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Abstract—We propose a novel method for the automatic length of pregnancy in weeks and days [33]), and also as
detection and measurement of fetal anatomical structuresni an important diagnostic auxiliary tool. Accurate estiroati
ultrasound images. This problem offers a myriad of challengs, ot GA js important to estimate the date of confinement and
including: difficulty of modeling the appearance variations of the . .
visual object of interest; robustness to speckle noise andgnal the ?XpeCted delivery date, to assess the fetal _s'ze’ and to
drop-out; and large search space of the detection procedure Monitor the fetal growth. The current workflow requires expe
Previous solutions typically rely on the explicit encodingof users to perform those measurements manually, resultiig in
prior knowledge and formulation of the problem as a per- following issues: 1) the quality of the measurements are-use
ceptual grouping task solved through clustering or variatonal dependent; 2) exams can take more than 30 minutes; and 3) ex-
approaches. These methods are constrained by the validityf the ’ . . !
underlying assumptions and usually are not enough to captwe pert use-rs can suffer from Repetitive Stress Injury (RS§ tu
the complex appearances of fetal anatomies. We propose athe multlple keyStrOkeS needed to perform the measurements
novel system for fast automatic detection and measurementfo Therefore, the automation of ultrasound measurementskas t
fetal anatomies that directly exploits a large database ofxpert potential of: 1) improving everyday workflow; 2) increasing
annotated fetal anatomical structures in ultrasound imags. patient throughput; 3) improving accuracy and consistesfcy

Our method learns automatically to distinguish between the ts. brini ik ist -
appearance of the object of interest and background by traiing M€asurements, bringirgxpert-like consistendy every exam;

a constrained probabilistic boosting tree classifier. Thissystem and 4) reducing the risk of RSI to specialists.
is able to produce the automatic segmentation of several fait We focus on a method that targets thetomatic on-line
anatlct)mies fU?ling t?e satl_me basic detecttiorf'l Slgor_it?nlw.d\_/ve ;hOWdetection and segmentaticof fetal head, abdomen, femur,
resuits on tu automatic measurement O Iparietal diameer H H H P
(BPD), head ci%cumference (HC), abdominal cirF():umferenceAC), humerus, and body length in typical ultrasound images, whic
femur length (FL), humerus length (HL), and crown rump length are then used to compute BDP and HC for head, AC for
(CRL). Notice that our approach is the first in the literature to @bdomen, FL for femur, HL for humerus, and CRL for the
deal with the HL and CRL measurements. Extensive experimerst body length (see Fig. 5). We concentrate on the following
(with clinical validation) show that our system is, on averge, goals for our method: 1) efficiency (the process should s |
close to the accuracy of experts in terms of segmentation and han gne second); 2) robustness to the appearance vasiation
obstetric measurements. Finally this system runs under hél . . . ]
second on a standard dual-core PC computer. of.the V|sua_1I object of mtergst, 3) robustness_ to speckle
noise and signal drop-out typical in ultrasound images; and
4) segmentation accuracy. Moreover, we require the basic
algorithm to be the same for the segmentation of the difteren
anatomies aforementioned in order to facilitate the exéens
of this system to other fetal anatomies.
|. INTRODUCTION To achieve these goals, we exploit the database-guided
Accurate fetal ultrasound measurements are one of thegmentation paradigm [13] in the domain of fetal ultragbun
most important factors for high quality obstetrics healthec images. Our approach directly exploits the expert anratati
Common fetal ultrasound measurements include: bi-parieed fetal anatomical structures in large databases of wlitnad
diameter (BDP), head circumference (HC), abdominal circurimages in order to train a sequence of discriminative classi
ference (AC), femur length (FL), humerus length (HL), anélers. The classifier used in this work is based on a constiaine
crown rump length (CRL). In this paper we use the Americarersion of the probabilistic boosting tree [36].
Institute of Ultrasound in Medicine (AIUM) guidelines [1] Our system is capable of handling a previously issue in
to perform such measurements. These measures are useifieglomain of fetal ultrasound image analysis, which are: th
estimate both the gestational age (GA) of the fetus (i.e, tautomatic measurements of HL and CRL, and the fact that
our approach is designed to be completely automatic. This
Manuscript received May 12, 2007; revised March 7, 2008cptedd March - means that the user does not need to provide any type of
12, 2008. G. Carneiro, B. Georgescu, and D. Comaniciu atethét Integrated . ... . .
Data Systems Department at Siemens Corporate Researcicet®ri, NJ, initial guess. The only inputs to the system are the image and
USA. S. Good is with the Innovations Department, Ultrasoubidision, the measurement to be performed (BPD, HC, AC, FL, HL,
Siemens Medical Solutions, Mountain View, CA, USA. or CRL). Extensive experiments show that, on average, the
Copyright (c) 2008 IEEE. Personal use of this material isnyited. .
measurement produced by our system is close to the accuracy
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mentioned above. Moreover, the algorithm runs under hafseries of steps, such as edge detection, edge linking,iHoug
second on a standard dual core PC computer transform, among other standard computer vision techsique
to provide head and femur segmentation. When compared
to the measurements provided by experts, the segmentation
] ) ) ] results showed correlation coefficients bigger than 0.2¢ (s
This paper is organized as follows. Section Il preseng; 21). However, a different method had to be implemented
a literature review, Section Il defines the problem, and iy each anatomy, showing the lack of generalization of such
Section IV we explain our method. Finally, Section V showgqrithms. Also, the segmentation of abdomen has not been
the experiments, and we conclude the paper in Section Vl.4q4ressed. Finally, the implemented systems needed a few
minutes to run segmentation process.
Il. LITERATURE REVIEW Chalana et al. [6], [7], [28] describe a method for fetal
In this literature review we survey papers that aim dtead and abdomen segmentation in ultrasound images based

