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tional flow reserve (FFR) is a functional index quantifying the severity of
coronary artery lesions and is clinically obtained using an invasive,
catheter-based measurement. Recently, physics-based models have
shown great promise in being able to noninvasively estimate FFR from
patient-specific anatomical information, e.g., obtained from computed
tomography scans of the heart and the coronary arteries. However, these
models have high computational demand, limiting their clinical adoption.
In this paper, we present a machine-learning-based model for predicting
FFR as an alternative to physics-based approaches. The model is trained
on a large database of synthetically generated coronary anatomies, where
the target values are computed using the physics-based model. The
trained model predicts FFR at each point along the centerline of
the coronary tree, and its performance was assessed by comparing the
predictions against physics-based computations and against invasively
measured FFR for 87 patients and 125 lesions in total. Correlation
between machine-learning and physics-based predictions was excel-
lent (0.9994, P < 0.001), and no systematic bias was found in
Bland-Altman analysis: mean difference was —0.00081 = 0.0039.
Invasive FFR = 0.80 was found in 38 lesions out of 125 and was
predicted by the machine-learning algorithm with a sensitivity of
81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The
correlation was 0.729 (P < 0.001). Compared with the physics-based
computation, average execution time was reduced by more than 80
times, leading to near real-time assessment of FFR. Average execu-
tion time went down from 196.3 = 78.5 s for the CFD model to
~2.4 * (0.44 s for the machine-learning model on a workstation with
3.4-GHz Intel i7 8-core processor.

machine learning; synthetic database; coronary artery disease; FFR;
CCTA

NEW & NOTEWORTHY

We discuss a deep-learning-based approach for noninvasive
computation of coronary fractional flow reserve (FFR) from
computed tomography images. The deep-learning model is
trained on a large database of synthetic vessel trees, followed
by verification and validation against an existing physics-based
model, as well as invasive measurements. The model exhibited
high diagnostic accuracy when compared against invasively
measured FFR. Average execution time was 2.4 £ 0.44 s,
giving real-time assessment of FFR on standard workstations.
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CARDIOVASCULAR DISEASE 1S the leading cause of death, globally.
Of these deaths, ~42% are caused by coronary artery disease
(CAD) (59). CAD patients suffer from a buildup of plaque in
the coronary arteries, which results in a corresponding decrease
of blood flow to the cardiac muscle, especially under stress. In
severe cases, this reduction in flow could result in myocardial
ischemia and potentially death.

Previous investigations have shown that revascularization of
blocked coronary arteries is preferred for severe lesions,
whereas mild to moderate lesions are best treated using med-
ical therapy alone (11). The decision to revascularize blocked
coronaries is commonly performed, considering anatomical
markers extracted from invasive coronary angiography, such as
the percentage reduction in lumen diameter. Invasive coronary
angiography is the gold standard in CAD imaging (27, 44).
Subjective assessment of angiographically apparent CAD is
inadequate due to high degrees of intraobserver and interob-
server variability. Hence, the significance of coronary stenoses
is routinely assessed by computer-assisted quantitative coro-
nary angiography (35).

There is strong evidence that this approach has a limited
accuracy in evaluating the hemodynamic significance of le-
sions (51). Due to the tremendous improvement in medical
imaging technologies, noninvasive imaging plays an increas-
ingly important role in the diagnosis of CAD. Coronary com-
puted tomography angiography (CCTA) is a noninvasive im-
aging modality that is being increasingly used for the visual-
ization and diagnosis of CAD, before invasive catheterization.
While CCTA-based measurements of lesion anatomy correlate
well with those from angiography, many severe lesions indi-
cated by CCTA do not cause ischemia, leading to patients
being unnecessarily referred to coronary angiography for in-
vasive evaluation (17, 30). In view of the limitations of the
pure anatomical evaluation of CAD, the functional index of
fractional flow reserve (FFR) has been recently introduced as
an alternative. FFR is defined as the ratio of flow in the
stenosed branch at hyperemia, a condition of stress, with
maximum coronary blood flow, to the hypothetical hyperemic
flow in the same branch under healthy conditions. This can be
shown to be closely approximated by the ratio of hyperemic
cycle-averaged pressure distal to the stenosis to the cycle-
averaged aortic pressure (41). Following multiple successful
clinical trials that showed the superiority of FFR-guided deci-
sion making (50), FFR is currently the gold standard for
determining the functional severity of a lesion (14, 58). Clin-
ical evaluation of FFR is done under angiographic guidance,
using a catheter-based pressure transducer. Despite the advan-
tages offered by FFR, the use of FFR is still relatively uncom-
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mon (39) due to additional costs, the need to administer drugs
to induce hyperemia, and the invasive nature of the measure-
ment (54).

