, allowing to capture a bigger
variety of individual physiologies.

2. Methods

This section presents the details of the proposed data-driven EP
parameter estimation framework. Section 2.1 describes how a
patient-specific anatomical model is derived from clinical images.
In Section 2.2, a fast forward model of cardiac electrophysiology,
body surface potentials and electrocardiogram, as shown in
Fig. 1, is detailed. Thereafter, Section 2.3 describes the proposed
data-driven diffusion estimation procedure. Implementation
details are reported in Section 2.4.

2.1. Patient-specific model of cardiac anatomy

The complete workflow of anatomical model generation is
depicted in Fig. 2. First, we employ the framework presented in

Zheng et al. (2008) to automatically estimate, under expert guid-
ance, heart morphology from cine magnetic resonance images
(MRI). For anatomical structure localization, the Marginal Space
Learning (MSL) framework intuitively finds control points
representing important landmarks such as valves and ventricular
septum cusps using Haar- and steerable features. Then, a point-dis-
tribution model of biventricular geometry is mapped to these con-
trol points and successively deformed according to learning-based
boundary delineation through a Probabilistic Boosting Tree (PBT).
Using a manifold-based motion model, the resulting surface
meshes are tracked over the cardiac sequence such that point cor-
respondences are maintained. To form a closed surface mesh of the
biventricular myocardium, the segmented triangulations of the
epicardium and endocardia are fused together. The myocardium
at end-diastole is finally mapped onto a Cartesian grid with isotro-
pic spacing and represented as a level-set.

Based on the original segmentation meshes and point-to-point
distances, we consider five domains in our anatomical model:
The left and right ventricular septum, which mimics the His bundle
and serves as initialization zone of the electrophysiological wave,
the left and right endocardia mimicking the Purkinje system of fast
electrical diffusivity, and finally the myocardium with slower
diffusivity.

As diffusion tensor imaging (DTI) is not yet clinically available
(Wu et al., 2009), the rule-based strategy described by Bayer
et al. (2012) is extended as proposed by Zettinig et al. (2013b) to
compute a generic model of myocardium fiber architecture. Below
the basal plane, identified automatically using the point correspon-
dences of the initial triangulations, the fiber elevation angle oy is
assigned to all grid nodes. Defined as the angle with respect to
the short axis, oy varies linearly across the myocardium from
—70° on the epicardium to +70° on the endocardium. Around the
valves, fiber directions are fixed (longitudinal around the aortic
valve, tangential otherwise), and between the basal plane and
the valves finally interpolated first following the myocardium sur-
face, then transmurally (Moireau, 2008; Zettinig et al., 2013b). All
interpolations throughout the myocardium rely on geodesic dis-
tances and the Log-Euclidean framework (Arsigny et al., 2006).
Fig. 2 illustrates the myocardium fiber model and the electrophys-
iology zones.

A body surface triangulation is obtained using a manual, two-
step procedure. First, the contours of the torso are outlined in coro-
nal, sagittal and transverse slices of the survey MR image, and visu-
alized together with the heart model. Second, a manual affine
registration of an atlas of torso geometry to the contours is per-
formed as illustrated in Fig. 3. The atlas is obtained from a full-
body CT dataset of a subject within normal weight range.

2.2. Fast forward model of cardiac electrocardiogram

Our forward model consists of three sequential steps described
in the following sections (Fig. 1). First, we compute cardiac electro-
physiology using the LBM-EP algorithm proposed by Rapaka et al.
(2012). Second, we estimate extracellular potentials at the epicar-
dium using an elliptic formulation and project them to the torso by
means of a Boundary Element Method technique. Ultimately, ECG
traces are computed and ECG features automatically calculated.

2.2.1. LBM-EP: Lattice-Boltzmann model of myocardium
transmembrane potentials

Cardiac EP is computed according to the phenomenological
mono-domain model proposed by Mitchell and Schaeffer (2003),
which describes the normalized transmembrane potential (TMP)
v(t) € [0,1] throughout the myocardium with the following
equation:
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Electrical diffusion is formulated anisotropically with the diffu-
sion coefficient ¢ and the anisotropy ratio p, defining the aniso-
tropic diffusion tensor D = pl + (1 — p)ff" with f denoting the
fiber direction. The EP zones as defined in Section 2.1 are assigned
three different diffusion coefficients: c¢;y and cgy for the left and
right endocardium, respectively (fast conducting Purkinje net-
work), and cyy, for the myocardium.

The model simplifies all ion channel interactions to only an
inward current J;, and an outward current J,,, (Egs. (2) and (3)).
The former captures the fast acting ionic currents in the myocyte
and depends on the gating variable h(t) that models the state of
the ion channels.

if v < Vggre

(2)

Jin = .
" Tin ' dt | =L otherwise
close

hyP-v) .. dh {”’

—v
-7 3
Jou =5 3)
The time constants Ti; < Tour < Topen, Tclose are directly related to
the shape and duration of the action potential, allowing for person-
alization from clinical data. As illustrated in Fig. 4, T relates to

the action potential duration (APD), for which a linear transmural
gradient as described by Glukhov et al. (2010) is employed. The
remaining model parameters, including the change-over voltage
Ugate, are obtained from literature (Mitchell and Schaeffer, 2003)
and kept constant throughout the myocardium. Table 1 lists all
fixed model parameters.

The complex PDE (Eq. 1) is solved using the LBM-EP algorithm,
an efficient Lattice-Boltzmann method, proposed by Rapaka et al.
(2012). It should be noted, though, that the LBM-EP algorithm is
generic and would allow any mono-domain cell model to be
solved. In short, the method maintains a vector of distribution
functions f(x) = {fi(x)},_; ;, where f;(X) represents the probability
of finding a particle traveling along the edge e; of node x. The seven
indices correspond to the central position and the six principal
connections on the Cartesian grid, respectively. Its computation
is decomposed into two consecutive steps, namely the collision
phase, yielding intermediate post-collision states f* and the
streaming phase, propagating the distribution functions along their
corresponding edges:

fi* :fi 7Aij(ﬁ - (Djﬂ) + 5twi(]in +]aut +Jstim)7 (4)
fix+e;,t+dt) =fr(x,t) (5)
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Fig. 4. Four stages of the myocyte action potential and the relating parameters of
the Mitchell-Schaeffer model.

Table 1

Parameters used for the Mitchell-Schaeffer model (Mitchell
and Schaeffer, 2003; Glukhov et al., 2010). Note that v is
dimensionless because v(t) is normalized to [0, 1].