the same goals as ours, which are: precise segmentatﬁih,the active contour model. This method can get stuck at
robustness to noise and to the visual class intra varighaiitd l0cal minima, which might require manual correction. Also,
fast processing. First, we focus on the papers that descriB@ algorithm does not model the texture inside the fetal
approaches for detecting and segmenting fetal anatomies'@d, which means that no appearance information is used
ultrasound images. Then, we survey methods designed to witkimprove the accuracy and robustness of the approach.
on the segmentation of anatomical structures from ultragouEXperiments on 30 cases for BPD, HC, and AC, show that
images that, in principle, could also be applied to our peobl the algorithm performs as well as five sonographers, and that
We also discuss relevant computer vision techniques farcdetit runs in real time. Finally, another issue is that the ussds
tion and segmentation since our method is closely related®Provide an initial guess for the algorithm, which makes th
these computer vision methods. Finally, we explain the maRyStem semi-automatic.
novelties of our approach compared to the state-of-théaart Jardim and Figueiredo [17] present a method for the seg-
the fields of computer vision, machine learning, and medicgientation of fetal ultrasound images based on the evolution
image analysis. of a parametric deformable shape. Their approach segments
There is relatively little work in area of automatic segnzent the input image into two regions, so that pixels within each
tion of fetal anatomies in ultrasound images [6], [7], [14]7], €gion hav_e similar texture statistics a_cco_rdmg to a patam
[23], [28], [35]. One possible reason for this, as mentionéH_Odel defme_d by the Rayle|gh distribution. A drawback_ of
by Jardim [17], is the low quality of fetal ultrasound imagesth's method is that there is no guarantee that the algorithm
which can be caused by low signal-to-noise ratio, markedf%“' always find the opt_im_al §0Iu';ion, which is a fact noted by
different ways of image acquisition, large intra class ation  the authors. Anothgr Ilmlta_uon. is that the appearance mode
because of differences in the fetus age and the dynamice of Bsed on the Rayleigh distribution cannot take into acctient
fetal body (e.g., the stomach in the abdomen images can$@tial structure of textural patterns present inside theial
completely full or visually absent, and the shape of thel fetgf0ss-section. This method also needs an initial guess tem
body changes significantly in terms of the gestational age - &S€r; which makes the system sgml-automatlc. The authers us
Fig. 7), strong shadows produced by the skull (in head mage@s approach for. the segmentation of fetal heads and femurs
spine and ribs (in abdomen images), femur, and humerusiT>0 ultrasound images with good results. .
noticeable commonality among the papers cited above is thei he segmentation of other anatomies from ultrasound im-
focus on the detection and segmentation of only fetal hea@@€S has also produced relevant solutions that can be applie
and femurs, but not fetal abdomen (except for [7]), humerds, the prob!em of _segmentation of fetal anatomigal striagur
or body. Among these anatomies, the fetal head segmentatldiS, in this section we focus on methods designed to work
is the least complicated due to the clear boundaries prdvid@ Problems involving similar challenges, which are: low
by the skull bones, and the similar texture among differeftiality of ultrasound images, large intra class variatiand
subjects (see Fig. 7-(a)). The problem of femur and humerﬁéong shadows produced by the anatomical structure. é]ever
segmentation is somewhat more complicated because of {ghniques have been proposed [29], but we shall focus this
absence of internal texture (see Fig. 7-(c,d)), but thegmes review on th_e followiln.g promising techniques: pixel-wise
of clear edges produced by the imaging of the bones faetita@nd region-wise classifier mpdels, Iovy—level models, Marko
the problem. Finally, the segmentation of the fetal abdomé&&ndom field models, machine learning based models, and
and fetal body are the hardest among these anatomies. fgéormable models. _ o
fetal abdomen presents a lack of clear boundaries and in-The most promising techniques in this area are based on a
consistent imaging of the internal structures among difier Combination of region-wise classifier models and deformabl
subjects (see Fig. 7-(b)), while the fetal body changesiaps models_,, where an evolving co_ntour defines a pgrtlfuon.of the
considerably as a function of the fetal age (see Fig. 7-(e)).IMage into two regions. Assuming a parametric distribufmm
The initial approaches for automatic fetal anatomical se§&ch region, one can have a term of appearance coherence for
mentation in ultrasound images were mostly based on mé&@ch region in the optimization algorithm for the deforneabl

phological operators [14], [23], [35]. These methods ineol model [5], [40]. This is a similar approach to the paper above
by Jardim [17], and consequently shares the same problems

Lintel Core 2 CPU 6600 at 2.4GHz, 2GB of RAM that makes it not ideal for our goals. Level set represemati
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that integrates boundary-driven flows with regional infarm results presented by such approaches are excellent, these
tion [25], [34] can handle arbitrary initial conditions, igh algorithms are computationally intensive, which makesioa-
makes these approaches completely automatic, but they degection a hard goal to be achieved. Also, the use of parts is
sensitive to noise and incomplete data. The latter problasn thased on the assumption that the visual object of interegt ma
been dealt with by adding a shape influence term [19], [2&uffer severe non-rigid deformations or articulation, ethis
The most prominent similarity among these techniques is thet true in the domain of fetal anatomical structure segmen-
under utilization of the appearance model of the anatomidation.
structure being detected. The parameter estimation of theThe method we propose in this paper is more aligned
probability distributions for the foreground and backgrdu with the state-of-the-art detection and top-down segntiemta
regions is clearly insufficient to model the complex appeaga methods proposed in computer vision and machine learn-
patterns for several reasons. First, the parametric bligion ing. Specifically, we exploit the database-guided segntienta
might not provide a reasonable representation for the appegaaradigm [13] in the domain of fetal ultrasound images. In
ance statistics. Second, the parameters may not be cgrreatldition to the challenges present in echocardiographj; [13
estimated using only the image being processed. Third, ther method has to handle new challenges present in fetal
spatial structure of the texture cannot be captured withh sugltrasound images, such as the extreme appearance \i&yiabil
representation. In general, these techniques tend to wellk wof the fetal abdomen and fetal body imaging, generalization
whenever image gradients separate the sought anatomibalsame basic detection algorithm to all anatomical sirest
structure, but recall that for abdomens, this assumptiop mand extreme efficiency. In order to cope with these new
not always be true, so one has to fully rely on its internaghallenges, we constrain the recently proposed probadbilis
appearance for proper segmentation. boosting tree classifier [36] to limit the number of nodes
The use of deformable models alone has also been @xesent in the binary tree, and also to divide the original
ploited [2], but the lack of a learning scheme for the apslassification into hierarchical stages of increasing cemity.
pearance term restricts their applicability to our prohlem
Moreover, the priors assumed for the anatomical structade a 111. AUTOMATIC MEASUREMENT OFFETAL ANATOMY

imaging process does not generalize well for fetal anataiic Our method is based on a learning process that implicitly en-

structures in ultrasound images, and even though Akgul &4es the knowledge embedded in expert annotated databases
al. [2] work on the local minima issues of such approachegyis |earing process produces models that are used in the
their design only alleviates the problem. Deformable msdeloymentation procedure. The segmentation is then posed as a

can also be used with machine learning techniques o € of structure detectionwhere the system automatically
shape and motion patterns of anatomical structures [18}-H0geqments an image region containing the sought structure.

ever, the lack of a term representing appearance chastii8ri gina|ly the fetal measurements can be derived from this
of the anatomical structure in [16] restricts the appligbof

this method to our problem. Typically, the issue of low signa
to-noise ratio has been solved with the utilization of a sage
of low-level models [22], [27]. However, it is not clear whet
these methods can generalize to all possible differentimgag The ultimate goal of our system is to provide a segmentation
conditions that we have to deal with. Finally, an interegtinof the most likely rectangular image region containing the
area of research is the use of pixel-wise posterior proipabilanatomical structure of interest. From this rectangulgiorg
term using a Markov random field prior model [38]. Thét is possible to determine the measurements of interest (i.
main problems affecting such approaches are the difficalty BPD, HC, AC, FL, HL, and CRL), as shown below. We
determining the parameters for spatial interaction [29jd a adopt the following definition of segmentation: assume that
the high computational costs that limits its applicabilir  the image domain is defined by : R¥*M — R with N
on-line methods. denoting the number of rows and the number of columns,
More generally, in the fields of computer vision and machiriéen the segmentation task determines the $e8 C I,
learning there has been a great interest in the problem of ace/here S represents the foreground region (i.e., the structure
rate and robust detection and segmentation of visual class¥ interest), andB means the background. The sets satisfy
Active appearance models [9] use registration to infer tfiee constraintS|J B = I, whereS N B = (). The foreground
shape associated with the current image. However, modelifiggge regions is determined by the following vector:
assumes a Gaussian distribution of the joint shape-texture
space and requires initialization close to the final sotutio
Alternatively, characteristic points can be detected aitiput where the parameterér,y) represent the top left region
image [10] by learning a classifier through boosting [10F][3 position in the imagen denotes orientation, anfr,,o,),
The most accurate segmentation results have been presetitedegion scale (see Fig. 1).
by recently proposed techniques that are based on stronglyrhe appearance of the image region is represented with fea-
supervised training, and the representation is based ds, paures derived from the Haar wavelets [30], [37]. The decisio
where both the part appearance and the relation betwees) pdor the use of such feature set is based on two main reasons: 1)
is modeled as a Markov random field or conditional randogood modeling power for the different types of visual patser
field [4], [15], [18], [20], [21]. Although the segmentationsuch as pedestrians [30], faces [37], and left ventricles in

region.

