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Multi-Part Modeling and Segmentation of Left
Atrium in C-Arm CT for Image-Guided

Ablation of Atrial Fibrillation
Yefeng Zheng*, Dong Yang, Matthias John, and Dorin Comaniciu

Abstract—As a minimally invasive surgery to treat atrial fibril-
lation (AF), catheter based ablation uses high radio-frequency en-
ergy to eliminate potential sources of abnormal electrical events,
especially around the ostia of pulmonary veins (PV). Fusing a pa-
tient-specific left atrium (LA) model (including LA chamber, ap-
pendage, and PVs) with electro-anatomical maps or overlaying the
model onto 2-D real-time fluoroscopic images provides valuable vi-
sual guidance during the intervention. In this work, we present a
fully automatic LA segmentation system on nongated C-arm com-
puted tomography (C-arm CT) data, where thin boundaries be-
tween the LA and surrounding tissues are often blurred due to
the cardiac motion artifacts. To avoid segmentation leakage, the
shape prior should be exploited to guide the segmentation. A single
holistic shape model is often not accurate enough to represent the
whole LA shape population under anatomical variations, e.g., the
left common PVs vs. separate left PVs. Instead, a part based LA
model is proposed, which includes the chamber, appendage, four
major PVs, and right middle PVs. Each part is a much simpler
anatomical structure compared to the holistic one and can be seg-
mented using a model-based approach (except the right middle
PVs). After segmenting the LA parts, the gaps and overlaps among
the parts are resolved and segmentation of the ostia region is fur-
ther refined. As a common anatomical variation, some patients
may contain extra right middle PVs, which are segmented using a
graph cuts algorithm under the constraints from the already ex-
tracted major right PVs. Our approach is computationally effi-
cient, taking about 2.6 s to process a volume with 256 256 245
voxels. Experiments on 687 C-arm CT datasets demonstrate its ro-
bustness and state-of-the-art segmentation accuracy.

Index Terms—Atrial fibrillation ablation, C-arm CT, left atrial
appendage segmentation, left atrium modeling and segmentation,
pulmonary vein segmentation.

I. INTRODUCTION

A FFECTING more than three million people in the USA
[1], atrial fibrillation (AF) is the most common cardiac

arrhythmia (irregular heart beats). AF is associated with an in-
creased risk of stroke, heart failure, cognitive dysfunction, and
reduced quality of life, etc. For example, AF patients have a
five-fold increased risk of stroke compared to those without AF
and about 15%–20% of strokes (which is the third leading cause
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of death in the USA) can be attributed to AF [2]. As a widely
used minimally invasive surgery to treat AF, the catheter based
ablation procedure uses high radio-frequency energy to elimi-
nate the sources of ectopic foci. With the improvement in the
ablation technology, this procedure was adopted quickly with
15% annual increase rate from 1990 to 2005 [3]. The latest es-
timate of the number of ablations is approximately 50 000/year
in the USA and 60 000/year in Europe [4]. Ablation is mainly
performed inside the left atrium (LA), especially around the
ostia of the pulmonary veins (PV). Automatic segmentation of
the LA has important applications in preoperative assessment
and intra-operative guidance for the ablation procedure [5]–[7].
However, there are large variations in the PV drainage patterns
[8]. Majority of the population have two separate PVs on each
side of the LA chamber, namely the left inferior PV (LIPV)
and left superior PV (LSPV) on the left side, and the right infe-
rior PV (RIPV) and right superior PV (RSPV) on the right side
(Fig. 1). A significant proportion (about 20%–30%) of the pop-
ulation have anatomical variations and the most common vari-
ations are extra right PVs (where, besides the RIPV and RSPV,
one or more extra PVs emerge separately from the right side of
the LA chamber) and the left common PV (where the LIPV and
LSPV merge into one before joining the chamber). A personal-
ized LAmodel can help to translate a generic ablation strategy to
a patient’s specific anatomy, thus making the ablation strategy
more effective for this patient. Fusing the patient-specific LA
model with electro-anatomical maps or overlaying the model
onto 2-D real-time fluoroscopic images also provides valuable
visual guidance during the intervention [Fig. 1(c)].
In this paper, we propose a fully automatic LA segmentation

system on C-arm computed tomography (C-arm CT) data. Nor-
mally, a nonelectrocardiography-gated (i.e., non-ECG-gated or
nongated) acquisition is performed for C-arm CT; therefore, it
may contain cardiacmotion artifacts, which blur thin boundaries
between the LA and surrounding tissues. This presents a great
challenge to nonmodel based segmentation approaches [5], [6],
[9] (which assume no or little prior knowledge of the LA shape),
although they may work well on highly-contrasted CT or mag-
netic resonance imaging (MRI) data. In our work, this challenge
is addressed using a model based approach, which also takes
advantage of a machine learning based object pose detector and
boundary detector [10].
Instead of using one mean shape model as in [7], the PV

anatomical variations are addressed using a part based model,
where the whole LA is split into the chamber, appendage, four
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Fig. 1. The part based left atrium (LA) mesh model. (a) Meshes of the separate
LA parts. (b) Final consolidated mesh model. (c) Overlay of the model onto a
fluoroscopic image to provide visual guidance during catheter based ablation.
Color scheme: Cyan for the LA chamber, dark red for the appendage, green for
the left inferior pulmonary vein (PV), magenta for the left superior PV, orange
for the right inferior PV, and blue for the right superior PV.

major PVs, and right middle PVs. Each part is a much sim-
pler anatomical structure compared to the holistic one, there-
fore can be detected and segmented using a model based ap-
proach (except right middle PVs, which are segmented using
a graph cuts algorithm). Statistical shape constraint is enforced
during the detection of the PVs (estimating their pose param-
eters, including position, orientation, and size) to improve the
robustness. After segmenting the LA parts, the gaps and over-
laps among the parts are resolved and segmentation of the ostia
region is further refined. As a common anatomical variation,
extra right middle PVs are present in some patients. Depending
on the presence or absence of right middle PVs, different abla-
tion strategies or devices may be exploited by the physicians.
Due to the large anatomical variations of right middle PVs, a
purely model-based approach has difficulties to segment them
[11]. In this work, a nonmodel-based graph cuts approach [12],
[13] is exploited to segment the right middle PVs.
Please note, preliminary results of this work have been pre-

sented in our previous conference papers [14]–[16]. This paper
revisits some components of the algorithm and presents more
detailed description of the segmentation system. The remainder
of this paper is organized as follows. In Section II, we present a
brief review of the related work on LA segmentation. The part
based LAmodel and the statistical shape constrained part detec-
tion/segmentation are presented in Section III. In Section IV,
we present methods to refine the segmentation around the
connections between different parts and determine the exact
part boundary on the surface mesh. The graph cuts based right

middle PV segmentation is described in Section V. Quanti-
tative evaluation is performed in Section VI. In Section VII,
we present a comparison with other methods followed by a
discussion of the limitations of the proposed method. This
papers concludes with Section VIII.