Parameter

Vgate 0.13

Tin 0.3 ms
Tout 6 ms
Topen 120 ms
Tcloseongs 130 ms
Tcloseg,,, 90 ms

The collision matrix A = (A;) relaxes the distribution function f;
toward the local value of the potential » and is defined such that
anisotropic fiber-related diffusion is taken into account. The
weighting factors w; are utilized to emphasize the center position.
We refer the reader to Rapaka et al. (2012) for further details. Using
a forward Euler scheme, the gating variable h(t) can easily be
updated at every node. Eventually, the transmembrane potential
v(x,t) is defined as the sum of the distribution functions:
v(x,t) =Y ;fi(x,t) and transferred to the range [—70 mV,30 mV]
using the scaling factors given in Mitchell and Schaeffer (2003).
The depolarization times T4(x) are obtained as the points in time
when the potential first exceeds the change-over voltage:

T4(X) = arg gnin{ U(X,t) > Vgare} (6)

2.2.2. Boundary element model of torso potentials

For the propagation of electrical potentials through the body, it
is necessary to estimate cardiac extracellular potentials ¢, (t) from
the TMP v(t). To that end, we employ the elliptic formulation pro-
posed by Chhay et al. (2012), which assumes a constant diffusion
anisotropy ratio 1 = ¢;(X)/c.(X), with ¢; and c. denoting the intra-
and extracellular diffusion coefficients respectively. Within the
entire myocardium domain Q, the extracellular potential ¢, is
expressed as:

i1
T L0 - vy )

Next, we utilize a boundary element method (BEM) as
described in Barr et al. (1977) and refined in Shou et al. (2009) to
project the potentials ¢, from the epicardium to the torso. Before,
tri-linear interpolation is used to map ¢, from the Cartesian grid
back to the epicardial surface mesh. Following Green’s second
identity, the potential ¢(x) at any observation point x of the tho-
racic domain is given as:

de(X, 1)

r-n V(/)e-
47T/¢B||r\| / {d"’nn I }ds” ®

Hereby, subscripts B denote the body surface and the potentials
thereupon, Sy the epicardial heart surface. The surface normals n
face outward of the domain under consideration (i.e. outward at
the torso and inward at the epicardium). r is defined as the vector
from x to the point of integration as illustrated in Fig. 5a. Note that
Eq. (8) assumes that V¢, =0

After placing the observation point X only onto the two surfaces,
discretization in triangular meshes, and reformulation in matrix
form, a system of linear equations can be constructed (Barr et al.,
1977):

Pggpp + Peype + Gpnl'n = 0 9)
Pug¢p + Punde + Gunl'y = 0 (10)

Obtaining the geometric coefficients of matrices P and G
requires the evaluation of two integrals. The integral
f(r-n)/||rH3dS in fact describes the solid angle dQ subtended at
any observation point by a surface element dS (see Fig. 5b), and
can be efficiently computed with the following closed form for-
mula (Van Oosterom and Strackee, 1983):

aQ _ a - (32 X 33)

2T [l + @ - as) + [zl (@s - ar) + [as]|(@s - az)
(11)

Hereby, vectors a; denote the vectors from the observation point to
the three vertices of the triangulated surface element dS. The sur-
face-over-distance integral [ dS/r, on the other hand, is solved using
Gaussian quadrature. Canceling out the matrix I'y, which contains
the gradients V¢,, a precomputable transfer matrix that entirely
depends on the geometry can be defined:

Zpy = (PBB - GBHG;"]-[PHB>71 (GBHG;III.;PHH - PBH) (12)

This allows to express body surface potentials by means of a simple
matrix multiplication: ¢; = Zgy,.

2.2.3. Electrocardiogram calculation

From the potentials ¢ at the torso, the standard Einthoven,
Goldberger and Wilson leads (Chung, 1989) are computed. For
the sake of simplicity, electrode positions were chosen to coincide
with manually selected torso mesh vertex positions.

In this work, we focus on two meaningful ECG features. On the
one hand, the duration of the QRS complex Ags is dependent on
the total time the electrical wave requires to propagate throughout
the entire myocardium. On the other hand, the mean electrical axis
angle o is suited to detect imbalances between left and right ven-
tricular wave conduction. From the computed ECG signals, Ags and
o are derived as follows:

e For numerical stability, the QRS complex is detected using the
depolarization times computed by LBM-EP. Assuming one full
heart cycle, it is computed as follows: Agrs = max,T4(X)
—miny T4(X).

e The electrical axis is computed using the Einthoven leads I and
Il: oo = arctan |(2hy — h,)/(x/?h,) , where the h;’s are the sum of
the automatically detected R and S peak amplitudes (mini-
mum and maximum) in the respective leads during the QRS
complex.

2.3. Data-driven estimation of myocardium EP diffusion

The forward model as described above can be seen as a dynamic
system y = f(0) with the diffusion coefficients 6 = (cuyo, C1v, Crv) as
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Fig. 5. (a) For any given observation point in the thoracic domain, both torso and heart surfaces need to be integrated as defined in Eq. (8). (b) After discretization, geometric

coefficients of the P matrices in Eq. (10) require the evaluation of solid angles.

free parameters and the ECG featuresy = (Aggs, &) as outputs of the
system. Estimating diffusion parameters from ECG features there-
fore consists in evaluating a function g(y) that approximates the
inverse problem 0 = g(y) ~ f~'(y), as shown in Fig. 6. In contrast
to solving the inverse problem numerically using an optimization
strategy such as Dossel et al. (2011), we propose to learn the
inverse function instead.

The ECG features Ags and o vary significantly within the popu-
lation, even in healthy subjects, due to a variety of factors including
heart morphology and position. To cope with this geometrical vari-
ety, our algorithm scouts the parameter space using three forward
model runs with the predefined diffusion coefficients listed in
Table 2. The resulting ECG features are then used for an effective
normalization scheme, intrinsically considering geometrical fea-
tures of a particular patient:

e Configuration F; contains nominal EP diffusion parameters and
thus entails a normal wave propagation. Provided the same dif-
fusivity, the electrical wave will take longer to propagate
through the entire myocardium in larger hearts, which is why
we use Ages;, to normalize the QRS duration: Agrs = Aqrs/Adrsy, -

e The other two configurations contain extremely low LV and RV
diffusivity (LBBB-like scenario: F,; RBBB-like scenario: F3). The

obtained electrical axis parameters o, and o, scout the patient-
specific space of axis deviation, because we assume that the vast
majority of forward model runs with arbitrary physiological diffu-
sion coefficients will yield an electrical axis between them:
o, < o < of,. Therefore, we perform normalization as follows:
o= (OC - an)/(aF3 - O(Fz)'

Note that our normalization scheme does not lead to the same
numerical ranges of Agzs and @. The purpose of the normalization is
only to compensate for inter-patient variability; the regression
framework will cope with scaling of the input values. Finally, mul-
tivariate polynomial regression of degree N is employed to learn
the model 0 = g(Ags, @). One regression function of the form

N N o
8(Agrs,0) = YN Bij(Bows) (@) + & (13)

i=0 j=0

ECG Parameters y Myocardium Parameters 0

CMvo
Aqrs Regression Model )
a 0 =g(y) cw
Cry

Fig. 6. Schematic diagram of the data-driven backward ECG model.