A. Problem Definition

0: [xvyaaaamaa'y]a (1)
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Fig. 1. Foreground (rectangular) image region with five peeters.

Fig. 2. Image feature types used. Notice that the gray ang@sents the
foreground regionsS.

ultrasound images [13]; and 2) computation efficiency with
the use of integral images. All the feature types used in this N ) _ )
work are displayed in Fig. 2, and each feature is denoted by? classifier then defines the following functiod(y|5),

the following feature vector: wherey € {-1,+1} with P(y = +1[S) representing the
probability that the image regio contains the structure
O = [t,zf,yf, duy dy, s], (2) of interest (i.e., a positive sample), and(y = —1[9),

the probability that the image regio$ contains background
information (i.e., a negative sample). Notice that the ngaial
of the system is to determine

wheret € {1,...,6} denotes the feature typér,,ys) is the
top-left coordinate of the feature location withthdefined by
0inEq.1 (i.e.,zy € [1,1+ (0p —dy)] andyy € [1,1+ (oy —
dy)]), ds,d, are the length and width of the spatial support 0* = argmax P(y|S), (4)
of the feature withd, € [1,0,] andd, € [1,0,] (note that 0

01z} IS defined in Eq. 1), and € {41, —1} represents the whereS is the foreground image region defined bjn Eq. 1.
two versions of each feature with its original or inverteghsi. Therefore, our task is to train a discriminative classifteatt
Note that the feature has the same orientaticas the image minimizes the following probability of mis-classification
region.

The output value of each feature is the difference between P(erron) = /P(erroﬂ@)P(@)d@,

the image pixels lying in the white section (in Fig. 2, theioeg f

denoted by +1) and the image pixels in the black section ({1€re

. ; . +1 if J
Fig. 2, the region denoted by -1). This feature value can be P(errofd) = { 0 otge;fw%se :
efficiently computed using integral images [30]. The inggr ’ _
image is computed as follows: with y = argmax,e(—1 11} P(y|S) andg being the correct
s response for the parameter valfie
;; IV. REGION CLASSIFICATION PROCESS

whereT : R®V*M _, ) denotes the integral image. Then the In this section, we discuss the classifier used in this work

feature value is computed efficiently through a small numb@ d t_f]:_e st_rategybtlo |mp\)/rvove| the r:afflmcre]ncy qn_d efﬁc;gy of the
of additions and subtractions. For example, the featuraevalcassification problem. We also show the training and ditect

of feature type 1 in Fig. 2 can be computed as algorithms along with the training results.

f05) =7 -7, A. Probabilistic Boosting Tree

where The classifier used for the anatomical structure detec-
TH = T(x+ de,yf +d,)+T(xs,y5)— tion is derived from the prqpabi_listic boos_ting tree_c_lﬁesi
d (PBT) [36]. The PBT classifier is a boosting classifier [11],
Tles+3up) = T (s, ur + ) 32], where the strong classif ted by thesnod
T = T(aj+do,ys+dy)+T(a;+ %, yp)— [ ],w.ere e strong classifiers are represented by thesoc
f f f % d 2 of a binary tree. Tu [36] demonstrates that the PBT is
T(xg +dayyr) = Ty + 5y +dy). able to cluster the data automatically, allowing for a bjnar
This means that the integral image is computed once acdssification of data sets presenting multi-modal distidns,
each feature value involves the addition and subtraction which is typically the case studied in this paper. Another
six values from the integral image. It is important to mentioattractive property of the PBT classifier is that after tiradn
that the original image is rotated in intervals 6f (in the posterior probability can be used as a threshold to balan
this work, 6, = 10°) and an integral image is computedetween precision and recall, which is an important adggnta
for each rotated image. These rotations and integral imageer the cascade method [37] that needs to train different
computations comprise the pre-processing part of our ndethalassifiers based on different precision requirements.
Taking into account all possible feature types, locatiars] Training the PBT involves the recursive construction of a
sizes, there can be in the orderléf possible features within binary tree, where each of its nodes represents a strong clas
a region. sifier. Each node is trained with the AdaBoost algorithm [12]
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which automatically learns a strong classifier by combirang

set of weak classifiersl (S) = Zthl wihe(S), whereS' is an

image region determined Wyin (1), h.(S) is the response of

a weak classifier, and, is the weight associated with each
weak classifier. By minimizing the probability of error, the I
Adaboost classifier automatically selects the weak classifi

and their respective weights. The probabilities computed b

each strong classifier is then denoted as follows [36]:

2H(S) —2H(S)

(&
1+ eQH(S) ’

(&
1+ 672H(S) : (

The posterior probability that a regia$ is foreground § =
+1), or backgroundy = —1) is computed as in [36]:

PlS) = > P@ln,-rlr,9)..q(l2]lz, S)a(L|S), (6)

lisla,esln

q(+1]5) = andq(—1|S) = 5)

5

Pyl s

SN

Py Sl=-1) sy Pli| S1y=+1)

Q O
AN

o Ay =-1.5) ® alty=+1.5) O

Ply| 5,1y=-11,=-1) Ply| 5,1 =+1,i,=-1)
Plv| 51,=-10=+1)  P| Sil=+11=+1)

A :
o 6 6 6 o o

Fig. 3. PBT binary tree structure.

wheren is the total number of nodes of the tree (see Fig. 3),
and ! € {-1,+1}. The probability at each tree node igesting procedures. The second part consists of consteaini

computed as:
P(y|ll, ceey ll, S) = Zé(y = li+1)q(li+1|li7 ceey ll, 5)7
Lit1
wheregq(.|.) is defined in (53, and

5(z) = {

1, if x =true
0, otherwise

the growth of the tree by limiting the height and number of

nodes. This solution decreases learning and detectiorstime
and improves the generalization of the classifier, as shown
below.