II. RELATED WORK

Due to the complexity of the LA and PV anatomy, manual
slice-by-slice segmentation may require 4–8 h per dataset de-
pending on the number of slices to trace [17]. Various methods
have been proposed to automate the segmentation procedure.
The previous LA segmentation methods can be roughly cate-
gorized as nonmodel based and model based approaches. The
nonmodel based approaches [5], [6], [9], [17]–[19] do not as-
sume prior knowledge of the LA shape and the whole segmenta-
tion procedure is purely data driven. On the contrary, the model
based approaches exploit a prior shape of the LA (either in the
form of a mean shape mesh [7], [20]–[22] or an atlas [23], [24])
to guide the segmentation, therefore improving the segmenta-
tion robustness.
The nonmodel based approach proposed by John and Rahn

[5] exploits the fact that the neighboring cardiac chambers can
be separated by cuts at the narrowings of the blood pool. It re-
lies on the assumption that the blood pool is highly contrasted,
therefore can be extracted easily using a simple region growing
method. This method has been adapted by Karim et al. [6],
[25] to segment the LA in MRI angiographic images, where the
blood pool is further enhanced by subtracting a noncontrasted
volume from a contrasted one to remove bright bone tissues pre-
sented in both volumes. Cristoforetti et al. [18], [19] proposed
a semi-automatic segmentation method where a user is required
to put 20–30 markers on different cardiac anatomies and sur-
rounding tissues. The marker controlled watershed algorithm is
then applied to group unmarked voxels to the nearest markers.
It takes 2–5 min to manually put markers and the segmentation
procedure takes 21 min in addition. One advantage of nonmodel
based methods is that they can handle anatomical variations
of the PVs. However, such methods cannot provide the under-
lying anatomical information (e.g., which part of the segmenta-
tion is the left inferior PV). Anatomical information is benefi-
cial to automatically warp an ablation strategy [26] (represented
as planned ablation lines) onto the patient-specific anatomy. In
practice, nonmodel based approaches work reasonably well on
highly contrasted CT or MRI data, but they are not robust on
challenging C-arm CT. Furthermore, some user interactions are
often required to achieve satisfactory segmentation even on CT
or MRI data [17].
The model based approaches exploit a prior shape of the

LA to guide the segmentation. For example, Manzke et al.
[7] built a mean shape of the combined structure of the LA
chamber and four major PVs (right middle PVs are ignored)
from a training set. With prior shape constraint, they could
avoid the leakage around weak or missing boundaries, which
plagues the nonmodel based approaches. Even after ignoring
variable right middle PVs, it may still have difficulty to handle
variations of left common PVs. Recently, this method has
been extended to handle left common PVs and extra right PVs
[11], [21], [22]. The PV variations are roughly categorized
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Fig. 2. Workflow of the proposed part based left atrium (LA) segmentation method and some intermediate results. (a) System diagram. (b) Mesh and mask after
segmenting the LA parts. (c) Mask after resolving the gaps between parts and refining the ostia region. (d) Mask after extracting a right middle pulmonary vein.
(e) Final consolidated mesh generated from the mask.

into a limited number of patterns [8]. During segmentation,
the correct PV model needs to be automatically selected; oth-
erwise, segmentation fails. However, automatic selection of a
correct model incurs additional computing time. The methods
have been tested on CT [21], [22] and MRI [11] data and a
moderate success rate is achieved for the anatomical variation
pattern identification. Furthermore, there are still a significant
proportion of patients whose PV drainage patterns are not
captured in the prebuilt shape models. The PV variations are
addressed in [24], [27] using multiple atlases at the cost of extra
computing time. Instead of summarizing the whole training
set into average statistics, each training sample is treated as an
atlas. The input volume is registered to each training sample
and the corresponding labels are intelligently fused to get the
segmentation result. The method is time consuming since each
registration takes about 8 min and the overall segmentation
time can easily go over 2 h with a handful of atlases.
Segmentation of the LA appendage has several applications

in cardiac interventions. Occasionally, the ostium rim of the
appendage is also ablated, especially for patients undergoing
repeated catheter ablations [28]. More importantly, the ridge
between the left superior PV and the appendage is a critical
target to ablate. In addition, transcatheter LA appendage occlu-
sion is an emerging minimally invasive technique to reduce the
stroke risk for AF patients [29]. Explicit segmentation of the
appendage is important for planning and visual guidance of this
intervention. Previously, the appendage is often segmented im-
plicitly in nonmodel based approaches [5]. We found only one
work [30] explicitly segmenting the LA appendage using a de-
formable model. However, the deformable model has difficulty
to reach the tip of the appendage and the segmentation com-
pletely fails on 1 out of 17 test datasets.
In this work, we exploit a part based LA model to handle

anatomical variations. Part based models are popular in com-

puter vision for object detection and recognition; however, its
applications on medical image analysis are sparse. Toews and
Arbel [31] applied a part based method for inter-subject brain
MRI image registration. The parts are defined as salient re-
gions, which do not correspond to a commonly-known anatom-
ical structure. They further assume that the parts are condition-
ally independent once the pose of a reference anatomy is known.
These are different to ours. Ecabert et al. [32] proposed to seg-
ment great vessels (including PVs) using an articulated model
(a special part model). A vessel is composed of a few con-
nected tubes, which are segmented sequentially from proximal
to distal. An articulatedmodel allows a larger deformation of the
vessel than a holistic model; however, with a fixed topology, it
lacks the flexibility to handle anatomical variations of the PVs.

III. MULTI-PART LEFT ATRIUM MODELING
AND SEGMENTATION

Our part based LA segmentation system is composed of mul-
tiple stages. Fig. 2 shows the workflow and some intermediate
results during segmentation. In this section, we are focused on
the modeling and segmentation of LA parts.