Recently, blood flow computations performed using compu-
tational fluid dynamics (CFD) algorithms in conjunction with
patient-specific anatomical models extracted from medical im-
ages, e.g., computed tomography (CT) scans of the heart and
the coronary arteries, have shown great promise in being able
to predict invasive, lesion-specific FFR from patient’s medical
images taken at resting conditions (9, 24, 32, 33, 36, 38, 43,
53). The CFD-based models combine geometrical information
extracted from medical imaging with background knowledge
on the physiology of the system, encoded in a complex math-
ematical fluid flow model consisting of partial differential
equations, which can be solved only numerically. This ap-
proach leads to a large number of algebraic equations, making
it computationally very demanding (48). Typically, the solu-
tion of these models requires a few hours on powerful clusters
for high-fidelity models representing the complete three-di-
mensional velocity field to minutes on a workstation for re-
duced-order models, which solve for time-varying pressure and
flow rate in each branch (13, 18).

The computationally demanding aspect of these CFD mod-
els and associated image segmentation process prevent adop-
tion of this technology for real-time applications, such as
intraoperative guidance of interventions. An alternative ap-
proach with high predictive power is based on machine-
learning (ML) algorithms. In this case, the relationship be-
tween input data, e.g., the anatomy of a vascular tree, and
quantities of interest, e.g., FFR, is represented by a model built
from a database of samples with known characteristics and
outcome (7). Once the model is trained, its application to
unseen data provides results almost instantaneously. Such ML
models have been used successfully in many medical imaging
applications, including automatic heart isolation (61) and seg-
mentation of different organs (62). This approach has also been
used to reproduce the predictive capability of complex, non-
linear computational models (28, 49), resulting in a significant
reduction in computational requirements compared with the
original model.

In this paper, we present a ML model for FFR computation
as an alternative to CFD-based modeling and show that the
performance of the model is statistically not discernible from
that of the CFD approach. The model is trained using a
synthetically generated database of 12,000 coronary anatomies,
resulting in a rich sampling of the different morphologies of
coronary blockage. For each generated coronary tree, stenoses
are randomly placed among the different branches and bifur-
cations. A reduced-order CFD model (18) is used to compute
the pressure and flow distribution for each coronary tree.
Subsequently, for each location along the coronary tree, we
extract quantitative features describing the anatomy as well
as the computed FFR value at that location. A ML model is
then trained to learn the relationship between the anatomical
features and the FFR value computed using the CFD model.
Once the model is trained, the computational time for predict-
ing the FFR value for a new case is significantly lower than that
of the CFD model, going from 196.3 = 78.5 s for the CFD
model to around 2.4 * 044 s for the ML model on a
workstation with 3.4-GHz Intel i7 8-core processor.

In the rest of the paper, we refer to a computed FFR value by
cFFR and distinguish between cFFRcrp, computed with a CFD
method, and cFFRyp, computed with the proposed ML
method. We assess the performance of the proposed ML-based
approach in three steps: /) comparison against CFD predictions
on synthetic coronary trees; 2) comparison against CFD pre-
dictions on a set of 87 patient-specific coronary anatomies; and
3) comparison against invasively measured FFR for the same
87 patients. We show that, when evaluated against invasive
FFR measurement as the gold standard, cFFRyy is statistically
not discernible from cFFR¢rp as a diagnostic indicator.

METHODS

In this section, we introduce the ML framework developed for
computing cFFR from coronary anatomical models. We first describe
the process of generating the synthetic coronary vessel trees, which
are used for training the ML model. Next, we discuss the features used
to map the relationship between the coronary anatomy and the
computed value of cFFR.

As described in Feature extraction and training of ML algorithm
below, the ML-based model is trained offline on a large database of
synthetically generated coronary anatomies. The prediction phase is
an online process, whereby the algorithm computes cFFRm;. for a
given patient’s data by using the learned mapping from the training
phase. Given an anatomical model (i.e., lumen segmentation), the
computation of cFFRyy is fully automatic, without requiring user
intervention. The preprocessing pipeline to generate the anatomical
model is semiautomatic. The system presents the user with automat-
ically computed centerlines and luminal contours, which can then be
interactively edited by the user to create the anatomical model (16).
The features required for the ML algorithm are automatically ex-
tracted from the reconstructed coronary anatomical model of the
patient and then used as input to the prelearned model. cFFRwmy is
computed at all locations in the coronary arterial tree, and the resulting
values are visualized by color coding the anatomical model. A
schematic of the workflow is shown in Fig. 1.