Motivated by the argument that "visual processing in the
cortex is classically modeled as a hierarchy of increaging|
sophisticated representations” [31], we design a simple-t
complex classification scheme. Assuming that the parameter

The original PBT classifier presents a problem: if thepace is represented Iy, the idea is subdivide this initial

classification is too hard (i.e., it is difficult to find a furan

space into subspaced; C ©, C ... C O C O, where

that robustly separates positive from negative sample&hwhthe classification problem grows in terms of complexity from
is the case being dealt with in this paper), the tree can beco®, to ©,. This idea is derived from the works on marginal
overly complex, which can cause: a) overfit of the trainintdaspace learning [39] and sequential sampling [24], where the
in the nodes close to the leaves, b) long training proceduggthors study the trade-off between accuracy and efficiehcy
and c) long detection procedure. The overfit of the data in tegch strategy, and the main conclusion is that by implemgnti
leaf nodes happens because of the limited number of trainiggch strategy, the training and detection algorithms arerae
samples remaining to train those classifiers. The number &fiers of magnitude more efficient without damaging the
strong classifiers to train grows exponentially with the @m accuracy of the approach. In Fig. 4, we show a visual example

of tree levels, which in turn grows with the complexity ofof this idea. Notice that the idea is to train different cifisss,
the classification problem; hence the training process @& t where the first stages tend to be robust and less accurate, and
quite a long time for complex classification problems. Hinal the last stages are more accurate and more complex. The main
note that for each sampf(Eq. 1) to evaluate during detection difference between this approach and the cascade scheme is
it is necessary to compute the probability over all the nafesthat the first stages are trained witsizbsebf the initial set of
the classification tree. As a result, it is necessary to cdenpyarameters instead ofsubspacef the full parameter space.
P(y]S) for Ny = N x Ny x No X Ny, x Ng, times, wheréVy  We only train classifiers using a subspace of the full paramet
denotes the number of sampling points to evaluate. Usualipace in the last stages.
Ny is in the order of10%, which can have a severe impact gach subset and subspace is designed to have in the order
in the running time of the algorithm (in a standard dual-corgy 104 to 105 parameter space samples to be evaluated, which
computer the probability computation ©6° samples using a results in a reduction of three orders of magnitude compared
full binary PBT classifier of height five can take around 1€, the initial number of samples mentioned above. Moreover,
seconds, which is substantially above our target of less th@e initial classifiers are presented with relatively sienpl
one second). classification problems that produces classification to¢ézsv
_ o ) complexity, and consequently the probability computaiion

B. Constrained Probabilistic Boosting Tree these trees are faster than in sub-sequent trees. Finalty) g

We propose a two-part solution to the problems mentionésat the classification problem of each classifier is lessptex
in Sec. IV-A. The first part is based on dividing the paranthan the original problem, the height and the number of tree
eter space into subspaces, simplifying both the training anodes can be constrained. These implementations significan
reduce the training and detection times, and improve the
generalization ability of the classifier. We call the remgt
classifier the Constrained PBT (CPBT).

°The value q(l;11]li,...,11,S) is obtained by computing the value of
q(l;1+1]S) at PBT node reached following the path— > lo— >,...,1;,
with 11 representing the root node ahd {—1,+1} (see Fig. 3).
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X, = % then the region parameters of (1) are
computed as follows:

b X » b » b

or = 2K X ||x1 — %],
oy = 2K X ||x3 — %],

by by o =cos! (7(’(1_&)'(1’0)) , (7

flx1—xc|l

b2

. . : N x =z, — % cos(a),
Fig. 4. Simple to complex strategy using a 2-dimensionahp&ter space, _ gy sin(a)
where the target parameter values are represented by ttiempos From left Y=Y 2 )

to right, the first graph shows two regions in the parametacspthe black wherex represents a two-dimensional vecterepresent
area containing the negative samples, and the white ardmthét positive ’

samples. Notice that in this first graph, the training anéct&n happen only vector dot products > 1 such that a region comprises the
for the paramete#; . The second graph shows a training and detection using ~ anatomy plus some margifl, 0) denotes the horizontal
both parameters, where the positive samples are acquived tfre center of unit vector. andx.. — (a: y )

L] C — [63) c)*

the white circle around position X, and negatives are thepdesnn the black . . Lo
region. The gray area is a no sampling zone. The last grapisshoother « Forthe line measurements, the user defines two points:

classification problem in the parameter space, with pesitimd negatives andx, (see Fig. 6-b). Withx; andxs, we can compute
samples closer to the position X. In Sec. IV-D those threeplggacan be — X1+Xo i

related to the region of interest (ROI) classifier, coarsesdifier, and fine the centenx, 2 the_n the region parameters of (1)
classifier, respectively. are computed as follows:

or = 2K X ||x1 — %x¢||,
Uy :no-wa

o = cos—! ((Xl —Xc)'(170)) 7 (8)

1 —xc[l
T =1z, — % cos(a),
_ Iy o3

Y =y — 5 sin(a),
wherex represents a two-dimensional vecterepresent
vector dot products > 1 such that a region comprises the
anatomy plus some margifi,, 0) denotes the horizontal
unit vector,x. = (z., y.), andn € (0, 1].

, v , g The manual annotation is used to provide aligned images of
o V- ' : ey anatomies normalized in terms of orientation, positiom/esc
' e ' 2 ; and aspect ratio. These images will be used for training the
classifier. There are five classifiers to be trained: 1) head, 2
abdomen, 3) femur, 4) humerus, and 5) fetal body. The head
= classifier is used to provide the HC and BPD measurements
) AC d) FL (note that even though the BPD is a line measurement it
is derived from the HC measurement through the use of
its minor axis), the abdomen classifier allows for the AC,
femur classifier is used to produce the FL, humerus classifier
produces HL, and fetal body is used to compute the CRL
measurement. Figure 5(b) shows the head annotation, where
caliper x; (red) is located at the back of the head, caliper
xo (blue) is at the front of the head, and calipes (pink)
defines the minor axis of the ellipse and is located at the
Fig. 5. Expert annotation of BPD, HC, AC, FL, HL, and CRL. side of the head (moving from; to x5 in counter-clockwise
direction). Figure 5(c) shows the abdomen annotation, her
caliperx; (red) is located at the umbilical vein region, caliper
C. Annotation Protocol x2 (blue) is at the spinal chord, and calipey (pink) defines

. the minor axis of the ellipse and is located close to the
We explore the representation used by sonographers an% P

clinicians for the BPD, HC, AC, FL, HL, and CRL measures.
That is, HC and AC are represented with an ellipse, and
BPD, FL, HL, and CRL, with a line. Figure 5 shows expert
annotations of each measurement. This annotation explicit
defines the parametérin (1) for the positive sample of the
training image as follows:

« For the ellipsoidal measurements, the user defines three
points: x; and x5, defining the major axis, ancs, a) Ellipse
defining one point of the minor axis (see Fig. 6-a). \_Nlti[}ig. 6. Ellipse and line annotations.
x; and x,, we can compute the center of the ellipse

e) HL f) CRL
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c) Femur

2 .

d) Humerus

e) Fetal body

stomach. Figures 5(d) and (e) display the femur and humeg._libs 8. Examples of the ROI training set for BPD and HC (a), AQ, FL
annotations, respectively, where calipgr(red) andx, (blue) (c), HL (d), CRL (e).

are interchangeably located at the end points of the femur
bone. Finally, Fig. 5(f) displays the fetal body annotation

respectively, where caliper; (red) is located at the bottom of . o -
the fetal body and angt, (blue) is located at the head. Thi image size is 600x800, where each pixel is represented by a