A. Part Based Left Atrium Model

As shown in Fig. 1(a), our part based LA model includes the
LA chamber body, appendage, four major PVs, and optional
right middle PVs (which are only present in some patients).
We reuse the LA chamber model from our four-chamber heart
model [10]. The LA chamber surface mesh is represented with
545 mesh points and 1056 triangles with an opening at the mi-
tral valve. The mesh point correspondence is established using
a rotation axis based resampling method. An interested reader
is referred to [10] for more details.
For AF ablation, physicians only care about a short PV trunk

connected to the LA chamber; therefore, we only detect a trunk
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Fig. 3. Segmentation results on two datasets with different anatomical varia-
tions of the left pulmonary veins (PV). Images (a) and (b) show a patient with
separate left inferior (green) and superior (magenta) PVs. Images (c) and (d)
show a patient with a left common PV.

of 20 mm in length, originating from its ostium. In the case of
a left common PV, the PVs after the bifurcation at the distal
end of the common PV are modeled, as shown in Fig. 3(c) and
(d). Each PV is represented as an open-ended tubular structure
with a proximal opening on the LA chamber side and a distal
opening away from the LA chamber. On the PV mesh, the two
openings are represented as two closed contours, namely the
proximal ring and the distal ring, respectively. The PV mesh
is uniformly resampled to nine rings (including the proximal
and distal rings) perpendicular to its centerline and each ring
is uniformly resampled to 24 points; therefore, the PV mesh is
represented by a total of 216 points and 384 triangles.
The LA appendage has a complicated shape, which is com-

posed of a lot of small cavities. On C-arm CT, the boundary
between cavities is often blurred due to the cardiac motion arti-
facts. In our application, it is accurate enough to use a smooth
mesh tightly enclosing all the appendage cavities. The shape of
the appendage mesh is close to a tilted cone with an opening
(called a proximal ring) at the connection to the LA chamber.
The centerline from the proximal ring center to the appendage
tip defines the orientation of the tilted cone. Similar to the PVs,
the appendage mesh is also represented as a set of uniformly
distributed circular rings perpendicular to its centerline. Since
the appendage is larger and has a more complicated shape than
the PVs, it is represented as a denser mesh with 18 rings and
each ring with 33 points. The most distal ring is represented as
a single point to close the mesh at the appendage tip.
The right middle PVs are an optional component of our part

based LA model as they are only present in a relatively small
proportion of patients. Majority of the population (70%–80%)
have no middle PVs. However, some patients may have up to

three middle PVs [8]. The right middle PVs originate on the LA
chamber around the area between two major right PVs. If the
origin of a PV is too close to a major PV, it is often difficult to
identify if this PV is an independent middle PV or just a side
branch of a major PV. Due to these difficulties, we do not have
a consistent mesh presentation of the right middle PVs. They
are extracted using a nonmodel based graph cuts approach [12].
Please note, the part based LA model is an internal represen-

tation to facilitate the segmentation process in handling anatom-
ical variations. The final LA model presented to physicians is
a consolidated mesh with different parts labeled with different
colors, as shown in Fig. 1(b).

B. Marginal Space Learning for 3-D Object Detection and
Segmentation

Before diving into the details of the proposed LA segmen-
tation approach, we briefly review the marginal space learning
(MSL) based object detection/segmentation method [10], [33],
which is the underlying technology for the segmentation of an
LA part. MSL is an efficient and robust method for 3-D anatom-
ical structure detection and segmentation in various medical
imaging modalities. It is based on recent advances in learning
discriminative models to exploit rich information embedded in
a large expert-annotated database. We formulate the segmenta-
tion as a two-step learning problem: anatomical structure local-
ization and boundary delineation.
Object localization (or detection) is a prerequisite for an au-

tomatic segmentation system and discriminative learning based
approaches have proved to be efficient and robust for solving
2-D problems [34]. In these methods, object detection is formu-
lated as a classification problem: whether an image block con-
tains the target object or not. The object pose parameter space
is quantized into a large set of discrete hypotheses and exhaus-
tive search is used to pick the best hypothesis. To be specific,
each hypothesis is tested by the trained classifier to get a de-
tection score and the hypothesis with the largest score is taken
as the final detection result. To accurately localize a 3-D ob-
ject, nine pose parameters need to be estimated (three for trans-
lation, three for orientation, and three for anisotropic scaling).
With the exponential increase of potential pose parameter com-
binations, exhaustive search is not practical for 3-D object de-
tection. The idea ofMSL is not to learn a classifier directly in the
full similarity transformation space but to incrementally learn
classifiers on marginal spaces. In our case, we split the estima-
tion into three steps: position estimation, position-orientation
estimation, and position-orientation-size estimation. After each
step, we only keep a small number of promising hypotheses;
therefore, the pose parameter space is pruned significantly to
increase the detection efficiency.
After theMSL based pose estimation, we get the position, ori-

entation, and size of the object. A mean shape is aligned to the
estimated transformation to generate a rough estimate of the ob-
ject shape. We then deform the shape to fit the object boundary
using a machine learning based boundary detector within the ac-
tive shape model (ASM) framework [35]. Interested readers are
referred to [10], [33] for more details of the MSL based object
detection and segmentation.
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C. Constrained Detection of LA Parts

Our LAmodel contains multiple parts. TheMSL based detec-
tion/segmentation works well for the LA chamber. However, in-
dependent detection of other parts is not robust, either due to low
contrast (appendage) or a small object size (PVs). In C-arm CT,
the appendage is particularly difficult to detect since it is a pouch
without outlet and the blood flow is slow inside, preventing
complete filling the appendage with contrast agent. In many
datasets, the appendage is only barely visible. TheMSL detector
may pick the neighboring left superior PV (LSPV), which often
touches the appendage and has higher contrast. However, the
relative position of the appendage to the chamber is quite con-
sistent. The comparison experiments presented in Section VI-C
show that the best performance is achieved by treating the ap-
pendage and chamber as a consolidated object. One MSL based
pose detector is trained to detect the combined object.
Through comparison experiments, we found neither a

holistic approach nor independent detection worked for the
PVs (refer to Section VI-C). In this paper, we propose to en-
force statistical shape constraint [35] in PV detection. The point
distribution model (PDM) is often used to enforce statistical
shape constraint among a set of landmarks in the ASM. The
shape variation is decomposed into orthogonal deformation
modes through principal component analysis (PCA). A de-
formed shape is projected into a low dimensional deformation
subspace to enforce statistical shape constraint. For each PV,
an MSL pose detector can estimate nine pose parameters,
i.e., three object center position parameters , three
orientation Euler angles , and three anisotropic
scaling parameters . Different to the conventional
PDM, we also want to enforce constraint among the estimated
orientation and size of PVs. One solution is to stack all PV pose
parameters into a long vector to perform PCA. However, the
position and orientation parameters are measured in different
units. If not weighted properly, the extracted deformation
modes may be dominated by one category of transformation.
Furthermore, the Euler angles are periodic (with a period of
), which prevents the application of PCA.
In this work, we use a new presentation of the pose parame-

ters to avoid the above problems. The object pose can be fully
represented by the object center together with
three scaled orthogonal axes. Alternative to the Euler angles,
the object orientation can be represented as a rotation matrix

and each column of defines an axis. The
object pose parameters can be fully represented by a four-point
set , where

(1)

The pose of each PV is represented as four points. Besides the
constraint among the PVs, we also add the already detected LA
chamber center and appendage center to stabilize the detection.
In total, we get a set of 18 points and a shape space is learned
on a training set.
After independent detection of the center, orientation, and

size of the PVs, we project their poses into a subspace with

eight dimensions (which explains about 75% of the total vari-
ation) to enforce statistical shape constraint. After that, we get
a new four-point set for each PV. We then re-
cover the orientation and scale by inversion of (1) as

and for being in
turn. However, the estimate is generally not
a true rotation matrix . We want to find the nearest
rotation matrix to minimize the sum of squares of elements
in the difference matrix , which is equivalent to

(2)

subject to . Here, is a sum of the diagonal
elements. The optimal solution [36] is given by

(3)

By enforcing statistical shape constraint, a proper configura-
tion of the different LA parts is preserved. On C-arm CT ac-
quired with a small X-ray detector panel, a PV may be partially
outside of the field-of-view. Using the proposed method, such
a PV can still be detected correctly [e.g., the RSPV (blue) in
Fig. 3(a)]. After pose estimation, the detailed boundary of a PV
is segmented using a machine learning based boundary detector
within the ASM framework [10].

