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a b s t r a c t

The cardiac valvular apparatus, composed of the aortic, mitral, pulmonary and tricuspid valves, is an
essential part of the anatomical, functional and hemodynamic characteristics of the heart and the cardio-
vascular system as a whole. Valvular heart diseases often involve multiple dysfunctions and require joint
assessment and therapy of the valves. In this paper, we propose a complete and modular patient-specific
model of the cardiac valvular apparatus estimated from 4D cardiac CT data. A new constrained Multi-lin-
ear Shape Model (cMSM), conditioned by anatomical measurements, is introduced to represent the com-
plex spatio-temporal variation of the heart valves. The cMSM is exploited within a learning-based
framework to efficiently estimate the patient-specific valve parameters from cine images. Experiments
on 64 4D cardiac CT studies demonstrate the performance and clinical potential of the proposed method.
Our method enambles automatic quantitative evaluation of the complete valvular apparatus based on
non-invasive imaging techniques. In conjunction with existent patient-specific chamber models, the pre-
sented valvular model enables personalized computation modeling and realistic simulation of the entire
cardiac system.

Crown Copyright � 2012 Published by Elsevier B.V. All rights reserved.
1. Introduction

The valves are essential anatomical structures regulating the
heart chamber hemodynamics and the blood flow between the
heart and the systemic and pulmonary circulations. Valvular Heart
Disease (VHD) which affects 2.5% of the global population and re-
quires yearly over 100,000 surgeries in the United States alone, is a
representative instance for the growing public health problem pro-
voked by cardiovascular diseases. Heart valve operations are the
most expensive and the riskiest cardiac procedures, with an aver-
age cost of $141,120 and 4.9% in-hospital death rate (Donald et al.,
2009).

Due to the strong anatomical, functional and hemodynamic in-
ter- dependency of the heart valves, VHDs do not affect only one
valve, but rather several valves are impaired. Recent studies dem-
onstrate strong influence of pulmonary artery systolic pressure on
the tricuspid regurgitation severity (Mutlak et al., 2009). In Lansac
et al. (2002), Timek et al. (2003) the simultaneous evaluation of
aortic and mitral valves is encouraged, given the fibrous aortic-mi-
tral continuity, which anchors the left side valves and facilitates
the reciprocal opening and closing motion during the cardiac cycle.
Moreover, in patients with mitral and tricuspid valve regurgitation,
012 Published by Elsevier B.V. All
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joint surgery is recommended to minimize the risk for successive
heart failure or reduced functional capacity. Complex procedures
mostly performed in patients with congenital heart diseases, such
as the Ross operation, in which the aortic valve is replaced with the
pulmonary, require comprehensive quantitative and qualitative
evaluation of the heart valves. Morphological and functional
assessment of the complete heart valve apparatus is crucial for
clinical decision making during diagnosis and severity assessment
as well as treatment selection and planning.

Decisions in valvular disease management increasingly rely on
non-invasive imaging. The quality of acquired information, as well
as the accessibility and cost effectiveness of each medical imaging
modality has radically improved over the past decades. Techniques
like cardiac Computed Tomography (CT) enable dynamic four
dimensional scanning of the beating heart over the whole cardiac
cycle. Such volumetric time-resolved data encode comprehensive
structural and dynamic information, which however is barely
exploited in current clinical practice, due to its size and complexity
as well as the lack of appropriate medical systems in order to uti-
lize the extensive image information.

The progress in medical imaging is matched by important ad-
vances in surgical techniques, bioprosthetic valves, robotic surgery
and percutaneous interventions, which have led to a twofold in-
crease in the number of valve procedures performed in the United
States since 1985 (Jablokow, 2007). According to the Millennium
Research Group, percutaneous heart valve therapies will dominate
rights reserved.
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Fig. 1. Complete heart valves model consisting of aortic valve (AV), mitral valve (MV), pulmonary valve (PV) and tricuspid valve (TV). Left: Similarity transform illustrated as a
bounding box and anatomical landmarks. Right: Complete mesh surface model.
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the future and cover up to 41.1% of all valve procedures by 2012.
Powerful computer-aided tools for extensive non-invasive assess-
ment, planning and guidance are mandatory to continuously
decrease the level of invasiveness and maximize effectiveness of
valve therapy.