X o . d- TS0t number; this means that each image has around 2MB).
annotation protocol aliows for building an aligned trampiset Therefore, leaving the parameterout of the ROI classifier
as the ones shown in Figure 7, with= 1.5 andn = 0.38 for X g P

erurand Fmerss and .8 o fetal by 1 (7) and (9 T 1952 990 e o decton effency Aove
The values fom are defined based on the aspect ratio of the P 9 P

; . L . ratio o, /o, of the anatomy does not vary significantly in the
anatomical structure. Notice that the original image regiare o o
) ) : X training set. Specifically, for heads, abdomens, and fetdi/b
transformed into a square size ™ x 78 pixels (used linear

. : . o, € [0.8,1.2] and for femurs and humer oy =1/n.
interpolation) in the cases of head, abdomen, and fetal,boag/ergfon[a the p]arameteg can also be left olfjstxf/ro?n the/7l7?OI
and into a rectangular size @8 x 30 pixels (again, using bi- '

. . . . ) stage, and its estimation happens in the sub-sequent stages

linear interpolation) for femur and humerus with aspeciorat g . P D-sed g

width _ 1 for ; — (.38 As a result, in the ROI stage, the positive samples are
. .38.

height located in a region of the parameter space defined by:
AT = [AROL AR X, ARO X, 9)

e) Fetal body

Fig. 7. Examples of the training set for BPD and HC (a), AC @), (c),
HL (d), and CRL (e).

D. Training a Constrained Probabilistic Boosting Tree

As mentioned in Sec. IV-B, the training involves a sequendehere AR e [z — 6RO x4 679", AR e [y — 6RO 4y 467,
of classification problems of increasing complexity. Have, AR € [0, — 659 0, + 67, and X denotes a parameter
rely on a training procedure (see Algorithm 1) involvingeér that is not learned in this stage (in this casg and o). In
stages referred to as the region of interest (ROI) classiita Fig. 4 we display this concept of training for a subset of the
stage, the coarse classification stage and the fine clasisificainitial parameter set. Recall that the positive sample ésiled
stage (see Fig. 9). at (z,y,a,04,0,) as defined in (1). On the other hand, the
For the ROI stage, the main goal is to use a subset Rggative samples are located in the following region of the
the initial parameter set in order to have a fast detection pframeter space:
hypothesis for sub-sequent classification stages. Rewati f
Section 1lI-A that we rotate the image in intervals &f
and compute the integral image for each rotated version where © represents the whole parameter space. The ROI
the image. During detection, determining the parameter classifier is able to detect the position and scale of thecbbje
in (1) requires loading the respective rotated integralgesa (within the limits of AR"), but not its rotation nor its aspect
which is in general a time consuming task because it is n@itio (that is,a« = 0 and o, = o, in (7) and (8) for
possible to have all integral images loaded in cache (thalusthis stage). This means that the training images are kept in

AROI_ g — ARO! (10)
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its original orientation and aspect ratio, resulting inirtiag

images aligned only in terms of position and scale, and the..

images are transformed to a square patch of &z€78 pixels.

8

Hypotheses ‘ Fine Detection result

Coarse “
L Classifier
J

Classifier J

Image | Hypotheses
ROI swmplmv Cl 1’|sslﬁel J

Fig. 9. Detection procedure.

In Figure 8, we show a few examples of training images for

training the ROI classifier.
The coarse classifier is then trained with positive sampl
from the parameter subset:

ACO&I‘SG

(11)

[ACO&I’SE ACO&I‘SE‘ ACO&I’SE ACO&I’SE ACO&I‘S?

WhereAgoarsee [ZC— 5CO&TS€ I+600al’5? Azoarsee [ 5coarse y+
5;0&[5?’ Agoarse c [Of 600al’56 o + 600&’5? Acoarse e [UI _
53_2&[567 Oy + 532&[5?’ and A(;?Jarsee [ 600al’56 0. + (SCOEUS? |n

es o
uniformly using theR%! as the sampling interval for

position and scale. 'I{he coarse detection only classifies the
positive samples for the ROI detector at smaller intervdls o
‘{“’a{fz . , While the fine detection searches the hypothe-
ses selected from the coarse search at smaller intervals of
5f|ne

{z.y,0,00,04}

order to improve the precision of the detect|0n froJm the ROI

to the coarse classifier, we s&2's¢< §RO! in Eq. 9 for all
parameters. The negative samples for the coarse classiier
located in the following region of the parameter space:
AROI (12)

coarse coarse
A A

)

where AR is defined in (10). Finally, the positive samples

for the fine classifier are within the subset:

Aflne [Aflne Aflne Afme Aflne Aflﬂ&] (13)
WhereAﬁ“e c [ §f|ne T+ §f|ne] Aflne c [ 6f|ne’ y+ 6f|ne]
Afine [ 5f|ne a_|_5f|ne] Afme [ 5f|ne 5f|ne] and
Af'”e € [oy 6“”9 oy +00e. The detection’ preC|S|on from the

coarse to the fine classifier is improved by setiiffff < §coarse
in Eqg. 11 for all parameters. The negative samples for the fi
classifier are located in the following region of the paramet
space:
fi fi
A ine Acoarse Are’

where A®@s¢js defined in (12).
Data

(14)

: M training images with anatomy regiof(7, 0);}i=1,..,m
Maximum height of each classifier treéfro), Hcoarse Hifine
Total number of nodes for each classifiéfro|, Ncoarse Niine

It =0andZ— =0

for i =1,...,M do

Add P random samples from sub-spat&®' (9) to Z+
Add N random samples from sub- spaAeJ"gO' (10) toZ—

end

Train ROI classifier withHgo, and Ngroj usingZ* andZ .

It =0 andZ~ =

for i =1,...,M do

Add P random samples from sub-spad&®@¢(11) to It
Add N random samples from sub-spat&€©as€(12) toZ~
end

Train coarse classifier withcoarseand NeoarseusingZ+t andZ—.

It =0andZ— =0

for i =1,..., M do

Add P random samples from sub-spadde (13) to Z+
Add N random samples from sub- spax}g € (14)toZ~

end

Train fine classifier withHine and Niine usingZ+t andZ—.

Result : ROI, coarse, and fine classifiers.

Algorithm 1: Training algorithm.

E. Detection

According to the training algorithm in Sec.

Data : Test image and measurement to be performed (BPD, HC,
AC, FL, HL, or CRL)
a ROI, coarse, and fine classifiers
Hror = 0
for 6 =10,0,0,0,0] : éro : [maz(x), max(y), 0, max (o), 0] do
O'y = Oz

ComputeP(y = +1|5) (6) using ROI classifier, wher§' is an
image region determined by (1)

Hrol = HrolU (0, P(y = +1|9))
end
Assigned all hypotheses frofiro in terms of P(y = +1|.5) to
Hcoarse
for : = 17 ey |Hcoarsd do

Assume(6;, P;) = ithelement ofHcoarse

for 6 = [x; — 650 » Yi — 55@7 0,0, — 5§9|70} : Ocoarse :

[zi + 6, y; + 6RO, max(a), 04, + 6RO, max(oy)] do
ComputeP(y = +1|S) (6) using coarse classifier, whefeis
an image region determined I8y(1)

ne Hceoarse= HcoarseU (97 P(y = +1|S))
end

end

Assigned the top hypotheses fronHcoarsein terms of P(y = +1|.5)

to Hiine

for i =1, ..., |Hiine| do

Assume(8;, P;) = it"*element ofHsine

for 0 = (6; — 5e0arse ) : ofine

{z,y,0,02,04} {z,y,0,02,04} °

(6; +5?‘;a’ysea varoy} do

ComputeP(y = +1|5) (6) using fine classifier, wher§ is
an image region determined Igy(1)
Hiine = Hiine U (0, P(y = +1[9))

end

end

Select the top hypothesis froffine in terms of P(y = +1|S), and

display hypothesis ifP(y = +1|S) > TpEeT.