Table 2
Diffusion coefficient configurations for normalization forward runs.

Configuration Diffusion coefficients (mm?/s)

CMyo Cv Crv

Fy 100 4900 4900
Fy 100 100 4900
F3 100 4900 100

is learned for each diffusivity parameter independently, g=
(8myo>81v>8rv)- During training, the regression coefficients f;; are
determined using QR decomposition such that the data is explained
with minimal error & During testing, the diffusivity parameters are
estimated for unseen data using measured and normalized ECG
features:

6\4;) gMyo r
Cv = 8w <QRS> (14)

— o
Crv Erv

2.4. Implementation

The strictly local stream-and-collide rules of the LBM-EP algo-
rithm are inherently node-wise and can be implemented very effi-
ciently in a single kernel on a GPU architecture. We use NVIDIA
CUDA,! version 5.5, as our development environment. As shown
by Georgescu et al. (2013), the simulation of transmembrane and
extracellular potentials for a complete heart cycle on a Cartesian grid
with an isotropic resolution of 1.5 mm only requires ~ 3 s on an NVI-
DIA GeForce GTX 580 graphics card. The boundary element solver
relies on the C++ Eigen library (Guennebaud et al., 2010). Training
of and prediction with the regression model was performed using
the MATLAB and Statistics Toolbox Release 2013b (MathWorks, Inc.).

3. Experiments and results

Before evaluating the method, clinical acceptance criteria were
defined. In a study by Surawicz et al. (2009), the normal range for
QRS duration in adult males was found to be between 74 and
114 ms (average 95 ms). Investigating intra-patient variability in
electrocardiograms, Michaels and Cadoret (1967) defined the max-
imum permissible day-to-day difference in QRS duration as 20 ms.
We assume predictions of QRS durations to be successful if within
this range. The electrical axis, which is dependent on age and body
physiology, is considered to be normal within —30° and 90°. A
rough rule-based diagnosis scheme is often applied in clinical

1 Compute Unified Device Architecture, http://developer.nvidia.com/cuda-toolkit.
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routine. Left axis deviation, for instance, is present if lead I is posi-
tive and aVF is negative. Because such a scheme divides the QRS
front plane in sectors of no less than 30°, prediction of the electrical
axis was assumed to be successful if within this range.

3.1. Evaluation of the proposed forward model

A quantitative evaluation of the proposed forward model was
carried out to understand model behavior but also to identify the
optimal numerical parameters. For an extensive analysis of the
LBM-EP solver, the reader is referred to Rapaka et al. (2012). The
following sections therefore focus on the mapping of cardiac
potentials onto the body surface and on the impact of EP parame-
ters on the computed ECG.

3.1.1. Quantitative evaluation and convergence analysis of torso
mapping

For the evaluation of the boundary element mapping from the
epicardium to the torso, we chose a setup where an analytical solu-
tion to Eq. (8) exists. Both epicardium and torso were assumed to
be concentric spheres, with radii ry for the heart sphere and rp
for the body sphere. If not stated otherwise, Gaussian quadrature
of order 37 was used. Homogeneous material between the two sur-
faces was also assumed. Using a spherical coordinate system with 0
as the polar angle to the Cartesian z-direction and ¢ as the azimuth
angle in the x-y-plane (Fig. 7a), we defined the extracellular poten-
tials on the heart surface: ¢.(6, ¢) = cos(6) mV. Then, the poten-
tials on the body ¢; were given as:

dp(0, ) :%cos(()) mV (15)

o, T
s 2

Fig. 7b illustrates the mapped potentials on the body sphere. In
the reported experiments, ry = 100 mm to roughly represent the
human heart. Fig. 8a reports computed and analytical body poten-
tials throughout a body sphere with r; = 300 mm. Mapping to dif-
ferent body spheres (see Table 3 for mesh resolution details)
showed that the algorithm was able to correctly compute the
potentials at various distances (Fig. 8b). Absolute errors were on
average 4.1-107° £1.4-10~* mV (mean #* standard deviation), far
below the clinical acceptance threshold.

A convergence analysis with respect to the mesh resolution
(Fig. 8c) indicated that with around 1500 mesh vertices (average
edge length 31.7 mm for r = 300 mm) the ratio between BEM-
based and analytical solutions is 99.70%, which relates to an abso-
lute error of on average 9.3 -10~* mV and is below the sensitivity
of ECG sensors. For subsequent experiments, we therefore choose
a similar resolution of 30-35 mm for the torso mesh. Similarly,
the relative error also converged with increasing order of Gaussian
quadrature as expected (Fig. 8d, experiments conducted with high-
est resolution mesh). Yet, low orders already reached a high degree

(a) % (b)

Heart sphere, 1

of precision. The following experiments were therefore carried out
with an order of 6, which showed to be a good compromise
between accuracy and runtime performance (more than 6x as fast
as highest order under consideration).

3.1.2. Parameter evaluation of complete forward model

Understanding the input parameters and output feature space of
a given model is crucial before applying machine learning tech-
niques and performing predictions. Therefore, we evaluated the
influence of the most important parameters of our forward model
on the ECG features under consideration. On a representative
patient case, the dependence of QRS duration Aggs and electrical axis
o on diffusivity c, action potential duration (APD; governed by T s )
and fiber elevation angle /f was studied. In the following experi-
ments, each of these parameters was varied, while the other param-
eters were fixed to their nominal value as given in Table 1 and 2.

First, the forward model was run with myocardium diffusion
Cmyo Tanging from 100 to 1000 mm?/s, LV and RV diffusivity were
fixed. As illustrated in Fig. 9a, and as expected, the QRS duration
showed linear dependence on cyy,. After an initial drop, the electri-
cal axis stabilized when cy,, > 400 mm?/s. In total, the range of o
in this experiment accounted for 92.9°. This behavior was not sur-
prising, because the electrical axis was entirely governed by LV and
RV endocardium diffusion at very low cpyy, values. As cuyo
increased, the effect of the Purkinje model was complemented by
the fast myocardial diffusivity and the electrical axis value
depended mostly on the geometrical configuration of the heart,
i.e. its shape and relative position in the torso.

Cmyo Was then fixed while the endocardial diffusion (c.v, crv) was
varied between 100 and 4900 mm?/s with the constraint
Civ + Crv = 5000 mm?/s. As illustrated in Fig. 9b, an almost linear
dependence of the electrical axis on endocardial diffusion was
observed. This was also expected, as diffusion differences in the
Purkinje fibers intuitively change the depolarization pattern. When
civ and cgy were similar (|ciy — cgy| < 1000 mm? /s), the depolariza-
tion was controlled by the Purkinje system, and a small range of
8.6 ms was observed for the QRS duration. Either c;y or cgy
approaching a bundle branch block scenario and thus becoming
closer to myocardial diffusion, the QRS duration increased. The
total range of Ags was found to be 35.8 ms.