An increased holistic view of the heart, demanded by clinicians
is in perfect accordance with the tremendous scientific effort
worldwide, such as the Virtual Physiological Human project
(Clapworthy et al., 2008), geared towards multi-scale physiological
modeling and simulation, which will promote personalized, pre-
ventive and predictive healthcare. However, the majority of cardiac
models to date are focused on representation of the left or right
ventricle (Fritz et al., 2006), while very few include the left and
right atrium (Zheng et al., 2008; Lorenz and von Berg, 2006;
Zhuang et al., 2010a; Huang et al., 2007; Zhuang et al., 2010b;
Ecabert et al., 2008) but none explicitly handles the valves.
Recently introduced models of the aortic valve (Waechter et al.,
2010; Ionasec et al., 2008), the mitral valve (Schneider et al.,
2010; Conti et al., 2010) and the aortic-mitral coupling (Ionasec
et al., 2009; Veronesi et al., 2009; Ionasec et al., 2010) do not incor-
porate the right side valves. A critical component for a patient-
specific computation model of the entire heart and realistic cardio-
vascular simulations, which was not reported yet in the literature,
is a personalized and complete representation of the valvular appa-
ratus Grbic et al. (2010).

In this paper we propose a complete and modular model of the
heart valves comprising the anatomy of the aortic, mitral, tricuspid
and pulmonary valves (illustrated in Fig. 1) as well as their mor-
phological, functional and pathological variations. The patient-spe-
cific valvular apparatus is estimated non-invasively from 4D
Computed Tomography images, using a discriminative learning-
based approach. The global valve location and motion, as well as
the non-rigid movement of anatomical valvular landmarks, are
computed within the Marginal Space Learning (MSL) (Zheng et
al., 2007) and Trajectory Spectrum Learning (TSL) (Ionasec et al.,
2009) frameworks. A novel anatomical constrained Multi-linear
Shape Model (cMSM) is introduced to capture complex spatio-tem-
poral statistics, and in conjunction with robust boundary detectors,
it is applied to extract the complete valvular anatomy and motion.
2. Physiological model of the heart valves

In this section we introduce the complete heart valves model,
which includes the aortic, mitral, tricuspid and pulmonary valves,
and captures their morphological, functional and pathological vari-
ations. To reduce anatomical complexity and facilitate effective
estimation, the heart valve model is represented on three abstrac-
tion layers: global motion model – which represents the global
location and motion of each valve; anatomical landmark model –
representing the motion of the corresponding anatomic land-
Please cite this article in press as: Grbic, S., et al. Complete valvular heart app
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marks; complete valve model – which parameterizes the full anat-
omy and dynamics of the valves using dense surface meshes.

2.1. Global motion model

The global dynamic variation of each valve is parameterized
through a similarity transformation in the Euclidean three-dimen-
sional space, which includes nine parameters.

Bt ¼ fðcx; cy; czÞ; ðax;ay;azÞ; ðsx; sy; szÞg t 2 1 . . . T ð1Þ

(cx,cy,cz) is the translation, (ax,ay,az) the quaternion representation
of the rotation, (s1,s2,s3) the similarity transform scaling factors and
the time variable t is capturing the temporal variation during the
cardiac cycle.

2.2. Anatomical landmark model

A set of 33 anatomical landmarks, described in the next para-
graph, are used to parameterize the complex and synchronized
motion pattern of all valves, which explains the non-linearities of
the hemodynamic movements. Thereby, each landmark is de-
scribed by a T time-step trajectory in a three dimensional space,
normalized by the temporal dependent similarity transform B:

LnðBÞ ¼ fl1; l2; . . . ; lTg n 2 1 . . . 33 li 2 R3 ð2Þ
2.3. Complete valve model

The final valves model is completed with a set of 13 dense sur-
face meshes. Each mesh is sampled along anatomical grids of ver-
tices defined through the landmarks:

VqðL;BÞ ¼ f v1
�!

; v2
�!

; � � � ; vK
�!g q 2 1 . . . 13 v i

!2 R3 ð3Þ

where v i
! are the vertices, and K is the total number of vertices of

mesh q. Each anatomical landmark, described in the previous sec-
tion, has a fixed correspondence on the parameterized surface
mesh.

2.3.1. Aortic valve
Four surface structures represent the aortic valve: aortic root,

left coronary leaflet, right coronary leaflet and non-coronary leaf-
let. The aortic root connects the ascending aorta to the left ventri-
cle outflow tract and is represented through a tubular grid (see
Fig. 2). This is aligned with the aortic circumferential u and ascend-
ing directions v and includes 36 � 20 vertices and 1368 faces. The
root is constrained by six anatomical landmarks, i.e. three commis-
sures and three hinges, with a fixed correspondence on the grid.
The three aortic leaflets, the L-, R- and N-leaflet, are modeled as
paraboloids on a grid of 11 � 7 vertices and 120 faces (see
Fig. 6e). They are stitched to the root on a crown like attachment
aratus model from 4D cardiac CT. Med. Image Anal. (2012), doi:10.1016/
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Fig. 2. Global motion and anatomical landmark model of the aortic valve. The similarity transform is represented as a bounding box around the aortic valve estimated from
4D cardiac CT. (a) Perspective view; (b) long axis; (c) short axis; (d) landmarks relative to the anatomical location illustrated in long and short axis from an example CT study.
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ring, which defines the parametric u direction at the borders. The
vertex correspondence between the root and leaflets along the
merging curve is symmetric and kept fixed. The leaflets are con-
strained by the corresponding hinges, commissures and tip land-
marks, where the v direction is the ascending vector from the
hinge to the tip.