Result : Paramete¥ of the top hypothesis.

Algorithm 2: Detection algorithm.

The valuerpgr was set in order to eliminate the bottom
5% of the cases in th&aining set We found important to set
such threshold in order to avoid large error cases. Thexefor
after the detection processH(y = +1|5) < 7pgr, then the
system outputs a message, which says "no anatomy detected”.

F. Training Results

We havel, 426 expert annotated training samples for head,
1,293 for abdomen,l, 168 for femur, 547 for humerus,325
for fetal body. An ROI, a coarse, and a fine CPBT classifiers
have been trained. We are interested in determining the tree
structure of the classifier, where we want to constrain the tr

IV-D, theto have the fewest possible number of nodes without affgctin

detection algorithm must run in three stages, as describedhe classifier performance. Recall from Sections IV-D and
Algorithm 2. The ROI detection samples the search spabBéE that a smaller number of nodes produces more efficient
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training and detection processes and a more generalizable °? ---~Constrained PBT

classifier. Therefore, we compare the performance of tHe ful o5 E:””:‘I’::;i: 015 Full Binary Tree

binary tree against a tree constrained to have only one child , o
per node. The number of weak classifiers is set to be at mosi® ~ ;
30 for the root node and its children (i.e., nodes at heights 0 o005 0.05

error

0.1]

and 1), and at most 3{(tree height) for the remaining nodes. | oL
Note that the actual number of weak classifiers is autonitica 0 %% eddn 7 0 02 Sl °° 7
determined by the AdaBoost algorithm [12]. The height of a) HC b) BPD

each tree is deflr)ed _aHRO' < ,[1’ 7], Heoarse € [,1’ 10}, and Fig. 10. Training comparison between the constrained PRI falh binary
Hine € [1,15], with its specific value determined throughree. The training cases are sorted in terms of the error unement. The
the foIIowing stop condition: a node cannot be trained Withgrizonta_l axes show the_ training set i_ndices, which vares 0 to 1, where
less than 2,000 positives and negative samples (total 0_04,(&;s Ct:See"Jﬁtixtﬁ; tlgfgg;'”é?f’ofase with the smallest errod &epresents
samples). This stop condition basically avoids over-fittof
the training data. The sampling intervals values for eaabest
are dror = [15,15, X,15, X], dcoarse = [8,8,20°,8, 8], and
Stine = [4,4,10°,4,4]. Finally in Algorithm 1, the number of
additional positives per imag® = 100 and the number of In this section we show qualitative and quantitative result
negatives per imag&’ = 1000. of the database-guided image segmentation based on the
CPBT classifier proposed in this paper. First, we describe th
From the parametef = [z, y, o, 05, 0] Of the top hypoth- methodology to quantitatively assess the performance of ou
esis, each measurement is computed as follows: system, then, we describe the experimental protocol. lyinal
we show the quantitative results along with screen shotiseof t
O(Ii?tection provided by the system.

V. EXPERIMENTAL RESULTS

o BPD =0, using the response from the head detect

wherey = 0.95. This value forv is estimated from

the training set by computing = %Zz{\il BQI:DZ()i) A. Quantitative Assessment Methodology

with M being the number of training images fory%eads, For the quantitative assessment of our algorithm, we adopte

BPD(i) is the manual BPD measurement for image the methodology proposed by Chalana et al. [7] and revised

ry(i) = "g—fj) with o, (i) denoting the height of the by Lopez et al. [3], which is briefly explained in this section

rectangle which contains the head imagesee Eq. 7). Assume that the segmentation of the anatomy is produced
« HC = 7 (3(ry +7y) — /(374 + 1) (7 + 3ry) |, Where by a curveA = {ai,...,a,,}, wherea; € R? represent the

this value is the Ramanuja’s approximation of the e||ip§'g1age positions of the: control points that define this curve.
circumference withr, = 2= andr, = 2 (see Eq. 7) Given another curvé3 = {b1, ..., b, }, the Hausdorff distance
2Kk 2K ) )

VAC = 1 [3(% t ) = /B T ) T 3ry)], which between these two curves is defined by
is the same computation as for HC. e(A, B) = max(max{d(a;, B)}, max{d(b;, A)}), ~ (16)
o FLHL,CRL = 2r,, wherer, = 3z(see Eq. 8). !

whered(a;, B) = min; ||b; —a;||, with ||.|| denoting Euclidean
_ distance.
Figure 10 shows the measurement errors for HC and BPDThe gold standard measurement is obtained through the

tree, where the training cases are sorted in terms of the efigs measurement of user € {1,..,n} on image; €

value. Assuming that the'T" contains the expert annotationfor(y N} (i.e., GT represents one of the six measurements
BPD, HC, AC, FL, HL, or CRL and)T' denotes the respectiveconsidered in this work-BPD,HC,AC,FL,HL,CRL), then the
automatic measurement produced by the system, the erropéty standard measurement for imajgés obtained as:
computed as: N
error= |GT — DT|/GT. 15 7 L
| |/ (15) Ty == Z} GT: ). (17)

Notice that the performance of the constrained tree is bette

than that of the full binary tree. This is explained by thetfac The following statistical evaluations compare the compute
that the constrained tree is more regularized and should denerated segmentation to the multiple observers’ segmnent
able to generalize better than the full binary tree. Anokt®sr tions. The main goal of these evaluations is to verify whethe
advantage of the constrained tree is the efficiency in tnginithe computer-generated segmentations differ from the alanu
and testing. For the cases above, the training process dor segmentations as much as the manual segmentations differ
full binary tree takes between seven to ten days, while fitnom one another. Assume that we have a database of curves,
the constrained tree the whole training takes two to foursdaguch asA and B in (16), represented by the variahlg ;,

on a standard PC computer. The detection process for thith i € {0,...,n} andj € 1,..., N, wherei is a user index
constrained tree takes, on average, less than one secoitel, vand 5 is an image index. User = 0 shall always represent
that of the full binary tree takes around three to four sesondhe computer-generated curve, while uséers {1,...,n} are
Hence, a constrained tree classifier is used in the expetamethe curves defined from the manual segmentations. We use the
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following two kinds of evaluations as proposed by Chalaja [7 « Set 1 10 distinct images of fetal heads, 10 distinct images

1)modified Williams indexand 2) percentage statisticThe of fetal abdomen, and 10 distinct images of fetal femur
modified Williams index is defined as: were evaluated byive expert users. Therefore, we have
, 1y D1 _ five different manual measurements per image (i.e., a total
[ =—5 T (18) of 40 5 = 200 measurements).
n(n—1) Za‘ Za":j’;éj D, « Set 2 Five expert users annotated 59 head images, 53

abdomen images, and 50 femur images. In total, we have
295 head images, 265 abdomen images, and 250 femur
images, which means that thereris overlapbetween
images annotated by different users in this second set.