IV. PRECISE SEGMENTATION OF OSTIA REGION OF PULMONARY
VEINS AND APPENDAGE

In this section, we first discuss how to convert the separate
part meshes to a mask to eliminate the gaps and intersections
among parts (Section IV-A). In Sections IV-B and IV-C, we then
present methods for precise segmentation of the ostia region of
the pulmonary veins and appendage, which are main ablation
focus. At last, a scheme for proper part labeling is proposed in
Section IV-D to determine the exact boundary between different
LA parts.

A. Mesh to Mask Conversion

After constrained detection and segmentation, we get six
separate meshes (the LA chamber, appendage, and four PVs),
as shown in Fig. 4(a). There may be gaps and/or intersections
among different meshes. Physicians prefer a consolidated mesh
with different anatomical structures labeled with different
colors. We first project the proximal ring of a PV or appendage
along the centerline onto the LA chamber to eliminate the
gaps among different mesh parts [Fig. 4(b)]. Now, the part
meshes are fully connected. However, the mesh intersections
of different parts may still exist. It is complicated to work
directly on the meshes. Instead, we convert the meshes to a
volume mask [Fig. 4(c)], and a new mesh [Fig. 4(d)] can be
generated from the volume mask using the marching cubes
algorithm [37]. Since pure mesh operation is performed to
connect PV/appendage meshes to the LA chamber, the ostia
region is not segmented accurately and needs to be further
refined using the approaches detailed in the following.
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Fig. 4. Generating a consolidated left atrium (LA) mesh from separate parts.
(a) Separate meshes of the pulmonary veins (PV) and LA chamber. (b) After
connecting the PVmeshes to the LA chamber. The addedmesh pieces are shown
in red. (c) Volume mask generated from the meshes. (d) Consolidated mesh.

B. LSPV-Appendage Ridge Refinement

Sometimes, the ridge between the LSPV and the appendage is
not delineated accurately, especially when the LSPV and the ap-
pendage are close to each other. As shown in Fig. 5(a), a narrow
ridge is partially enclosed inside the LA chamber mesh. To re-
fine the segmentation around the ridge, we perform layer-by-
layer erosion to remove dark voxels. We first find the outer
layer of the chamber and ostia regions. (Please note the mask
of the PVs and appendage is excluded from erosion since the
model-based segmentation normally gives accurate and satis-
factory segmentation.) If a voxel on the outer layer has an in-
tensity less than a threshold, we set it to a background voxel.
Such layer-by-layer erosion is performed 10 iterations. This ero-
sion operation not only improves the segmentation of the ridge,
but also other regions. For example, as shown in Fig. 5(c), the
dark voxels in the ostia region between the appendage and the
chamber are removed, resulting in more accurate segmentation
around that region too. C-arm CT normally has a high inten-
sity variation due to the lack of a standard protocol for the use
of contrast agent. A fixed erosion threshold does not work for
all datasets. Instead, we automatically determine an adaptive
threshold for each dataset based on the analysis of the ostia re-
gion intensity. To be specific, we sort the intensity of the ostia re-
gion and use the lower 2.5th percentile as the erosion threshold.
Experiments show that this parameter setting results in satisfac-
tory segmentation.

C. Ostia Region Refinement

The initial ostia region is labeled with pure mesh operation
by projecting the PV/appendage meshes onto the chamber. The
segmentation is often not accurate enough when the part gap

Fig. 5. Refinement of the segmentation of the ridge between the left supe-
rior pulmonary vein (LSPV) and appendage. (a) An intersection of a volume
overlaid with the LA part meshes with cyan for the chamber, dark red for the
appendage, and magenta for the LSPV. (b) Mask after connecting the PV/ap-
pendage meshes to the chamber. The initial ostia region is shown in white.
(c) Mask after erosion to remove dark voxels from the mask. (d) Final con-
solidated mesh.

Fig. 6. Segmentation of the ostia region of the left superior pulmonary vein.
(a) Separate meshes. (b) Consolidated mesh without refinement. (c) Consoli-
dated mesh after refinement.

is too large [see Fig. 6(b)]. We perform layer-by-layer region
growing to refine the segmentation using an adaptive threshold
(i.e., the 50th percentile of the initial ostia region intensity). Re-
gion growingmay leak into neighboring highly contrasted struc-
tures, e.g., the descending aorta that is close to the LIPV, due to
the missing image boundary under cardiac motion artifacts. On
rare cases, it may leak into interventional devices (e.g., the trans-
esophageal echocardiographic (TEE) probe in Fig. 7). As a less
severe problem, the resulting boundary after region growing are
often quite zig-zag due to the imaging noise.
To fix these issues, we fit a smooth mesh in the ostia region (as

shown in Fig. 8). The mesh is initialized as a tube, which is gen-
erated as follows. We first extend the proximal ring of a PV (or
appendage) into the chamber, and then triangulate the surface
between the original proximal ring and the extended ring as an
initial mesh. Eachmesh point is moved along the surface normal
to the first transition from a masked voxel to background. Many
leaked voxels are already excluded from the adjusted mesh.
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Fig. 7. Avoid segmentation leakage. (a) After region growing, the segmenta-
tion leaks into the neighboring ultrasound probe. (b) Segmentation result after
enforcing smoothness of the ostia region.

Fig. 8. Fitting an optimal smooth mesh to the left superior pulmonary vein
(LSPV) ostia region. (a) Separate part meshes (cyan for the chamber and ma-
genta for the LSPV). (b) Fitting a smooth mesh onto the ostia region. (c) Final
mesh.