Next, the influence of different spatial distributions of T
parameters, which control action potential duration, was investi-
gated. The employed linear transmural gradient of action potential
duration (Glukhov et al., 2010) was compared to a model with M-
cells as described by Wilson et al. (2011). Hereby, we assumed M-
cells to be located in the center of the myocardial wall,
Tetosepyg = 110% - Tctose,,, and performed linear interpolation
between endocardium and M-cells, and between M-cells and epi-
cardium to obtain a spatially varying map of 7. values. For both
scenarios (linear gradient throughout the wall and the M-cell
model), we defined the parameter r; as the ratio between the

Body sphere, 1

bg [mV]
0.35-
4

02

0.2
70.35'E

Fig. 7. (a) Definition of spherical coordinate system. (b) Heart sphere (green) and body sphere (semi-transparent) with mapped potentials ¢;. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)



1368

(a) Body sphere with 7z = 300mm

— Analytical
= BEM

0.4

0.2}

Body potential ¢B (0) [mV]

50 100 150 200
Polar angle 6 [deg]

(c) Convergence with mesh resolution

£ 1o

2

a 105 99.70% 99.84%

® i [=25.3mm

< 5 100 (=31.7Tmm 7
£ ~99.89%
£ 95; 96.09%, I=45.7mm  =21.0mm

<

=S 90 o
g 88.45%, [=170.0mm

£ 85¢

2

= 80

Q? 0 1000 2000 3000

Number of mesh vertices

0. Zettinig et al./ Medical Image Analysis 18 (2014) 1361-1376

(b) ¢5 at pole for various spheres

s

g 08 — Analytical
S > BEM
@

< 06

3

(=¥

8 04

3

5 02

Q

[=%

>

g 0

m

200 300 400 500 600
Radius rj; of body sphere [mm]

(d) Convergence with order of quadrature

£ 100
©
g 999 09.868% 99.868%
c . 99.874% 99.893%
£ 99.8
< 997
=
=
& 996
= 99.573%
T 995 :
& 0 10 20 30 40

Order of Gauss Quadrature

Fig. 8. Evaluation of BEM torso mapping. (a) Potentials throughout a body sphere with r; = 300 mm and (b) potentials at the pole (0 = 0, location of maximum error) for
various body spheres (Table 3) matched the analytical solution. (c) Ratio between BEM-based and analytical solution for various mesh resolutions and average edge lengths I,
(d) and for various orders of Gaussian quadrature, showing that the method converges rapidly with increasing mesh resolution and order of quadrature.

Table 3
Body spheres used for torso mapping evaluation. See text for details.

Radius rg (mm) Number of vertices

Avg. edge length [ (mm)

150 3482 10.5
300 3482 21.0
400 3482 28.0
600 3482 42.0

APD parameters at epicardium and endocardium: rr = Teloseey /
Teloseng,- F12- 10a shows that the difference in the considered ECG
features between the linear gradient model and the used M-cell
model was marginal. This result was not surprising as s controls
cardiac repolarization, whereas the QRS duration and electrical
axis depend mostly on cardiac depolarization. Furthermore, we
also analyzed how regional differences in APD can influence the
ECG parameters. To that end, we created a base-to-apex gradient
by defining an additional ratio rga = Tciose,y, /Tcloseqex- 1N Fig. 10D,
the resulting variation in Ags and « is illustrated. In this case,
QRS duration was, as expected, only minimally affected (range
0.15 ms) but the electrical axis varied by 13.6°.

Finally, we investigated the effect of the fiber model on the ECG
features. According to the study by Lombaert et al. (2012), fiber
angles in human physiology range on average from about 50° to
80° on the epicardium. As shown in Fig. 11, the variation of Ags
in that range was small, with a range of 8.2 ms. The electrical axis
varied by 30.8° as the electrical activation pattern was modified
due to the anisotropic diffusivity. However, that variation was still
within the clinical range.

Altogether, these finding - linear dependence of Ags on myo-
cardial diffusion, and linear dependence of « on LV/RV endocardial
diffusion - confirmed the assumptions made in Section 2.2.3 and
justified the selection of the two features for the estimation of car-
diac electrical diffusivity. However, as expected, the experiments
also showed that multiple combinations of cyy,, v and cgy can
yield the same set of ECG features. The resulting uncertainty of

diffusion parameters given a set of ECG features will be quantified
in Section 3.2.2. Because variation for different APD distributions
and fiber elevation angles was found to be relatively low or cannot
be directly measured in vivo at the time of this study, we focused
on the estimation of diffusion coefficients, keeping the other
parameters at their nominal value.

3.1.3. Analysis of computational efficiency

Using one representative patient case, computational efficiency
was analyzed on a system with a 16-core Intel Xeon 64-bit CPU at
2.4GHz and an NVIDIA GeForce GTX 580 graphics card. As
described by Zettinig et al. (2013b), the computational times of
image preparation and anatomical model creation, which has to
be computed only once per patient, amounted to a total of 81.2s.
Table 4 reports the runtimes of the LBM-EP algorithm for a full
heart cycle on differently spaced Cartesian grids (Georgescu
et al., 2013). The projection of the extracellular potentials to the
torso and the calculations of the ECG traces are simple matrix oper-
ations. Hence, the evaluation of the complete forward model could
be done in less than 3 s for a grid with an isotropic resolution of
1.5 mm. As the evaluation of a polynomial function is almost
immediate, the estimation of cardiac diffusivity required less than
10s because of the three forward runs for the purpose of
normalization.