where D; ;; = %Zfile(xi,j,xm/) with e(.,.) defined in
(16). A confidence interval (Cl) is estimated using a jackkni
non-parametric sampling technique [7], as follows:

IE-) = 429 955e€, (19) « Set 3 Three expert users annotated 30 humerus and 35
fetal body images. In total, we have 90 humerus images,
where zp 95 = 1.96 (representing th@5'" percentile of the and 105 fetal body images, which means that thereis
standard normal distribution, overlap between images annotated by different users in
. X 1/2 this third set.
! "2
. {N— 1 ;[I(Z) Kl } 7 C. Results

In this section we show qualitative results in Fig. 11 and

with 1/ = % >, I ). Note that/, is the Williams index " itat Cof ) ing the VYl
of (183 calculated by leaving imageout of the computation . € quantitalive assessment ot our system using the am
dex and the percentage statistic described in Sec. V-A on

of D; .,. A successful measurement for the Williams index i ) )
7+ the sets of data described in Sec. V-B.

0 haveI(/_) close tol, Table | shows the error between control points of the curves
The percentage statistic transform the computer-gerterate P

and manual curves into points in2a:-dimensional Euclidean generated by our system and by the manual measurements.
. The curves generated for the HC and AC measurements
space (recall from (16) thatn is the number of control

points of the segmentation curve), and the goal is to veri pntain 16 control points, while the curve for BPD, FL, HL,

the percentage of times that computer-generated curve,.| d CRL have two control points (just the end points of the

within the convex hull formed by the manual curves. Arl{ne)' In addition to the Hausdorff distance, we also show

approximation to this measure is computed by [7] ;iiﬂ:;ufesénf%rthe average distance, whe(g.) in (16) is
max{e(C, 0;)} < max{e(0;, Oj)}, (20)
) ,J

whereC is the computer-generated cur¢®, fori € {1,...,n}
are the observer-generated curves, afid.) defined in (16). . _ ] _
The expected value for the percentage statistic dependsf@hcurvesA and B. The Williams index and its confidence
the number of observer-generated curves. According to z.opBterval are shown in Table | for Set 1. The computer-to-
et al. [3], who revised this value from [7], the successfifibserver errors measured on Sets 2 and 3 are displayed in
expected value for the confidence interval of (20) should B&ble I (last two columns). Recall that the confidence interval
greater than or equal @ﬁ' wheren is the number of manual for the Williams index has to be close to 1, so that it can be

curves. The confidence interval for (20) is computed in tH@ncluded that there is negligible statistical differebeaveen
same way as in (19). the the computer-generated and user measurements.

The measurement errors computed from Set 1 are shown in
B. Experimental Protocol Table II. Note that in this table we only consider the errors

' (15) computed from the measurements of BPD, HC, AC, and

This system was quantitatively evaluated in a clinicalisgtt £ and the gold-standard is obtained from the average of the
using typical ultrasound examination images. It is impairtafie observers’ measurements. We also present the coorelati

to mention that all ultrasound images used in this evaluatigoefficientr, which denotes the Pearson correlation, defined
were not included in the training set. The evaluation prokocgs follows:

was set up as follows:

1 1 M 1 M
(A B) =5 | — dai.B)+— d(b;. A) |,
i=1 j=1

Zi GT: Z ; DT
1) User selects an ultrasound image of a fetal head, ab;. _ 2 Zj GT:DT; — Fimages
domen, femur, humerus, or fetal body. o (X, GT)? 5 (X, DTy)? ’
2) User presses the relevant detection button (i.e., BPD or \/(ZZ GT} - #images ) (Zi e #images )
HC for head, AC for abdomen, FL for femur, HL for (21)
humerus, CRL for fetal body). where GT; is the user measurement aldll; is the system
3) System displays automatic detection and measurem8iasurement for thé” image (see Sec. IV-F). The measure-
and saves the computer-generated curve. ment errors computed from Sets 2 and 3 are shown in Table I,

4) User makes corrections to the automatic detection aniere the gold-standard is simply the user measurement.

saves the manual Curlve' SWe could not compute the Williams index for Sets 2 and 3 bexaus
Three sets of data are available, as follows: have only one user measurement per image



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MEDICAL IMAGING 11

TABLE |
COMPARISON OF THE COMPUTER GENERATED CURVES TO THE
OBSERVERS CURVES FOR FETAL HEAQ ABDOMEN, FEMUR, HUMERUS,
AND BODY DETECTIONS ONSETS 1, 2,AND 3 (SEESEC. V-B). CO =
MEAN COMPUTER-TO-OBSERVER DISTANCE |O = MEAN INTER-OBSERVER
DISTANCE, WI = WILLIAMS INDEX , Cl = CONFIDENCE INTERVAL.

Set 1 Set 2 Set 3

Measure CO (mm) 10 (mm) wi 95% ClI CO (mm) CO (mm)

Head Head Humerus
Hausdorff 2.13 2.25 2.35 2.39
distance (o :1.15) (o :0.43) 088 | (0.77,0.98) (o : 2.26) (o : 1.62)
Average 1.44 1.49 1.50 1.69
distance (o :0.77) (o :0.28) 086 | (0.75,0.97) (o : 1.46) (o : 1.65)
Abdomen Abdomen Body
Hausdorff 2.77 3.16 3.49 2.86
distance (o : 1.64) (o :1.15) 089 | (0.77,1.01) (o : 4.38) (o : 3.13)
Average 1.57 1.96 2.03 2.11
distance (o : 0.89) (o :0.48) 1.02 | (0.92,1.12) (o : 2.35) (o : 1.79)
Femur Femur
Hausdorff 0.76 0.52 1.27

distance (o : 0.39) (o : 0.36) 115 | (0.93,1.37) (o : 2.94)

Average 0.51 0.37 0.79

distance (o : 0.26) (o : 0.25) 123 | (1.04,1.41) (o : 1.58)

TABLE Il

COMPARISON OF COMPUTERGENERATED MEASUREMENTS TO THE
GOLD-STANDARD (AVERAGE OF THE FIVE OBSERVERSMEASUREMENTY)
USING ABSOLUTE DIFFERENCES ONBET 1.7 = CORRELATION
COEFFICIENT

CO (mm) CO (%) 10 (mm) 10 (%) r

1.46 1.71 0.82 0.97
BPD | (0:1.48) | (0:1.76) | (o:0.61) | (o:0.59) | 0.998

4.80 1.02 4.11 0.89
HC (0:4.73) | (0:0.81) | (0:2.57) | (o:0.44) | 0.999

6.96 2.43 4.72 1.67
AC (0:9.14) | (0:3.51) | (0:6.49) | (o:2.45) | 0.994

0.45 1.36 0.16 0.53
FL (0:0.71) | (o:2.11) | (0:0.20) | (o:0.65) | 0.996

the fetus for Sets 1, 2, and 3. In this case the gestational
age is computed as a function of each measurement using the
Hadlock regression function [8]. The error is computed by
taking the average error of the measurement (Tables Il for Se
1, and Il for Sets 2 and 3) and computing what that error
represents in terms of number of days, but notice that this
error varies as a function of the GA of the fetus.