However, the resulting mesh is not smooth and it may still in-
clude leakage. Finally, we search for an optimal smooth mesh
by shrinking mesh points along the surface normal.
A triangulated surface can be represented as a graph

, where is an array of vertices and is an array of
edges. For each vertex on the surface, we can define a neigh-
borhood . Normally, first order neighborhood is used that
vertex is a neighbor of vertex if they are connected by an
edge. The smoothness around a vertex is often defined as [38]

(4)

where is the number of neighbors for vertex . The smooth-
ness of the whole surface is

(5)

We want to adjust the mesh to generate a smooth surface by
minimizing (5). Since there is too much freedom to adjust a
mesh, similar to the well accepted practice in active contours
[39] and the ASM [35], we only allow the adjustment along the
normal direction

(6)

where is a scalar and is the surface normal at vertex . We
can further limit the adjustment of each vertex by enforcing the
following constraints:

(7)

Fig. 9. Refine the mesh part label. (a) Before label refinement. (b) Optimal
boundary (the red contour) between the left atrial appendage and the chamber.
(b) After label refinement.

where and are the lower and upper bound of the adjust-
ment for vertex , respectively. For example, in this application,
we enforce to guarantee that the mesh is completely
embedded inside the masked ostia region. (Note, the surface
normal is pointing outside of the mesh.)
In practice, we also need to get a trade-off between smooth-

ness and the amount of adjustment. Our final optimization
problem is

(8)

subject to the bound constrain of . Here, (
throughout the experiments) is a scalar for the above trade-off.
It turns out that our optimization problem is a classical

quadratic programming problem. For , the objective
function defined in (8) is a strictly convex function; therefore,
it has a unique global optimal solution, which is solved using
the algorithm proposed in [40].
Fig. 8(b) shows the optimal smooth mesh fitting around the

LSPV ostia region. A smooth mesh is fit in each ostia region
(in total of five) and an ostia region voxel is included in the
final mask if it is inside at least one ostia mesh. After fitting an
optimal smooth mesh around the ostia region, we can achieve
a smooth mesh in the final segmentation and at the same time
prevent leakage [as shown in Fig. 7(b)].

D. Mesh Part Labeling

Using the above techniques, the ostia regions of the PVs and
appendage are segmented. However, the boundary between the
different LA parts is often not labeled correctly, resulting in
wrong colors for some mesh triangles, as shown in Fig. 9(a).
In this section, we present an optimization based approach to
refining the final mesh part labeling.
Normally, the boundary between different parts has high sur-

face curvatures on the mesh. However, sometimes, the connec-
tion can be smooth; therefore, the exact boundary around those
regions need to be extrapolated by the neighboring regions with
high curvatures. We propose an optimization based approach to
searching for the part boundary. First, the proximal ring of a
PV (or the appendage) is densely resampled to a fine resolution
(e.g., 0.25 mm). Suppose the proximal ring center is . Given a
proximal ring point , a plane is determined that is perpendic-
ular to the proximal ring plane, and passes and . Starting
from point , we trace the mask boundary (the boundary be-
tween foreground voxels and the background) on the plane. The



ZHENG et al.: MULTI-PART MODELING AND SEGMENTATION OF LEFT ATRIUM IN C-ARM CT FOR IMAGE-GUIDED ABLATION OF ATRIAL FIBRILLATION 325

tracing stops if it encounters a masked voxel of another PV (or
the appendage) or the maximum length is traced (e.g., 60 mm).
The traced contour is then uniformly resampled to a high reso-
lution (e.g., 0.25 mm). Fig. 9(b) shows the traced contours from
the appendage proximal ring. This procedure generates a set of
points . Here, indicates the th point on the th contour
and .
We then search for a smooth part boundary with the max-

imum sum of curvatures

(9)

Here, is the curvature at point , which is defined as
[41]

(10)

As a second-order derivative of a contour, curvature estima-
tion is error prone; therefore, for some datasets, the final part
boundary may be stuck in a position a bit away from the
chamber. To achieve a more robust result, we add a small
amount of bias, , in the cost function to push
the part boundary toward the chamber. Here, is the normal
of the proximal ring and is the magnitude
of the dot-product between vectors and , therefore
measuring the perpendicular distance from to the proximal
ring plane. We enforce the smoothness of the part boundary by
constraining the distance of neighboring and to

(11)

The part boundary should form a closed contour, therefore

(12)

The final optimization problem is formalized as

(13)

subject to smoothness constraints of (11) and (12). Here,
is a weight adjusting the bias toward a boundary close to the
chamber. Throughout our experiments, we set . The
optimal part boundary can be solved efficiently using a dynamic
programming algorithm to achieve a global optimal solution.
Fig. 9 shows the mesh before and after part label refinement.

The appendage mesh is successfully extended toward the
chamber in this example.

V. RIGHT MIDDLE PULMONARY VEIN SEGMENTATION

Due to the anatomical variations, it is difficult to use a
model based approach to segmenting the right middle PVs. In
this work, we exploit a nonmodel based graph cuts approach
[12] to extracting the right middle PVs. Nongated C-arm CT

Fig. 10. Region of interest (ROI) for the right middle pulmonary vein extrac-
tion. (a) ROI overlaid on trans-axial slice of a C-arm CT volume. (b) ROI mesh
embedded in a 3-D visualization of the data.

may contain severe motion artifacts; therefore, a graph cuts
approach tends to leak to other tissues if the segmentation is
not constrained. Here, the already segmented LA parts (the LA
chamber, RIPV, and RSPV) are used to constrain the segmen-
tation since the right middle PVs originate on the LA chamber
surface inside the area between two major right PVs. For this
purpose, a region-of-interest (ROI) is generated automatically,
as shown in Fig. 10, with the centerlines of the RIPV and RSPV
serving as the boundary of the ROI.
The performance of graph cuts is dominated by the initial pos-

itive (the LA parts) and negative (background) seeds. Naturally,
the positive seeds are set as those voxels inside the ROI that are
already segmented as part of the LA, RIPV, or RSPV. Since the
background is normally darker than the contrasted PVs, the neg-
ative seeds are selected from the dark voxels inside the ROI. A
certain percentage of the darkest voxels are almost sure to be-
long to the background; therefore, they are set as negative seeds.
Parameters is critical in determining the accuracy of the final
segmentation. With a small (which results in a small number
of negative seeds), we can detect the right middle PVs with low
contrast, but leakage may occur. With a large , we can avoid
leakage, but some dark right middle PVs would be misdetected.
In this work, we choose a relatively small (lower 85th per-
centile of the voxel intensities inside the ROI) to achieve a high
detection rate. Leakage (false positive PVs) is then removed in
a postprocessing step.
After setting the positive and negative seed points, a graph

is built for all voxels inside the ROI [12]. Neighboring voxels
(six-connected neighborhood) form edges in the graph and the
edge weight is set as

(14)

Here, are the intensities of neighboring voxels and , and
is the standard deviation of intensity distribution of the ROI.