2.3.2. Mitral valve
The mitral valve is composed of 7 landmarks including 3 tri-

gons, 2 commissures and 2 leaflet tips (see Fig. 3). The leaflets sep-
arate the left atrium and left ventricle hemodynamically and are
connected to the endocardial wall by the saddle shaped mitral
annulus. Both are modeled as paraboloids and their upper margins
implicitly define the annulus. Their grids are aligned with the cir-
cumferential annulus direction u and the orthogonal direction v
pointing from the annulus towards leaflet tips and commissures
(see Figs. 6b and 6f). The anterior leaflet is constructed from
18 � 9 vertices and 272 faces while the posterior leaflet is repre-
sented with 24 � 9 vertices and 368 faces. Both leaflets are fixed
by the mitral commissures and their corresponding leaflet tips.
The left/right trigons and the postero-annular midpoint further
confine the anterior and posterior leaflets, respectively.

2.3.3. Pulmonary valve
The representation of the pulmonary valve is compounded out

of four structures: pulmonary trunk, left facing leaflet, none facing
leaflet and right facing leaflet (see Fig. 4). The pulmonary trunk
emerges out of the right ventricular outflow tract, supports the
Please cite this article in press as: Grbic, S., et al. Complete valvular heart app
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pulmonary valves and its three leaflets, and ends at the level of
the pulmonary artery bifurcation. The grid, which spans the pul-
monary trunk surface, is aligned with the circumferential u and
longitudinal direction v of the valve. It includes 50 � 40 vertices
and 3822 faces confined through the pulmonary commissures,
hinges and the RV trigon. The attached L-, R- and N-leaflets, are
modeled as paraboloids along the annulus circumferential
direction u and vector v pointing from the corresponding hinge
to the leaflet tip (see Fig. 6g). Each includes 11 � 7 vertices and
120 faces bounded by the associated two commissures, hinge
and tip.

2.3.4. Tricuspid valve
The function of the tricuspid valve is to regulate the blood flow

from the right atrium to the right ventricle, staying closed during
systole and opened during diastole. The model is constrained by
four surface geometries (annulus, septal-, anterior- and posterior
leaflet) (see Fig. 6h) and six anatomical landmarks (three commis-
sures and three leaflet tips as illustrated in Fig. 5) which are corre-
sponding to vertices on the meshes. The tricuspid annulus is
represented as a surface mesh constrained by the three commis-
sures. The tricuspid leaflets are modeled as hyperbolic paraboloids
and implicitly describe the tricuspid annulus. Their grids are span-
ning along the annulus circumferential direction u and the perpen-
dicular vector v pointing for the annulus towards the
corresponding leaflet tip, and consist out of 22 � 14 vertices and
546 faces. Each leaflet is constrained by the corresponding two
commissures and one leaflet tip (see Fig. 6h).
aratus model from 4D cardiac CT. Med. Image Anal. (2012), doi:10.1016/
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Fig. 3. Global motion and anatomical landmark model of the mitral valve. The similarity transform is represented as a bounding box around the mitral valve estimated from
4D cardiac CT. (a) Perspective view; (b) long axis; (c) short axis; (d) landmarks relative to the anatomical location illustrated in long and short axis from an example CT study.
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3. Patient-specific model estimation

A hierarchical estimation approach is utilized to deduce mod-
el parameters, introduced in the previous section from 4D car-
diac CT images. First, robust machine learning techniques are
applied to estimate the global valves and anatomic landmarks
parameters introduced in Eqs. 1 and 2. Second, we present the
novel anatomical constrained Multi-linear Shape Model (cMSM),
which effectively captures the complex spatio-temporal variation
of all valves. Lastly, the cMSM is applied in a learning-based
framework to estimate the complete valve model described
in Eq. 3.