For all cases above, notice that the confidence interval (Cl)
for the Williams index is around 1 for all measurements, and

TABLE Il
COMPARISON OF COMPUTERGENERATED MEASUREMENTS TO THE
GOLD-STANDARD (OBSERVERS MEASUREMENTS) USING ABSOLUTE
DIFFERENCES FORSETS 2 AND 3.7 = CORRELATION COEFFICIENT

e) HL f) CRL
. . . CO (mm) CO (%) s
Fig. 11. Detection and segmentation results.
BPD (o 1:'11.144) (o 1:'%.674) 0.998
5.07 1.25
HC (o : 5.42) (o : 1.34) 0.999
Table IV shows the Williams index and percentage statistic e | @850 | @760 | 000
with respect to the user measurements (as shown in [7]). Note 0.89 2.11
. ) ot FL (o :2.78) (o : 5.68) 0.986
that the confidence interval for the percentage statistalsh — T
be around’—1 = 3 = 0.66, wheren = 5 =number of manual He | (0159 | (0:3:72) | 0.982
measurements. Finally, Fig. 12 shows the average error in R | 0 BBy | 02%%,) | o.0ss

terms of days as a function of the gestational age (GA) of
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TABLE IV TABLE V
WILLIAMS INDEX AND PERCENT STATISTIC FORBPD, HC, AC,AND FL COMPARISON OF THE COMPUTER GENERATED CURVES TO THE FIVE
MEASUREMENTS ONSET 1. WI = WILLIAMS INDEX , P =PERCENT OBSERVERS CURVES FOR FETAL SKULL AND ABDOMEN DETECTIONS ON
STATISTIC, Cl = CONFIDENCE INTERVAL. A SET OF30TEST IMAGES- TABLE FROM [7]. SEE TABLE | FOR DETAILS.
Wi 95% ClI P 95% ClI Measure CO (mm) 10 (mm) wi 95% ClI
BPD 0.8246 (0.5791, 1.0702) 80.0 (75.38, 84.68) Head
HC 1.0567 (0.8924, 1.2211) 80.0 (75.38, 84.68) Hausdorff 4.64 3.83
distance (o : 2.61) (o : 1.90) 0.83 (0.70, 0.96)
AC 0.7086 (0.4520, 0.9652) 50.0 (44.14, 55.86)
Average 2.09 1.92
FL | 09201 | (0.5774,1.2628) | 600 | (54.26,65.74) distance | (0:0.95) | (0:0.82) | 092 | (0.81,1.03)

Abdomen

Hausdorff 8.88 5.48
distance (o : 6.25) (o : 5.22) 0.61 (0.49,0.73)

Average 4.05 2.91
distance (o :3.13) (o : 3.49) 0.69 (0.57, 0.83)

2
o

IS
IS

Error (days)
w
Error (days)
w

TABLE VI
COMPARISON OF COMPUTERGENERATED MEASUREMENTS TO THE
GOLD-STANDARD (AVERAGE OF THE FIVE OBSERVERSMEASUREMENTS)
USING ABSOLUTE DIFFERENCES ON A SET OBOTEST IMAGES- TABLE
U T L R WU A FROM[7]. SEE TABLE || FOR DETAILS.

n
n

a) BPD b) HC cO (mm) cO (%) 10 (mm) 10 (%) .

s
8|
—Set2 5

0.71 1.19 0.83 1.33
BPD | (0:0.61) | (0:0.85) | (o:0.66) | (o0:0.82) | 0.999

5.22 2.07 8.46 3.54
HC (0:5.27) | (o:1.67) | (0:3.28) | (0:0.99) | 0.996

~

Error (days)
Error (days)

Noow

6 6.35 11.62 5.65
AC (0:9.48) | (0:5.26) | (o:10.6) | (0:6.53) | 0.974

-

1o 40 50

20 30 40 20 30
Gestational Age (weeks) Gestational Age (weeks)

o AC o) FL evaluation [7]. This fact increases the likelihood of more
5 positive statistical evaluations (i.e., Williams indexost¢ to
one, and higher percentage statistic). Finally, in Chatana
evaluation [7], there is no statistic assessment of the feta
femur, humerus, and fetal body measurements.

H
)
IS

Error (days)
>
Error (days)
w

) 2 The running time for our algorithm is on avera@eb
) 1 seconds for all measurements on a PC computer with the
¢ - R J o= ! _ _ following configuration: Intel Core 2 CPU 6600 at 2.4 GHz,
Gestational Age (weeks) Gestational Age (weeks) ZGB Of RAM.
e) HL f) CRL
Fig. 12. Average error in days in terms of gestational ageSkets 1, 2, and VI. CONCLUSIONS

3.
We presented a system that automatically measures the BPD
and HC from ultrasound images of fetal head, AC from images
o ) of fetal abdomen, FL in images of fetal femur, HL in images of
the percentage statistic Cl is close to the expected valQg6f (oo humerus, and CRL from images of fetal body. Our system
for all measurements. The AC measurement shows a regylhoits a large database of expert annotated images in orde
slightly below this mark, but given that the Williams index, model statistically the appearance of such anatomieis. Th

result for AC and for the abdomen curve is always close {9 ychieved through the training of a Constrained Proksilail
one, it is fair to say that AC is producing acceptable restits g,qsting Tree classifier. The results show that our system pr

general, the HL and CRL measurements present similar sesyjf,ces accurate results, and the clinical evaluation shesusts

compared to the other anatomies, even though their classifjg; are, on average, close to the accuracy of sonographers.

models were built with much smaller training sets. Finailly, comparison with the method by Chalana [7] shows that our
is interesting to see in Fig. 12 that the errors reported &oche

anatomy represent a deviation of only a couple of days when

TABLE VI
GA < 30 weeks and a few days (usua”y less than seven daya)lLLlAMS INDEX AND PERCENT STATISTIC FORBPD, HC, AC,AND FL
for GA > 30 weeks.

MEASUREMENTS ON A SET OF30 TEST IMAGES- TABLE FROM [7]. SEE

Chalana et al. [7] show the same experimental results for TABLE |V FOR DETAILS.
fetal heads and abdomens (see Tables V, VI, and VII), and wi 95% CI P 95% Ci
in general, the results for head detection and measurements BPD | 107 | (1.02,1.11) | 485 | (33.9,63.1)
are comparable, but our results for abdomen detection and He | 112 | (.00, 1.41) | 667 | (56.5,88.1)
measurements are more accurate. Another interesting dact i ac | 0m2 | (0.61.1.03 | 514 | 37.5.065.5

that the inter-user variability is generally larger in Glred's
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method produces, in general, superior results. Moreokier, {20] B. Leibe, A. Leonardis, and B. Schiele. Combined objeategorization

algorithm is extremely efficient and runs in under half seton
on a standard dual-core PC computer. Finally, the clinical

evaluations showed a seamless integration of our system i
the clinical workflow. We observed a reduction of up7@%

in the number of keystrokes when performing the automafg:Z]

measurements (compared to the manual measurements).
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