The optimal label assignment (foreground or background) of
all voxels inside the ROI can be solved with the efficient min-
cut/max-flow algorithms. Please refer to [12] and [42] for more
details of the graph cuts based segmentation algorithm.
As mentioned before, to achieve a high detection rate, we

intensionally use a relative small threshold for setting back-
ground seeds. Mild leakage may happen on some data and a
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pruning procedure is then exploited to remove false positive de-
tections based on multiple criteria. We first perform connected
component analysis for the newly detected foreground voxels.
Isolated components not connected to any existing LA part
are eliminated as noise. The remaining connected components,
CCs, are labeled as the LA chamber, RIPV or RSPV according
to the label of the part they are connected to. After that, multiple
criteria are adopted to determine if a CC is a false positive or
not.
First, we check the location where a CC touches other LA

parts (i.e., chamber, RIPV, and RSPV) because the right middle
PVs should originate from the LA chamber surface, not from a
distal end of a major PV trunk. Therefore, a CC is regarded as
a false positive and removed if it touches the distal end of the
RIPV or RSPV trunk.
Second, we check if the shape of a CC is close to a tube based

on principal component analysis (PCA). For a tubular-shaped
PV, the length along the major axis would be much larger than
the lengths along the other two axes. We calculate the co-vari-
ance matrix of the position of all voxels belonging to the CC
and the PCA eigenvalues of
the co-variance matrix represent the lengths along three orthog-
onal axes. Thus, a CC is regarded as a true PV if and

. In our experiment, the criteria are set as and
.

At last, for a tubular-shaped CC, we check its maximum ra-
dius . For each voxel in a CC, we calculate the
minimum distance to a background (bg) voxel

(15)

The maximum radius of a CC is defined as

(16)

Normally, a right middle PV is much slimmer than the RIPV and
RSPV; therefore a CC is a false positive if its maximum radius

is larger than a threshold mm
throughout the experiments).

VI. EXPERIMENTS

A. Data Sets

We collected 687 C-arm CT datasets, scanned by Siemens
Axiom Artis zee C-arm systems at 18 clinical sites in Europe
and the USA from June 2006 to April 2011. Among them 253
datasets were scanned with large X-ray detector panels (30 40
cm ) and were reconstructed to volumes composed of 85–254
slices (each slice containing 256 256 pixels). The resolution
varies from 0.61 mm to 1.00 mm. A typical large volume
has 256 256 190 voxels with an isotropic resolution of
0.90 mm. The other 434 datasets were scanned with small
X-ray detectors (20 20 cm ). Each volume contains 164–251
slices and each slice has 256 256 pixels. The resolution also
varies. A typical small volume has 256 256 245 voxels

with an isotropic resolution of 0.44 mm. Because of the lim-
ited field-of-view of small X-ray detectors, the reconstructed
volumes may contain artifacts, especially around the volume
margin.
Contrast agent (about 80–100 ml) is injected via a pigtail

catheter inside the pulmonary artery trunk. A single sweep of
the C-arm (a rotation of 200 in 5 s) is performed to capture
2-D projections and a 3-D volume is reconstructed from all 2-D
projections belonging to various cardiac phases (the so-called
nongated reconstruction). Such nongated acquisition often re-
sults in significant amount of motion blur, especially around the
septum wall of the LA. In most cases, the LA has sufficient
contrast, but inhomogeneous contrast filling is often observed
(Fig. 5), especially between the left and right PVs because of
the different transition time of the contrast agent from the pul-
monary artery trunk to the PVs. The LA appendage often lacks
contrast because of the slow blood flow inside the appendage.
Different to [7], [43], our imaging protocol uses a single scan
to reduce the amount of contrast agent and radiation dose, even
for a C-arm system with a small X-ray detector.

B. Ground Truth

The LA parts (including LA chamber, appendage, and four
major PVs) are annotated using the part model presented in
Section III-A, which are then used to train the part detectors
(Section III-C). The mesh point correspondence is established
using mesh resampling methods, as described in Section III-A.
A part based annotation is sufficient to train the system since the
other LA segmentation components, including the creation of a
consolidated mesh from part based segmentation (as described
in Section IV) and extraction of right middle PVs (as described
in Section V), do not use a machine learning based technology.
Since the final LA segmentation presented to physicians is a

consolidated mesh, as shown in Fig. 1(b), to evaluate the overall
segmentation accuracy, we also create another annotation using
the consolidated mesh. Starting from a part based annotation,
a consolidated mesh is generated using the methods presented
in Section IV. The mesh is then double checked and segmen-
tation errors are manually corrected. The following evaluation
of segmentation accuracy is against the consolidated mesh an-
notation. The consolidated mesh is not used for training and no
mesh point correspondence is required.
The right middle PVs are much more difficult to annotate

since they are thin and have variable shapes. On some datasets,
they may be confused with a side branch of a major PV if the
origin of the side branch is close to the ostium of a major PV.
Instead of using a mesh annotation, the right middle PVs are
annotated at the voxel level. A paint brush tool is developed to
paint all voxels inside the ROI (Fig. 10) as foreground or back-
ground. Therefore, not only the right middle PVs are painted;
the lowly-bifurcated side branches are also painted as long as
they are inside the ROI. The voxel-wise annotation is performed
slice-by-slice. Due to the difficulty of the annotation process, the
right middle PVs are annotated only on a subset of the data. We
randomly select 70 cases from the large X-ray detector data and
70 cases from the small data, resulting in a total of 140 annotated
cases. A total of 88 right middle PVs are identified from these
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TABLE I
LEFT ATRIUM SEGMENTATION ERRORS (BASED ON FOUR-FOLD CROSS-VALIDATION) ON 253 LARGE C-ARM CT VOLUMES.

SYMMETRIC SURFACE-TO-SURFACE ERRORS, MEASURED IN MILLIMETERS (MM), ARE REPORTED

TABLE II
LEFT ATRIUM SEGMENTATION ERRORS (BASED ON A FOUR-FOLD CROSS-VALIDATION) ON 434 SMALL C-ARM CT VOLUMES.

SYMMETRIC SURFACE-TO-SURFACE ERRORS, MEASURED IN MILLIMETERS (MM), ARE REPORTED

140 patients. Among them, 63 patients have no middle PVs; 67
have one middle PV; nine have two middle PVs; and one patient
has three middle PVs.