3.1. Global motion estimation

The global motion estimation is formulated as a classification
problem in order to estimate Bt for each time step t independently
from the corresponding volumes I(t). The probability p(B(t)jI(t))
can be modeled by a learned detector D, which evaluates and
scores a large number of hypotheses for Bt. To avoid an exhaustive
search along a nine-dimensional space of Bt we apply the Marginal
Space Learning framework (Zheng et al., 2008) and decompose the
original parameter space into a subset of increasing marginal
spaces:

R1 � R2 � � � � � Rn ¼ R ð4Þ

The nine-dimensional space described by the similarity trans-
form in a three-dimensional Euclidean space is decomposed as
follows:
Please cite this article in press as: Grbic, S., et al. Complete valvular heart app
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R1 ¼ ðcx; cy; czÞ
R2 ¼ ðcx; cy; cz;~ax;~ay;~azÞ
R3 ¼ ðcx; cy; cz;~ax;~ay;~az; sx; sy; szÞ ð5Þ

where R1 represents the position marginal space, R2 the
position + orientation marginal space and R3 the position + orienta-
tion + scale marginal space, which coincides with the original do-
main. Detectors are trained using the Probabilistic Boosting Tree
using Haar and Steerable Features for each marginal space D1, D2

and D3, and Bt is estimated by gradually increasing the dimension-
ality. As described in Zheng et al. (2008), the 100 highest scored
candidates are retained in R1, 50 in R2 and 25 in R3, such that
the smallest subgroup which is likely to include the optimal solu-
tion is preserved.

To obtain a temporally consistent global location a RANSAC esti-
mator is employed. To suppress temporally inconsistencies, we as-
sume a constant model for the cardiac motion, which drives the
global movement of the entire valvular apparatus. From randomly
sampled candidates, the one yielding the maximum number of in-
liers is picked as the final motion. Inliers are considered within a
distance of r = 7 mm from the current candidate and extracted at
each time step t. The procedure is applied for each valve separately,
in order to obtain the resulting time-coherent similarity transform
Bt assuming small displacements between consecutive frames.

3.2. Landmark location and motion estimation

The landmarks parameters are estimated within the marginal
space learning framework Zheng et al. (2008) using an algorithm
aratus model from 4D cardiac CT. Med. Image Anal. (2012), doi:10.1016/
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Fig. 4. Global motion and anatomical landmark model of the pulmonary valve. The similarity transform is represented as a bounding box around the pulmonary valve
estimated from 4D cardiac CT. (a) Perspective view; (b) long axis; (c) short axis; (d) landmarks relative to the anatomical location illustrated in long and short axis from an
example CT study.
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called Trajectory Spectrum Learning (TSL), similar as in Ionasec
et al. (2009). Hereby the landmark motions are represented in
the frequency domain instead of the Euclidean space. Therefore
the motion estimation problem is formulated as spectrum learning
and detection in the trajectory space. The object localization and
motion estimation, referred traditionally as detection and tracking
are solved simultaneously.

The trajectory Ln(B) of each landmark can be uniquely repre-
sented by the concatenation of its discrete Fourier transform
(DFT) coefficients,

sj
!
¼ ½ sj
!
ð0Þ; sj
!
ð1Þ; � � � ; sj

!
ðn� 1Þ� ð6Þ

obtained through the DFT equation:

sj
!
ðf Þ ¼

Xn�1

t¼0

LnðBÞðtÞe
�j2ptf

n ð7Þ

where sj
!
ðf Þ 2 C3 is the frequency spectrum of the x, y, and z compo-

nents of the trajectory Ln (B), and f = 0, 1, . . ., n � 1. A trajectory
Ln(B) can be exactly reconstructed from the spectral coefficients

sj
!

applying the inverse DFT:

LnðBÞ ¼
Xn�1

f¼0

sj
!
ðf Þe

j2ptf
n ð8Þ

By decomposing the full trajectory space into orthogonal subspaces
defined by generic bases, such as the Discrete Fourier Transform
(DFT), the obtained representation is shown to be compact espe-
cially for periodic motions, such as the movements of the heart
Please cite this article in press as: Grbic, S., et al. Complete valvular heart app
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valves. This resulting compact representation allows efficient learn-
ing and optimization in its marginal spaces. In the training stage, lo-
cal features are extended in the temporal domain to integrate the
time coherence constraint. Thereby simple gradient and intensity
information is extracted from the image forming three-dimensional
features F3D(). As the motion of the landmarks is assumed to be lo-
cally coherent, F3D() is applied in a temporal neighborhood t � T to
t + T. The final value of the Local-Spatial–Temporal (LST) feature is
the result of time integration using a set of linear kernels s, which
weight the spatial features F3D() according to their distance from
the current frame t.