3.2. Evaluation of the proposed data-driven estimation framework

3.2.1. Experimental protocol

In this study, datasets of 19 patients with dilated cardiomyopa-
thy (DCM) and a QRS duration of at least 120 ms were used. For all
of them, an anatomical model was created based on cine magnetic
resonance images (MRI) as described in Section 2.1. Thereafter, 500
EP simulations were computed for each patient on a 1.5 mm-
isotropic Cartesian grid, accounting for a total of 9500 forward
model runs. Diffusivity coefficients were uniformly sampled



0. Zettinig et al. /Medical Image Analysis 18 (2014) 1361-1376

1369

(a) Varying myocardium diffusion CMyo, fixed LV/RV diffusion,

cLv = cry = 4900 mm?/s

90

70+

QRS Duration AQRS [ms]

00200 400 600 800 1000

. [ )
Myocardium diffusion Myo [mm*/s]

50
on
()
=,
3 0
2
&
8 50
j=
Q
3
M
-100

0 200 400 600 800 1000
Myocardium diffusion CMso [mm?/s]

(b) Varying LV/RV diffusion (cpv + cry = 5000 mm?2/s),
CMyo = 100mm2/s

&~
o

—
N
=4

QRS Duration AQRS [ms]
® =
S S

D
(=}

1000 2000 30‘00 4000
LV diffusion Gy [mm?/s]

50+

=50+

-100+

Electrical axis o [deg]

-150+

1000 2000 3000 4000
LV diffusion Cly [mm?/s]

Fig. 9. Influence of diffusivity coefficients on ECG features. (a) QRS duration was linearly dependent on myocardium diffusion when LV and RV diffusion were fixed. Electrical
axis varied little except for very low myocardium diffusion. (b) Electrical axis was almost linearly dependent on LV/RV diffusion when myocardium diffusion was fixed. QRS
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Fig. 10. Influence of action potential duration (T..s.) on ECG features. (a) The difference between the used linear gradient model and an M-cell model is negligible; the
transmural ratio does not seem to significantly influence QRS duration and electrical axis. (b) A downward gradient (base to apex) only causes slight variation in ECG features,
showing that regional differences in 7. cause low variation in ECG features. See text for details.

between 50 mm?/s and 5000 mm?/s under the constraints
Cmyo < Crv and Cuyo < Cry.

3.2.2. Uncertainty analysis in cardiac diffusion parameters
Before training the regression model, the intrinsic uncertainty
of the ECG inverse problem under our forward model was quanti-

fied using the entire synthetic EP database (9500 simulations). To
minimize the effects of geometry, the analysis was conducted with
normalized ECG parameters. All computed (Ags,®) tuples were
grouped in 20 x 20 bins, and for each bin, the local standard devi-
ation of the diffusion coefficients cyy,, c;v and cgy was calculated.
Table 5 reports the total standard deviation in the entire dataset,
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Fig. 11. Influence of fiber elevation angle o within physiological range on ECG features (the anatomical models are generated with o on the endocardium and —c; on the

epicardium).

Table 4
Full heart cycle runtimes of the LBM-EP algorithm for
different grid spacings (Georgescu et al., 2013).

Grid spacing (mm) GPU runtime (s)

1.5 2.8
0.7 21.7

the average local standard deviation, and the uncertainty defined
as their ratio. As illustrated in Fig. 12, which shows the uncertainty
for each bin, the highest variation can be found in the healthy
range of QRS duration and electrical axis (up to 180%). The
reported high uncertainties, especially for c;y and cgy, reflects the
ill-posed nature of the ECG inverse problem if only QRS duration
and electrical axis are employed to personalize the model. That
information will be useful when evaluating the accuracy of the per-
sonalization techniques in the next sections.

3.2.3. Evaluation on synthetic data

The proposed machine-learning personalization procedure was
evaluated using a leave-one-patient-out cross-validation on the
database, i.e. the regression models were trained using a subset
of 18 patients and tested with the remaining one, for each of the
19 DCM cases respectively. Next, the average testing errors in the
diffusion (parameter) space were calculated. To evaluate the accu-
racy of the regression model in the observable space of ECG param-
eters, Agrs and o were computed according to the estimated
diffusivity parameters and quantitatively compared with the
known ground truth. In order to analyze the required dimensional-
ity of the polynomial regression model, a cross-validation proce-
dure with regression degrees ranging from 1 to 8 was performed.
While linear or quadratic regression models failed to capture the
ECG problem, as shown in Fig. 13, the model started to overfit at
degrees higher than four, leading to again increasing prediction
errors in ECG space. Thus, the best option is to use cubic regression.

In Table 6, the final regression coefficients f;; according to Eq.
13, trained using the entire synthetic dataset, are given. In
Fig. 14, the regressed surfaces for each of the diffusion parameters
are visualized. Myocardial diffusion cuy, is, as expected, almost
exclusively dependent on the QRS duration. Interestingly, for long
QRS durations (Agrs > 1.7), cgy decreases for left axis deviations

Table 5
Total, and average local (bin-wise) standard deviation, and the uncertainty defined as
their ratio for all three diffusion coefficients.

Cmyo Cry Crv
Total SD (mm?/s) 1482 1095 1191
Avg. local SD (mm?/s) 191 556 537
Uncertainty (%) 12.9 50.7 451

while still remaining higher than c;,. Nevertheless, axis deviations
on both sides are correctly captured, i.e. cgy is clearly smaller than
cyv for deviations to the right, and ¢y is slightly smaller than cgy for
deviations to the left. Beyond the highlighted normalization range,
all three polynomials may drop below zero for certain combina-
tions of QRS duration and electrical axis, yielding non-physical dif-
fusion coefficients. A test after the prediction can be used to
discard these cases. The errors in estimated diffusion reported in
Table 7 were obtained using this model. The relative errors in %
of the total standard deviation of the dataset were in the same
range as the estimated uncertainty of the inverse problem (Section
3.2.2). The proposed regression model was thus able to predict up
to the intrinsic uncertainty of the problem. Furthermore, predic-
tion errors were significantly higher when no normalization was
applied, as illustrated in Table 7, suggesting the proposed model-
based normalization procedure was able to partially compensate
for inter-patient geometry variability.

In addition to the diffusion parameters used in the forward
model (cyyo, v and cgy), we tested how well the ratio between
cv/cry can be reconstructed. Low prediction errors as listed in
Table 7 were expected in light of the experiments carried out in
the previous section, which showed a linear dependency of the
electrical axis on ¢y when ¢y + cgy is kept constant. However,
the ratio alone is not sufficient for a complete model personaliza-
tion as the two values are needed.

Comparison against nominal values. Table 8 reports the average
absolute errors in ECG feature space for forward model simulations
with nominal diffusion parameters from literature and parameters
obtained with the proposed regression framework. Likewise, the
error distributions are shown in Fig. 15. Calibrated simulations
using our framework were not only in the range of clinical variabil-
ity but also significantly (t-test p-value < 0.001) more precise than
those obtained with nominal diffusivity values. In addition, our
predictions were on average centered around the ground truth
QRS duration (average bias: +0.7 ms), the Aggs calculated with
default parameters was on average 28.9 ms too short. As the
default parameters correspond to healthy physiology whereas con-
duction abnormalities cause prolonged QRS durations, this result
was expected. Using our diffusion estimation framework may thus
be preferable to using nominal parameters when only ECG is
available.

Comparison against alternative machine learning techniques. In
this study, the predictive power of the proposed polynomial
regression framework is compared against two non-parametric
non-linear methods: multivariate adaptive regression splines
(MARS) and Gradient Boosting, as described in Hastie et al.
(2009). The former, MARS, is a non-parametric regression method
with explicative capabilities, which intuitively extends linear
regression by fitting splines to the predictors to capture data
non-linearities and variable interactions. For our evaluation, the
ARESLab toolbox (Jekabsons, 2011) was used. Gradient Boosting,
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Table 6

Learned regression coefficients g;; rounded to 5th decimal position (Eq. (13), Ags and
o to be given in seconds and radians, respectively). Full double-precision coefficients
are available from supplementary material.