C. Evaluation of LA Segmentation

A four-fold cross-validation is performed to evaluate the LA
segmentation accuracy. The whole dataset is randomly split into
four roughly equal sets. Three sets are used to train the system
and the remaining set is reserved for testing. The configuration
is rotated, until each set has been tested once. Due to the het-
erogeneity of the datasets, we train two separate systems for the
large and small volumes, respectively. The evaluation is per-
formed separately for different data categories.
The LA segmentation accuracy (excluding the right middle

PVs) is measured using the symmetric surface-to-surface dis-
tance [10]. For each point on a mesh, we search for the closest
point on the other mesh to calculate the minimum distance. Dif-
ferent anatomical parts are labeled differently on our consoli-
dated mesh. To include the mesh part labeling errors in the eval-
uation, when we search for the closest corresponding point, the
search is constrained to the region with the same part label. The
minimum distances of all mesh points are averaged to calcu-
late the mesh-level error. We calculate the distance from the de-
tected mesh to the ground-truth and vice versa to make the mea-
surement symmetric. The mean, standard deviation, and median
of the mesh-level errors over the whole dataset are reported in
Tables I and II. The maximum errors are also reported, which
are calculated differently as follows. For each detected mesh
point, the minimum distance to the ground truth is calculated as

previously. We then search for the largest error over the whole
mesh. The maximum error is also calculated from the ground
truth to the detected mesh and the larger value of these two
errors is recorded as the maximum error for the volume. The
average of the maximum errors over the whole dataset (with
multiple volumes) is reported in Tables I and II. Our consol-
idated mesh has an opening around the mitral valve so that
the physicians can have an endocardium view inside the LA.
The mesh is closed around the distal PVs although there is no
image boundary around that region. Similar to [7], the artifi-
cial closings around the distal PVs are excluded from the eval-
uation (which corresponds to about 5.5% mesh triangles ex-
cluded). Please note, the segmentation errors reported in our
previous work [14], [15] include the artificial closings, resulting
in slightly larger errors.
Tables I and II show segmentation errors of the consolidated

mesh using various approaches on the large and small volumes,
respectively. The comparison is limited to the variations in the
LA part detection. After that, we use the same procedure for
boundary delineation and consolidated mesh generation. The
break-down errors of the LA parts are shown separately and
the row “Whole Mesh Average” shows the average errors of
the whole mesh. If we treat the whole LA as a holistic ob-
ject, the segmentation errors are large, especially for the PVs
due to the anatomical variations. Independent detection of the
parts can improve the PV segmentation accuracy. However, the
LA appendage segmentation is deteriorated. Using the proposed
method, we achieve consistent improvement for all LA parts on
both the large and small volumes. On average, we achieve an
error of 1.65 mm for the large volumes, which corresponding to
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Fig. 11. Left atrium segmentation results on a small volume using different part
detection methods. The top row shows part detection results and the bottom
row shows final consolidated meshes. (a) and (d) Holistic detection. (b) and
(e) Independent detection. Due to low contrast in the heart, the descending aorta
is detected as the left superior pulmonary vein (magenta). (c) and (f) The pro-
posed method.

26% reduction compared to the holistic approach and 12% re-
duction to the independent detection. A slightly smaller average
error of 1.57 mm is achieved for the small volumes, partially
due to the higher voxel resolution and higher contrast inside
the LA. In addition, we have more small volumes for training
and cross-validation (434 versus 253). This error corresponds to
17% reduction to the holistic approach and 15% reduction to the
independent detection. In our approach, the inferior PVs have
larger errors than the superior PVs since they are more likely to
be cut by the volume borders.
Fig. 11 shows LA segmentation results on a small volume

using different part detection methods. Due to low contrast in
the heart, independent detection picks the descending aorta as
the LSPV (magenta). By enforcing statistical shape constraint
during the detection of PVs, the LSPV is detected correctly.
Fig. 12 shows another example from a patient with a left
common PV. The holistic LA model cannot handle such an
anatomical variation, therefore fails to detect the LIPV and
LSPV. Using the proposed part based LA model, the anatom-
ical variation can be handled elegantly.

D. Evaluation of Right Middle PV Extraction

The segmentation accuracy of the right middle PVs is also
evaluated using the surface-to-surface errors by converting the
voxel-wise annotation to a mesh using the marching cubes al-
gorithm [37]. The errors of the mesh inside the ROI of right
middle PVs are calculated. The mean mesh error is 1.32 mm for
the large volumes and 1.07 mm for the small volumes (as shown
in Table III).
The mesh errors do not provide semantic meaning of the

segmentation (e.g., the number of misdetected middle PVs);
therefore, we also evaluate the vessel-wise errors. In total,
there are 49 right middle PVs in the 70 large volumes. The
proposed method detects 43 of them (87.8%). The misdetec-
tions are mainly caused by small PVs with insufficient contrast.
A similar vessel-wise detection rate is achieved for the small
X-ray panel data. The false positive rate is quite low. In total,

Fig. 12. Left atrium segmentation results on a large volume using different part
detection methods. The top row shows part detection results and the bottom row
shows final consolidated meshes. (a) and (d) Holistic detection. This patient has
a left common pulmonary vein, which cannot be handled with a single holistic
model. (b) and (e) Independent detection. (c) and (f) The proposed method.

there are only three and five false positive PVs detected over
the whole dataset of large and small volumes, respectively. The
false positives are mainly due to the ghost vessels generated by
the motion artifacts. Fig. 13 shows an example of an extracted
right middle PV.

VII. DISCUSSIONS

A. Comparison With Previous Methods

Most existing LA segmentation methods work on ECG-gated
CT or MRI data, where the boundary between the LA and the
surrounding tissues is sufficiently clear to facilitate the segmen-
tation. There is only one reported work on LA segmentation
on nongated C-arm CT [7]. To handle the severe imaging ar-
tifacts of C-arm CT (e.g., cardiac motion blur), it also uses a
model-based approach to exploit the prior shape information to
improve segmentation robustness. Using a single holistic shape
model to initialize the LA segmentation, Manzke et al.’s method
[7] has difficulty to handle anatomical variations of the PVs,
e.g., the left common PV and extra right middle PVs. The right
middle PVs are completely missing in their LAmodel. For com-
parison, our approach can handle the left common PVs natu-
rally (as shown in Fig. 12) and has the capability to extract
right middle PVs (as shown in Fig. 13). Different to ours, the
LA model of [7] does not include the LA appendage. Although
the LA appendage itself is less important than the PVs in the
catheter based ablations, the ridge between the LA appendage
and the LSPV is an important ablation region. Including the LA
appendage into the shape model provides better visual guidance
for physicians to ablate the ridge.
In general, it is risky to directly compare segmentation er-

rors reported in the literature due to the difference in imaging
modalities, datasets, LA models, and error metrics, etc. A mean
error of 1.31 mm was reported on a small C-arm CT dataset
(33 patients) in [7] without including the challenging LA ap-
pendage in the model. Their surface-to-surface error does not
include the part labeling error either. In our case, for a mesh
part, we measure the distance to the corresponding part in the
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TABLE III
QUANTITATIVE EVALUATION OF RIGHT MIDDLE PULMONARY VEIN EXTRACTION ON 140 DATASETS

(70 LARGE X-RAY PANEL DATA AND 70 SMALL X-RAY PANEL DATA)