As described before the landmark trajectory is represented in
the frequency space. Due to their periodic motion a small set of
the frequency components is sufficient to represent their motion.
These frequency subspaces R(k) are efficiently represented by a
set of corresponding hypotheses HðkÞ obtained from the training
set. The pruned search space, restricted to f frequency components,
enables efficient learning and optimization:

Rr�1 ¼ Hð0Þ � Hð1Þ � . . .�Hðr�1Þ; r ¼ jfj ð9Þ

The training algorithm starts by learning the posterior probability
distribution in the marginal space R0. Subsequently, the learned
detectors D0 is applied to identify high probable candidates C0 from
the hypotheses Hð0Þ. In the following step, the dimensionality of the
space is increased by adding the next spectrum component. For
each marginal space Rk, corresponding discriminative classifiers
Dk are trained on sets of positives and negatives. The Local-Spa-
tial–Temporal (LST) features are selected via the probabilistic boost-
ing tree (PBT) to form the strong classifier Dk.
aratus model from 4D cardiac CT. Med. Image Anal. (2012), doi:10.1016/
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Fig. 5. Global motion and anatomical landmark model of the tricuspid valve. The similarity transform is represented as a bounding box around the tricuspid valve estimated
from 4D cardiac CT. (a) Perspective view; (b) long axis; (c) short axis; (d) landmarks relative to the anatomical location illustrated in long and short axis from an example CT
study.

Fig. 6. Anatomical landmark model and complete valve model of the aortic valve, mitral valve, pulmonary valve and tricuspid valve.
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In order to estimate the final trajectory of a landmark we start
from the zero-spectrum and incrementally estimate the magnitude
Please cite this article in press as: Grbic, S., et al. Complete valvular heart app
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and phase of each frequency component ~sðkÞ. At the stage k, the
corresponding robust classifier Dk is exhaustively scanned over
aratus model from 4D cardiac CT. Med. Image Anal. (2012), doi:10.1016/
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the potential candidates Ck�1 �HðkÞ. The final trajectory is reported
as the average of all elements in Cr�1.

3.3. Constrained multi-linear shape model

Multilinear modeling enables the decomposition of a shape
space in a temporal and spatial component in contrast to active
shape models (ASM) where both are coupled. In this paper we
present a Multi-linear MPCA (Multi-linear Principle Component
Analysis) and MICA (Multi-linear Independent Component Analy-
sis) shape model of all valves which is conditioned by anatomical
measurements.

3.3.1. Shape space
In order to construct the shape model all shapes V are aligned

by calculating the mean sequence model and aligning them using
general procrustes analysis (GPA). This transform is utilized to
align all shapes in the sequence. The normalized shapes are repre-
sented as third-order tensors D 2 Rð S�T�PÞ, where S is the number
of patients, T is the frame number inside a multi phase sequence
and P represents the number of shape points.

D ¼ Z�1Upatient�2Umotion�3Upoints ð10Þ

where Upatient is representing the patient modes, Umotion the motion
modes, Upoints the points modes and Z the core tensor. As men-
tioned by Zhu et al. (2009) the motion subspace due its non-Gauss-
ian distribution is decomposed using ICA and the patient and points
space using PCA. We use the fixed point algorithm to perform the
Independent Component Analysis (HyvSrinen et al., 2001). Thereby
the Eq. 10 is modified by introducing the linear static transforma-
tion W.

D ¼ Z�1Upatient�2UmotionW�1W�3Upoints

¼ ðZ�2WÞ�1Upatient�2UmotionW�1�3Upoints

¼ S�1Upatient�2Cmotion�3Upoints ð11Þ
3.3.2. Constrained model estimation
A crucial step in our hierarchical model estimation algorithm is

to advance from one model hierarchy layer to the next finer. This
step is especially important when moving from the anatomical
landmark representation to the dense surface mesh models. In-
stead of using a warping technique, like the thin-plate spline inter-
polation, to map a mean mesh model to the location of the
landmarks we use a Bayesian approach to estimate the dense sur-
face meshes from meaningful clinical measures. A set of anatomi-
cal measurements M (m1,m2, . . . ,mR) extracted from the non-linear
Fig. 7. Anatomical measurements extracted from the aortic valve anatomical landmarks
hinge distance in order to constrain the full surface model (d). The green points are repr
leaflet tips.
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valve model is used to condition a surface parameterization Vq

ð~v1;~v2; . . . ;~vKÞ (Blanc et al., 2009). In the context of the aortic valve
root V1 three measurements are used: (1) inter-commissure dis-
tance, (2) hinge-leaflet tip distance and (3) inter-hinges distance
(see Fig. 7).