Table 7

Diffusion space prediction errors on the synthetic dataset, absolute in mm?/s and
relative in % of the total standard deviation. In addition to the three parameters, also
the ratio between ¢,y and cgy was tested.

i j Emyo v 8rv CMyo (937 Crv Crv/cry
3 0 —4397.72303 —2224.80345 —2372.28284 With Normalization 356 451 533

2 1 947.10794 —217.53110 —~111.83210 24.0% 41.2% 44.7% 21.3%
2 0 20619.61231 8748.58856 10659.98012 Without normalization 571 540 597

1 2 —-339.47629 884.12470 —~1849.11181 38.5% 49.3% 50.0% 23.9%
1 1 —2138.03900 —556.40419 1168.22703

1 0 —31323.62564 —~13516.54750 ~15836.31353

0 3 —125.51341 —238.65933 513.65578

0 2 688.60647 —215.02537 1004.99532

0 1 1070.11229 585.32229 —900.63528 . . .

0 0 15662.21934 0621.33473 10454.35893 learning algorithms. The errors in ECG feature space can be found

on the other hand, is based on an ensemble of weak prediction
models, in our case 100 decision trees (LSBoost function of MAT-
LAB). Table 9 lists the diffusion space errors for all tested machine

CMyo
10000
5000

-2

" 2
orm, Electrical Axig

in Table 8 and Fig. 15. Both approaches yielded very similar diffu-
sion error distributions compared to the proposed polynomial
regression framework. Also the error distributions of Ags and o
obtained by MARS and Gradient Boosting were similar to those
obtained by polynomial regression.

&

Fig. 14. Regressed surface for each diffusion parameter. The highlighted area (blue contour) corresponds to the normalized parameter range in Fig. 12. As expected, all three
parameters are dependent on the QRS duration, and the electrical axis has little effect on cyy,. Right axis deviations correctly lead to czy < ¢y, and vice versa. Beyond the
normalization range, all polynomials may drop below zero (non-physical diffusivity) for certain parameter combinations. See text for details. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 8

Average absolute ECG feature space errors for ECG simulations with nominal,
NEWUOA-estimated and predicted diffusivity parameters using a machine learning
technique.

Diffusivity Agrs (ms) o (deg)

Nominal parameters 33.7+15.7 53.2+33.8
NEWUOA optimization 74+11.3 16.1+31.4
MARS 46+5.1 9.8+23.0
Gradient boosting 49+5.8 9.5+19.8
Polynomial regression 48 +6.0 8.9+19.7

Comparison against an alternative inverse-problem method. We
compared the performance of the regression framework with a
personalization approach that is based on NEWUOA (Powell,
2006, 2008), a gradient-free inverse problem method. An algorithm
similar to the approach proposed by Neumann et al. (2014) is fol-
lowed. The diffusion coefficients cf;,,c},,cp, are initialized with
parameters associated with healthy EP (Table 2, configuration
F1). The initial step size is set to 500 mm?/s. Cardiac diffusivity is
then estimated using NEWUOA such that both the QRS durations
and the electrical axis match:

(C;/IyovczV7CEV) = argmin C[fAQRw (CMya, CLV7CRV>} (16)

CMyoCLV CRV

Hereby, fays.«(-) denotes the ECG features obtained by running the
EP forward model. In the cost function C, the values Aj;s and o™
are the measured QRS duration and electrical axis, respectively,
and the parameter / = 0.1 accounts for the different orders of mag-
nitude between QRS duration (in seconds) and electrical axis (in

radians):
C(Agps: ') = |AGps — Atges| + 210" — | (17)

As shown in Table 8, the errors in Aggs and o calculated using the
NEWUOA-personalized forward model were higher compared to
the data-driven estimation framework. In addition, the obtained
values for the electrical axis were less centered around the ground
truth (average bias: 8.1°). Note that the table lists higher standard
deviations (11.3 ms and 31.4° for Aggs and o, respectively) than
Fig. 15 suggests because of numerous outliers (16%) in the NEWUOA
predictions.

Because the optimizer was sensitive to local minima, NEWUOA
typically required up to 50 iterations to converge to a stable opti-
mum. Thus, the total time for optimization using a fully optimized
version of the code would take up to 2.5 min, while our approach
requires only 10 s to calculate the three forward simulations for
the normalization. Our approach was therefore not only at least
15x more computationally efficient but also yielded more
predictive diffusivity parameters.

Table 9
Diffusion space prediction errors on the synthetic dataset, relative in % of the total
standard deviation, for the tested machine learning algorithms.

Cmyo (%) cy (%) crv (%)
MARS 232 40.2 43.7
Gradient boosting 243 46.1 49.1
Polynomial regression 240 41.2 44.7

3.2.4. Evaluation on real DCM cases

Finally, we evaluated the machine-learning personalization
with the clinical ECG data which were available for all 19 DCM
cases. The trained regression models from the cross-validation
were employed to estimate diffusion coefficients based on mea-
sured QRS duration and electrical axis. In three cases, the predic-
tion was not successful and yielded negative diffusivity for at
least one of the diffusion parameters because the measured electri-
cal axis was outside the normalization range. These cases are easily
identifiable and could therefore be processed using other
approaches if needed. For the remaining 16 patients, plausible dif-
fusion coefficients (between 141 and 582 mm?/s for cpy,, and
between 678 and 2769 mm?/s for c;y and czy/) were estimated.
Table 10 reports the average absolute errors between clinical
ground truth and ECG features obtained with forward model com-
putations using the estimated diffusion parameters for the remain-
ing 16 patients. Fig. 16 shows the obtained error distributions,
indicating that the simulated QRS duration was on average 18 ms
too long, while the electrical axis was closely centered (average
bias: 3.1°) around the measurements, both values being within
clinical acceptability as defined prior to the study. Finally, Fig. 17
illustrates the simulated ECG chest leads overlaid on the measured
ones for one representative patient.

4. Discussion and conclusions
4.1. Discussion

In this paper, we described a data-driven method for the per-
sonalization of a cardiac electrophysiology model from ECG fea-
tures. As supported by reported results, the method achieves the
same accuracy as traditional inverse problem algorithm with the
advantage of (1) being computationally efficient (evaluation of a
polynomial function is almost immediate) and (2) providing an
estimate of parameter uncertainty, an additional variable that
could be employed clinically.