Fig. 13. Right middle pulmonary vein extraction result on a volume. The left
two columns are two orthogonal views and the right column shows a 3-D visu-
alization of the mesh (with the right middle pulmonary vein indicated by a red
arrow).

ground truth; therefore, both the segmentation and mesh part la-
beling errors are penalized. To make a more direct comparison,
the row “Whole Mesh (No Part Label)” in Tables I and II reports
the similar error without considering the part label. That means
the closest point is searched on the whole mesh (when we cal-
culate the mesh error), not restricted to the part with the same
label. The LA appendage can be further excluded as reported in
row “Whole Mesh (No Part Label + No LAA)” of Tables I and II.
Under this condition, we achieve a mean error of 1.25 mm and
1.23 mm for the large and small volumes, respectively. These
errors are comparable to the 1.31 mm mean error reported in
[7]. Since their evaluation was performed only on 33 patients
from a single clinical site, it is not clear if sufficient anatomical
variations are included in their small evaluation dataset (espe-
cially patients with left common PVs). Our method has been
evaluated on a much larger dataset with 687 volumes from 18
clinical sites. It is more challenging to achieve accurate segmen-
tation on a large heterogeneous dataset.
Except [7], previous methods on LA segmentation were

tested on either CT or MRI data. Because of the higher image
quality of CT and MRI, the segmentation errors are generally
smaller than our results on C-arm CT data. For example, Kutra
et al. [11] reported a mean mesh error of 1.1 mm on MRI data
(0.72–2.0 mm volume resolution) and Cristoforetti et al. [19]
achieved a mean error of 1.2 mm on CT data (0.8 mm volume
resolution). However, the difference to ours is small. The cur-
rent state-of-the-art CT scanner can acquire a 3-D volume with
a resolution of 0.3–0.5 mm. Much smaller segmentation errors
(0.53 mm) are reported in [21], [22] on such high resolution
CT data.

B. Computational Complexity

The proposed method is computationally efficient. The whole
segmentation procedure (including right middle PV extraction)
takes about 2.6 s (on a computer with two Intel Xeon X5650
2.66 GHz CPUs, each with six cores) to process a volume with
256 256 245 voxels. It compares favorably with the pre-
vious methods, e.g., 5 s in [23], 5–45 s in [5], 30 s in [7], and
more than 2 h in [24].

C. Imaging Modalities

Previously, conventional CT or MRI is often used for sur-
gical planning and visual guidance for transcatheter ablation of
atrial fibrillation. As a new emerging image modality, C-arm CT
has a few advantages over CT or MRI even though its image
quality is generally lower. 1) It is more convenient to capture
both 3-D (i.e., C-arm CT) and 2-D images (i.e., real-time fluo-
roscopy) from the same device, therefore saving time and cost
to schedule a separate scan with CT or MRI. 2) Overlay of the
3-D LA model extracted from C-arm CT to 2-D fluoroscopy is
straightforward using the intrinsic machine coordinate system.
On the contrary, bringing a 3-D LA model extracted from CT
or MRI to fluoroscopy is complicated, demanding extra manual
interaction and time. 3) Last but not least, C-arm CT captures
the current up-to-minute patient’s physiological status. Conven-
tional CT orMRI is often scanned days or even weeks before the
intervention with different patient configurations, which incur
extra changes of the LA shape and its relative position to other
anatomies, e.g., the esophagus. Atrial-esophagus fistula is a se-
rious complication of ablation, which often results in the death
of the patient. Intra-operative C-arm CT provides more accu-
rate delineation of the relative position the esophagus to the LA
than preoperative CT or MRI. (Automatic esophagus segmen-
tation from C-arm CT is part of our future work to enhance the
current LA model.)

D. Limitations and Future Work

In this work, we use the surface curvature to define the
boundary between the LA and PV. However, the transition
from the LA to a PV is smooth both structurally and function-
ally. The myocardium muscular sleeve may extend from the
LA into a PV up to 25 mm [44]. Ideally, the ablation strategy
should be adapted to the thickness and length of the muscular
sleeve of a patient. For example, more energy should be de-
livered to the region with a thick muscular sleeve. However,
the muscular sleeve is ignored in current ablation practice due
to the difficulty to delineate it using a noninvasive imaging
modality. The muscular sleeve is an important source of ectopic
electrical activity causing paroxysmal atrial fibrillation. The
LA model presented in this work is mainly for the planning and
visual guidance of ablation. To use the model for computational
simulation of atrial arrhythmia, the LA myocardium (including
the muscular sleeve) should be added.
In our current implementation, the left common PV is labeled

as part of the LA chamber [Fig. 3(b) and Fig. 12(c)]; therefore,
our method does not tell if the patient has a variation of the
left common PV. In comparison, the method proposed by Kutra
et al. [11] can potentially identify the anatomical variation pat-
tern of the left PVs.
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Themajor limitation of a model based segmentation approach
is in handling rare anatomical variations. Our LA model does
not include potential middle PVs on the left side. Technically,
it is possible to adapt the middle PV extraction algorithm pre-
sented in Section V on the left side too. However, the current
algorithm is not perfect and false positive detections may be
generated. Since extra left middle PVs are extremely rare [8],
we decide to exclude them. As another rare variation, a PV may
drain into the top of the LA. Such a variation cannot be handled
by the proposed method either.
Our LA model does not include the side branches of a PV

since the AF ablation is normally performed around a PV ostium
on the LA chamber surface. To the best of our knowledge, no
physician performs ablation into a PV. Presence or absence of a
side branch does not change the ablation strategy. Therefore, our
LA model is sufficient to provide visual guidance for ablation.
However, side branches may improve the aesthetic effect of the
3-D visualization, making the extracted LAmodelmore realistic
to physicians. Some physicians may prefer to have first-order
side branches included in the model.
Anatomical variations are common in many human

anatomies. For example, in the most common configuration,
the aortic arch has three great vessels originating separately
from it. Alternatively, two of the vessels may merge together
before joining the aortic arch [45], which is similar to the
variation of the left common PV. The proposed part based
segmentation approach can also be applied to handle such
anatomical variations.

VIII. CONCLUSION

We proposed a part based model for automatic segmenta-
tion of the LA (including chamber, appendage, four major PVs,
and right middle PVs) in C-arm CT volumes, which can handle
anatomical variations elegantly. Extensive experiments on 687
nongated C-arm CT datasets demonstrated the robustness and
efficiency of the proposed method. The automatically extracted
personalized LA model can help physicians to adapt a generic
ablation strategy to a patient’s specific anatomy. The LAmodel,
together with marks of the adapted ablation strategy, can also be
overlaid onto 2-D fluoroscopic images to provide visual guid-
ance during the intervention procedure. Our system is retrain-
able, therefore can be extended to different medical imaging
modalities, e.g., MRI and conventional CT.
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