Assuming the joint multivariate distribution (VqjM) follows a
Gaussian distribution a conditioned surface VM

q , containing the
anatomical measurements M, can be estimated as follows:

VM
q ¼ lVq

þ RVqMR�1
MMðM � lMÞ ð12Þ

where lVq
is the mean surface parameterization from all training

sets of the valve surface Vq, lM the mean of the measurements M
in the training set, RVqM the covariance matrix between Vqand M.
The constrained surface VM

q is used to reconstruct the dynamic
motion surface model of the whole sequence. Therefore we first
estimate the patient modes upatient and then use them to recon-
struct Vq(L,B).

upatient ¼ VM
q T�1
ð1Þ T ¼ S�2Cmotion�3Upoints ð13Þ

where T�1
ð1Þ is the pseudo-inverse of the tensor T flattened along Z

Z 2 1. . .T modes and Cmotion the Z dimensional motion modes. The
complete surface model for the complete sequence, introduced in
Eq. 3, can be extracted by a tensor multiplication:

VqðL;BÞ ¼ S�1upatient�2Cmotion�3Upoints ð14Þ
3.4. Complete valve model estimation

The final stage in our hierarchical model estimation algorithm is
the estimation of the complete surface model Vq(L,B). The shape
model of each valve is first initialized in the End-Diastole (ED)
and End-Systole (ES) phases of the cardiac cycle using anatomical
measurements M defined between the landmarks L1. . .L33. In the
case of the aortic valve the shape is conditioned using three ana-
tomical measurements extracted from the previously estimated
landmark model: M = {m1,m2,m3} (m1-inter-commissure distance,
m2-hinge-commissure plane distance, m3-hinge-commissure plane
angle). The initialized model is refined using a boundary detector D
learned using the probabilistic boosting-tree (Tu, 2005) and steer-
able features (Freeman and Adelson, 1991). The detector D evalu-
ates hypotheses for each discrete boundary point along its
corresponding normal direction. The new boundary points are set
to the hypotheses with maximal probability. To guarantee physio-
logically compliant results, the final model for each frame is ob-
tained after projecting the estimated points to the multi-linear
shape space described in Section 3.3. Thereby the multi-linear
shape space is used as a parametric space limiting the variability
model (a) inter-commissures distance, (b) hinge-leaflet tip distance and (c) inter-
esenting the aortic valve commissures, the purple point the hinges and the red the
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Fig. 8. Diagram depicting the estimation process of the complete valve model during a full cardiac cycle.

Table 1
Accuracy of the global location and rigid motion estimation, quantified from the box
corners and reported using the mean error and standard deviation distribution over
each valve.

Aortic
valve

Mitral
valve

Pulmonary
valve

Tricuspid
valve

Mean error (mm) 4.32 6.72 7.72 8.12
STD (mm) 1.90 2.21 2.3 3.2
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of the final shape model. Starting from the estimation results in the
ED and ES phases, model parameters can be predicted in the
remaining frames by utilizing the multi-linear shape model as de-
scribed in Section 3.3. Thereby an initialization of the models is
available in the remaining frames of the sequence and it is condi-
tioned on the estimation results in the ED and ES frames. Starting
from the neighboring frames tED+1, tED�1, tES+1, tES�1 the initializa-
tion is refined using the boundary detector D and the result pro-
jected to the parametric multi-linear shape space. Thereby the
patient specific modes upatient are updated and thus the predictions
in the remaining frames are more accurate as the variability or the
dynamic shape model was reduced. The procedure is repeated un-
til the full 4D model is estimated for the complete sequence (see
Fig. 8).

4. Experimental results

The accuracy of the proposed method was evaluated using car-
diac CT data sets from patients affected by a large spectrum of car-
diovascular and valvular heart diseases. Among the included
pathologies are: regurgitation, stenosis, prolapse and aortic root
dilation. The ECG gated cardiac CT sequences included multiple
volumes per cardiac cycle, where each volume contains 80–350
Fig. 9. Examples of global dynamic motion estimation in cardiac CT: (a) a
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slices with 153 � 153–512 � 512 pixels. The in-slice resolution is
isotropic and varies between 0.28 and 1.00 mm with a slice thick-
ness from 0.4 to 2.0 mm. The imaging data set includes 64 cardiac
CT studies (640 volumes) which were collected from several med-
ical centers around the world. Using heterogeneous imaging proto-
cols, cardiac CT exams were performed with Siemens Somatom
Sensation or Definition scanners. Each sequence was acquired over
one cardiac cycle and consisted of ten volumes. Only data sets
which contained a contrast agent and all valves were visible were
used. In order to keep the radiation dose low during the acquisition
most of the data sets had one peak dose at either the ED or ES
phase and a low dose during the rest of the cardiac cycle. Therefore
the best visibility of the valves was during the peak dose phase and
a moderate quality during the remaining cycle. The ground-truth
for training and testing was obtained through an incremental
annotation process. Therefore, each volume in our data set is asso-
ciated with an annotation obtained through an expert-guided pro-
cess that includes the following steps:

� The anatomical landmark motion model is manually deter-
mined by placing each anatomical landmark (see Section 2.2)
at the correct location in the entire cardiac cycle of a given
study. From the annotated anatomical landmark model, the glo-
bal dynamic motion model Bt is determined as described in Sec-
tion 2.2.
� The complete valve model is initialized through its mean model

placed at the correct image location, expressed by the thin-
plate-spline transform estimated from the previously annotated
anatomical landmark model (see Section 2.3).
� The annotation of the complete valve model is manually

adjusted to delineate the true valves boundaries over the entire
cardiac cycle (see Section 3.4). Complex resampling algorithms
specialized for each valve were developed to ensure temporal
and spatial consistency during the annotation process.
ortic valve, (b) mitral valve, (c) pulmonary valve, (d) tricuspid valve.
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Table 2
Accuracy of the global location and rigid motion estimation reported separately for
position, orientation and scale.