While the anatomical model was obtained from cine MR images
in this work, the approach is easily applicable to other modalities
such as computed tomography (CT) or echocardiography

Electrical Axis

QRS duration
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Fig. 15. QRS duration and electrical axis error distributions for ECG simulations with nominal, NEWUOA-estimated and predicted diffusivity parameters using a machine
learning technique. On each box, the central mark is the median, the edges of the box are the quartiles, and the whiskers extend to the most extreme data points not
considered outliers. The range between the whiskers covers approximately 99.3% of the normally distributed data.
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Table 10
Average absolute ECG feature space errors for ECG computations with regression-
predicted diffusivity parameters from clinically measured ECG features.

Diffusivity Aqgrs (ms) o (deg)

18.7£16.2

Regression-based prediction 6.5+7.6

(Zheng et al., 2008), provided the full bi-ventricular myocardium is
visible. In this study, a synthetic model of fiber architecture was
employed. Nevertheless, our framework is ready to incorporate dif-
fusion tensor imaging (DTI) data and thus remove this additional
uncertainty. It will be important to quantify the difference
between ex-vivo measurements (Helm et al., 2005) and in vivo
measurements in order to learn a data-driven model for patient-
specific diffusivity predictions. Furthermore, it would be interest-
ing to investigate how the variances of the atlas generated by
Lombaert et al. (2012) can be used for a sensitivity analysis and
uncertainty estimation in our model. In any case, the tremendous
progress achieved in in vivo DTI will soon enable to use patient-
specific data (Toussaint et al., 2013). For the mapping of potentials
onto the body surface, an atlas of torso geometry was employed as
3D images of patient upper body were not available. The manual
registration of the atlas against 2D contours outlined in the three
sagittal, axial and longitudinal planes was performed by an expert.
It should be noted however that slight mis-registration would not
have impacted the performance of the algorithm as ECG leads are
known to be tolerant with respect to electrode placement
(Sheppard et al., 2011). In addition, the overall methodology would
work on more detailed atlases based on populations or on the
patient-specific geometry directly.

This work was performed using a mono-domain EP model with
the action potential model proposed by Mitchell and Schaeffer
(2003). It has been shown by Boulakia et al. (2010) and Plank
et al. (2013) that anisotropic mono-domain models are able to pre-
serve the essential ECG features, which were used for the subse-
quent personalization, when compared to orthotropic bi-domain
models. It should be noted that the LBM-EP method can use any
mono-domain model like for instance the TenTusscher model. Fur-
thermore, the data-driven personalization algorithm is generic by
design and can be applied to any cell model, or any bi-domain or
graph-based/Eikonal model of cardiac electrophysiology, as far as
the database can be computed in a realistic amount of time. More-
over, our focus on cardiac depolarization allowed decoupling the
estimation of electrical diffusivity from repolarization EP parame-
ters and assuming a static heart. Unlike during the ST-T period,
the deformation of the myocardium due to cardiac motion has
been shown to be marginal during the QRS complex (Jiang et al.,
2009). Also, the influence of the action potential duration on the
ECG features used to estimate electrical diffusion (QRS duration
and electrical axis) was confirmed to be negligible (Fig. 10).

In this study, the mapping of extracellular potentials from the
heart to the body surface relies on a boundary element approach.
For our simulations, we applied constant homogeneous isotropic
conductivity in the torso, including the chest cavity, thoracic cage,

muscle tissue and skin. Minor sensitivity on body surface poten-
tials for different organ conductivities as observed in the computa-
tional study by Geneser et al. (2008) justifies this assumption for
our purposes. We verified our BEM implementation with analyti-
cally defined test cases and showed convergence with increasing
mesh resolution and order of Gaussian quadrature for the evalua-
tion of integrals without available closed-form formula (Fig. 8),
suggesting that the uncertainty in diffusivity parameters is not
related to BEM numerical approximations but rather intrinsic to
the inverse ECG problem.

From the ECG traces, two features were derived, namely the
QRS duration Ags and the electrical axis o. Provided the choice
of appropriate electrode positions, experiments have shown that
the electrical axis can be computed on either the epicardium mesh
or the torso mesh. A thorough evaluation of the influence of vary-
ing conductivities in the torso due to different organs (Geneser
et al., 2008) onto the electrical axis measured at the torso would
be interesting for future works. Regarding the computation of the
QRS duration, we observed in our experiments a close match
between the duration computed directly using the LBM-EP results
as described in Section 2.2.3 and the width of the QRS complex in
the computed ECG leads. This work is based on the assumption
that these two features are sufficient to explain various EP pat-
terns. In addition, the selected features are commonly available
from clinical ECG traces and clinical reports, and would therefore
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Fig. 17. Clinically measured, and computed ECG chest leads after model estimation
of cardiac diffusivity for one representative patient, showing promising agreement
during cardiac depolarization, which we focused on in this study. For this case,
obtained estimation errors amounted to 1.6 ms for the QRS duration and 0.5° for the
electrical axis.
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Fig. 16. QRS duration and electrical axis error distributions for ECG simulations diffusivity parameters estimated from clinical ground truth measurements.
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allow the estimation of diffusion coefficients with little effort in
clinical routine. The proposed method could therefore constitute
a first model personalization step when no dense EP data is avail-
able, and would also provide more accurate results compared to
generic parameters, as suggested by our experiments. Yet, the pro-
posed framework is generic and allows the integration of an arbi-
trary number of features. If invasive or BSM measurements are
available, more regional features could be used to facilitate the
estimation of model parameters.

The use of QRS duration and electrical axis was further sup-
ported by our parameter analysis. It has been shown in this paper
that QRS duration varies linearly with myocardial diffusion (cuy,),
while the electrical axis varies linearly with increasing left endo-
cardial diffusion (c;y) when the right endocardial diffusion (cgy)
is decreased at the same time such that their sum is constant.
However, these relationships are not decoupled as each diffusion
parameter has influence on both features, which contributes to
the quantified uncertainty of the inverse problem: different diffu-
sivity configurations can lead to the same ECG parameters. In par-
ticular, we showed that left and right endocardial diffusivity are
subject to broad variations, especially in the region of healthy EP
(Fig. 12). Clearly demonstrating the ill-posed nature of the inverse
ECG problem under the assumptions of our EP model, the reported
uncertainties constitute, to the best of our knowledge, the first esti-
mates of the optimal bound in accuracy for any inverse problem to
estimate myocardium diffusion that rely on Agks and o only. We
expect the uncertainty to decrease as more clinical features are
considered. This study is thus subject to future work.