Mean/STD Median 80%

Position (mm) 3.09 ± 3.02 2.33 3.23
Orientation (deg) 9.72 ± 5.98 7.93 10.73
Scale (mm) 6.50 ± 4.19 5.09 7.81

Table 3
Accuracy of the non-rigid landmark motion estimation, quantified by the Euclidean
distance and reported using the mean error and standard deviation distribution over
each valve.

Aortic
valve

Mitral
valve

Pulmonary
valve

Tricuspid
valve

Mean error (mm) 2.65 2.75 3.50 3.59
STD (mm) 1.50 1.19 2.53 2.55

Table 4
Accuracy of the comprehensive valve model estimation, quantified by the point-to-
mesh distance and reported using the mean error and standard deviation distribution
over each valve.

Aortic
valve

Mitral
valve

Pulmonary
valve

Tricuspid
valve

Mean error (mm) 1.22 1.32 1.35 1.40
STD (mm) 0.38 0.57 0.9 1.41
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In addition each evaluation is done using threefold cross-
validation.

An inter-user experiment was conducted on a randomly se-
lected subset of sixteen studies for the aortic and mitral valve.
The patient-specific landmark valve models Ln(B) were manually
fitted by four experienced users. The ground-truth was assumed
to be the mean of the four user annotations. A landmark error of
1.53 ± 0.93 mm for the aortic valve and 1.97 ± 1.4 mm for the mi-
tral valve was observed.

The performance of the global dynamic motion estimation, Bt,
described in Section 3.1, is evaluated in two distinct experiments.
First, the overall detection precision is quantified at the box
corners of the detected time-dependent similarity transformation.
The average Euclidean distance between the eight bounding
box points, defined by the similarity transform parameters
fðcx; cy; czÞi; ð~ax;~ay;~azÞi; ðsx; sy; szÞig and the ground-truth box is
reported. Table 1 illustrates the mean errors and corresponding
standard deviations distributed over the four valves. Examples of
estimation results are given in Fig. 9.

In a second experiment, the accuracy of the individual detection
stages is investigated. Absolute differences between estimated and
ground truth parameters of the position, orientation, and scale are
reported in Table 2. The 80% column represents the 80th percentile
of the error values. Please note that in order to speed up the algo-
rithm, the estimation of the global location and rigid motion is
always performed on downsampled data with an isotropic resolu-
tion of 3 mm.

The accuracy of the anatomical landmark motion model, Ln(B),
presented in Section 2.2 is measured using the Euclidean distance
between detected and corresponding ground truth landmark tra-
jectories. Table 3 demonstrates the precision expressed in mean er-
rors and standard deviations, distributed over the four valves. Note
that reported values are obtained by averaging the performance of
Fig. 10. Examples of the anatomical landmark motion estimation in cardiac CT: (a) aorti
are showing the landmarks for each valve.
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individual landmarks with respect to the corresponding valve.
Examples of estimation results are given in Fig. 10. The detection
was performed on volumes resampled to an isotropic resolution
of 1 mm. Thus our automated landmark estimation error
(1.53 mm for the aortic valve and 1.97 mm for the mitral valve)
is slightly above (1.13 mm for the aortic valve and 0.78 mm for
the mitral valve) the intra-user variability error (1.53 mm for the
aortic valve and 1.97 mm for the mitral valve).

The accuracy of the algorithm in Section 2.3 to estimate the
comprehensive valvular model, Vq(L,B), (see Section 3.4) is evalu-
ated by utilizing the point-to-mesh distance. For each point on a
surface Vq, we search for the closest point on the other surface to
calculate the Euclidean distance. To guarantee a symmetric mea-
surement, the point-to-mesh distance is calculated in two direc-
tions, from detected to ground truth surfaces and vice versa.
Table 4 contains the mean error and standard deviation distributed
over the four valves. The detection of the comprehensive valves
model was performed on volumes resampled to an isotropic reso-
lution of 1 mm. Examples of estimation results are given in Fig. 11.