The main contribution of this work is our novel data-driven
framework to estimate cardiac diffusion parameters. Instead of
solving the inverse ECG problem numerically, we proposed to
employ statistical learning, and in particular multivariate polyno-
mial regression, to learn the relationship between ECG features
and diffusivity. Compared to other statistical approaches, polyno-
mial regression has the advantage that the regression coefficients
can be given and the estimation of diffusion parameters is possible
using a closed-form formula. The personalization formula can
therefore be shared between research groups. Error distributions
obtained using multivariate adaptive regression splines (MARS)
and Gradient Boosting were, as reported in Table 8, similar to those
obtained by polynomial regression. An evaluation of the required
polynomial degree revealed that the model starts over-fitting at
degree 4 (Fig. 13). We therefore use cubic multivariate regression
and report the final coefficients in Table 6.

A key aspect of the approach is the model-based normalization
of EP features to indirectly incorporate geometric information in
the statistical model. The strategy consists in scouting the space
of Agrs and o for a given patient by running three forward simula-
tions with diffusion parameters relating to healthy EP, and left and
right bundle branch block scenarios. As a result, although not
directly based on anatomical or physiological features such as
heart size or strength of myocardial contraction, we were able to
show that the normalization scheme compensates for patient
geometry and significantly improves prediction results (Table 7).
For an unseen patient, three forward model runs are needed (com-
puted in about 10 s using LBM-EP), which is still acceptable in a
clinical setting but also far less than in conventional inverse-prob-
lem algorithms, which require often numerous model evaluations
to converge.

As expected, the regressed surfaces of the three diffusivities
trained from a database of 9500 simulations (Fig. 14) showed
dependance of the QRS duration on all three diffusion parameters.
For right axis deviations, the right endocardial diffusion was con-
sistently lower than the left one, and vice versa. However, all three
polynomials may yield negative, non-physical diffusion coeffi-
cients for certain parameter combinations. As not reported, preli-

minary experiments have shown, regressing the logarithm of the
diffusion coefficients (log c instead of c directly) could help in over-
coming this limitation. Future work will therefore consider the
investigation of regression methods with better generalization on
unseen data. Prediction errors in diffusion space (leave-one-
patient-out) were in the range of the estimated intrinsic uncer-
tainty of the problem, especially for left and right endocardial dif-
fusivity (Table 7). Only for myocardial diffusivity, the prediction
was slightly worse (24% of total std. dev.) compared to the uncer-
tainty (13% of total std. dev.) One reason for this result could be the
dependence of myocardial diffusivity on both ECG features for dif-
fusions of less than 400 mm?/s (Fig. 9a).

Yet, prediction errors in the ECG feature space for the synthetic
dataset obtained by running forward simulations using the cali-
brated EP model were significantly better than those obtained by
using nominal diffusion parameters from literature (Table 8). Fur-
thermore, a comparison with an estimation algorithm based on the
gradient-free inverse problem method NEWUOA showed that our
method performs better (prediction errors in QRS duration and
electrical axis were 54% and 80% higher, respectively) while being
immediate to compute and providing uncertainty estimates. Alto-
gether, the application of the proposed data-driven framework
may thus be preferential to traditional approaches when only
ECG data are available.

Finally, an evaluation with clinically measured ECG features
was conducted on all 19 patient cases. The model was successfully
fitted in 16 cases out of 19 (84%), with promising prediction errors
of 18.7+16.2 ms for Ags and 6.5+ 7.6° for o, within clinical
acceptability. The model could not be personalized in three cases
as the measured electrical axis was outside the normalization
range. Similar results were obtained in not reported, preliminary
experiments on regressing the logarithm of the diffusion coeffi-
cients, as mentioned above. However, the cases that failed could
not be recovered either, suggesting a more intrinsic difference
between patient physiology and our model, for instance a potential
line of blocks, etc. A more realistic incorporation of geometrical
features might improve the success rate and avoid such inconsis-
tencies. Further investigation is needed for an optimal regression
model.

The results previously published by Zettinig et al. (2013a)
showed smaller overall errors in Aggs and «, potentially because
(1) fewer patients with a smaller range of anatomical and physio-
logical variation were used, and (2) the original framework (multi-
variate polynomial regression of degree 7) might have been
overfitting as shown in Fig. 13. In addition, estimation errors with-
out normalization were better than previously reported, possibly
due to the updated torso registration technique.

4.2. Perspectives

In this work, only the cardiac anatomy model was generated
based on patient data. Despite the contour-based registration,
torso geometry was based on an atlas and does not entirely reflect
patient-specific anatomy. Also the boundary element mapping of
potentials assumes constant conductivity, neglecting thoracic
organs and different tissue types. Future work could thus improve
the anatomical model by incorporating more imaging data from
the heart to the body surface and model the different tissues in
the torso independently (lung, bones, muscles). Furthermore,
instead of the proposed normalization technique, explicitly inte-
grating geometrical features directly into the regression
framework could potentially better cope with anatomical variabil-
ity. In addition, the framework could be extended by using an elec-
tromechanical model of the heart (Zettinig et al., 2013b) to cope
with the influence of cardiac motion on the ECG. A comprehensive
study is needed though to quantify that aspect and properly con-
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sider it into the estimation process. There are indeed no studies
available to clarify how much motion happens during the fast
depolarization of the heart, to the best of our knowledge. Even
though, a dynamic model would have great benefit when esti-
mated cardiac repolarization features like action potential
duration.

As the uncertainty in diffusion parameters given QRS duration
and electrical axis is high, the integration of more ECG features
could improve estimation precision and increase the success rate
of the approach. Similarly, more ECG features may potentially
allow the estimation of more local diffusion coefficients, rendering
the estimation of regional diffusivity distributions possible.

Finally, refining the forward model, in particular regarding car-
diac electrophysiology, might lead to future extensions of our
framework. More complex biophysical bi-domain models, integra-
tion of atrial geometry, more refined activation patterns, and cou-
pling with mechanical models could potentially increase the
predictive power of the framework and are subject to future work.

4.3. Conclusion

We have shown in this paper that the estimation of patient-spe-
cific cardiac diffusion parameters from standard 12-lead ECG mea-
surements using machine learning techniques is possible, up to the
intrinsic uncertainty of the problem. Based on QRS duration and
electrical axis as ECG features, a data-driven regression model
was trained and used to predict diffusivity parameters for left
and right endocardium (mimicking the fast conducting Purkinje
system), and the bulk myocardium tissue. Under the assumptions
of our forward model, the prediction errors were in the range of
the underlying uncertainty in diffusivity, which we empirically
quantified for the first time to the best of our knowledge. We eval-
uated the framework both on the synthetic dataset and on clinical
measurements using a leave-one-patient-out cross-validation and
computed the error in ECG feature space using forward simulations
with estimated diffusion parameters. Significant improvement
with respect to nominal diffusivity values, which relate to healthy
electrophysiology, were obtained. We also conducted a compari-
son with a NEWUOA-based personalization approach, finding over-
all superior predictive power. Therefore, our framework can
provide good preliminary personalization, prior to more refined
estimation if invasive or BSM measurements are available.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.media.2014.04.
011.
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