In the second experiment we compared our new shape estima-
tion approach with two other methods. Thereby the error is mea-
sured as the point-to-mesh distance between the estimated and
ground-truth mesh. For all methods the estimation of the dynamic
global motion Bt and the anatomical landmark model Ln(B) is done
as described in Section 2.2. The results, shown in Table 5 corrobo-
rate that our constrained ML PCA-ICA shape estimation approach
achieves best performance, compared to a regular ML PCA-ICA
method and a standard frame-wise estimation procedure (tracking
by detection). Within three minutes a complete personalized dy-
namic model of all valves is estimated with an average accuracy
of 1.24 mm. The full valvular model together with the four cham-
bers of the heart is illustrated in Figs. 11 and 12.

Important clinical parameters are extracted from the personal-
ized model in the right heart. They include right-ventricle outflow
tract (RVOT) radius, bifurcation radius, tricuspid valve area and a
joint measurement of the two valves, the pulmonary and tricuspid
valve distance. Quantitative comparison is shown in Fig. 13 by
comparing ground truth measurements and the estimated, demon-
strating a strong correlation.

Finally we show quantitative comparison between a patient
suffering from aortic valve regurgitation, a healthy patient and a
post-operative patient who underwent a Ross operation. An impor-
c valve, (b) mitral valve, (c) pulmonary valve, (d) tricuspid valve. The colored points
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Fig. 11. Examples of the complete valves model estimation in cardiac CT of all heart valves during one cardiac sequence.

Table 5
System precision for valve model estimation averaged over all valves for compre-
hensive surface assessment.

Mean STD Median

Tracking by detection (mm) 1.52 0.98 1.47
ML PCA-ICA (mm) 1.39 0.91 1.32
cML PCA-ICA (mm) 1.24 0.91 1.18
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tant clinical measurement, the valvular area, extracted from the
personalized aortic and pulmonary valve model, demonstrated in
Fig. 13. Bland Altman plots for (a) right ventricle output tract diameter, (b) pulmona
pulmonary and tricuspid valve. The ground truth measurements, derived from the models
automatically estimated models.

Fig. 12. Examples of estimated personalized model from a multiphase C
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Fig. 14, confirms a successful outcome since no regurgitation is ob-
served at the aortic valve.
5. Discussion and conclusion

In this paper, we propose a novel personalized model for quan-
titative and qualitative evaluation of the complete heart valve
apparatus in 4D CT. It is capable to delineate the full anatomy
and dynamics needed to depict a large variation of valve patholo-
gies, especially diseases affecting several valves. Its hierarchical
ry valve bifurcation diameter, (c) tricuspid valve area and (d) distance between
annotated by clinical experts, were compared with measurements derived from our

T sequence. The images are extracted from the end-systolic phase.
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Fig. 14. Measurements of aortic (AV) and pulmonary valve (PV) area obtained from a patient with aortic valve regurgitation (left), a healthy patient (middle) and a post Ross
operation patient (right). The red graph is representing the aortic valve and the blue the pulmonary. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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approach using state of the art machine learning algorithms in
combination with a constrained Multi-linear shape space enables
patient specific model estimation within three minutes and an
accuracy of 1.24 mm. Clinical validation shows strong correspon-
dence between expert- and estimated anatomical measurements.
Our approach enables for integrated quantification and treatment
management of heart valves, and together with a patient specific
chamber model (Zheng et al., 2007), it will enable comprehensive
heart simulations. The proposed method could spark research in
many areas such as examining interconnections of multiple valves
and hemodynamic simulation of the complete cardiac apparatus.

Our experiments show that the automatic estimation of the
valve models are slightly above (1.13 mm for the aortic valve and
0.78 mm for the mitral valve) the inter-user variability. Consider-
ing that our detection was done on 1 mm resolution this means
that the deviation is around one additional voxel apart from the
variability of the expert annotations. Data sets with low contrast
agent, noise in the data and low imaging quality were the main
reasons for the performance gap between the automatic estima-
tion and the inter-user variability. As in most of our data sets the
contrast agent was more concentrated in the left side of the heart
and thus the estimation accuracy for the pulmonary and tricuspid
valve was inferior to the aortic and mitral valve.

Future work will continue to focus the modeling side. One
important extension will be the inclusion of the subvalvular appa-
ratus of the mitral and tricuspid valves. Although critical in the
clinical context, these structures are difficult to distinguish. Thus,
patient-specific parameters must be inferred from statistical mod-
els or by fusing additional imaging information. The extension to a
volumetric representation, which models the tissue thickness of
the valves is also of high clinical importance. Such parameters
could be estimated within the same discriminative learning frame-
work, while the ground-truth for training and validation could
come from in vivo measurements of resected tissue, post repair
or replacement procedures.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.media.2012.02.003.
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