Generation of synthetic training database. We created a database
containing 12,000 synthetically generated coronary vessel trees to
reflect the anatomical variations representative of stable patients with
suspected CAD. This database, used for training the ML model, is
generated algorithmically using a three-step process, as shown in Fig.
2. In the first step, the skeleton of the coronary geometry is initialized,
by prescribing the number of vessels at each generation of the tree.
During the second step, geometric information, such as vessel radius,
degree of tapering, and branch length, is prescribed for each genera-
tion of the vessel tree. The parameters representing these geometric
quantities are sampled in prespecified ranges derived from published
literature (Table 1): the values have been selected to cover a broad
range, ensuring that a wide array of anatomical variations and their
corresponding hemodynamics are covered.

Create synthetic Train machine
geometries learning algorithm

l A

Compute cFFRgrp for
each geometry at
each location

> Extract features

Offline

Load patient-specific
coronary anatomical >
model

| Apply the learn model

Extract features to compute cFFRy.

Fig. 1. Overall workflow of the proposed framework.

J Appl Physiol - doi:10.1152/japplphysiol.00752.2015 « www jappl.org

910z ‘2 J8qwia)das uo 9¥Z'2£'022 0T Aq /Bi0°ABojoisAyd-dels/:dny wouy pspeojumog



http://jap.physiology.org/

44 Machine-Learning Approach for Computation of FFR from CCTA -« Itu L et al.

A

Fig. 2. Generation of pathologic coronary geome-
tries in three steps: set up coronary skeleton (A);
generate healthy geometry information (B); generate
stenosis (C). rp, Radius of the parent branch of the
bifurcation.

During the third step, stenoses are generated in the coronary vessel
trees. The number of stenoses on a vessel segment is sampled
randomly between zero and three for a main branch segment, and
between zero and two for a side branch segment. The following
parameters are set for each stenosis: the maximum degree of radius
reduction, the total length, the location of the stenosis center, the
length of the stenosis region with minimum radius, and the overall
degree of tapering along the stenosis. Stenoses are placed either on a
single segment or at a bifurcation. If a bifurcation stenosis is gener-
ated, different stenosis parameter values are set for the parent and
daughter branches of the bifurcation. A schematic description of the
different parameters is shown in Fig. 2. The parameters describing the
root radius of the left main and the right coronary artery branch and
the maximum degree of radius reduction of a stenosis are sampled
randomly based on a normal distribution. All other parameters are
sampled with a uniform distribution.

By applying this three-step algorithm, a total of 12,000 coronary
geometries were generated. The coronary geometries generated are
characteristic of many common pathological situations encountered in
clinical practice. However, some rare conditions like anomalous

Table 1. Parameters with corresponding ranges used to
generate synthetic coronary trees

Step Parameter Range
1 No. of main branches 3 (LAD, LCx, RCA)
No. of side branches (1st
generation) 2-5
No. of side branches
(2nd generation) 0-2
2 Root radius (Ref. 2) 0.15-0.35 cm
Power coefficient (Refs.
22, 34, 60) 2.1-2.7

Area ratio (Ref. 37) 0.35-0.45 (main branch),
0.6-0.8 (side branch)
Degree of tapering (Ref.

63) —20 to +5% from top to bottom
Length (Ref. 1) 1.5-4 cm
Bifurcation angle (Refs. 30-90°

2,21)

LAD, left anterior descending artery; LCx, left circumflex artery; RCA, right
coronary artery.

B
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Main Branches
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origin of the coronary arteries and coronary artery aneurysms are not
represented in this database.

CFD simulations. The target values (cFFRcrp), required for the
training phase of the ML algorithm, are computed using a reduced-
order computational blood flow model, which has been previously
introduced (18). The model was recently validated in clinical studies
by comparing cFFRcrp against invasively measured FFR, and the
diagnostic accuracy for the detection of functionally significant CAD
was shown to be good, i.e., between 75 and 85% (3, 9, 10, 12, 26, 43,
56).

The CFD approach employs numerical methods to compute time-
varying flow and pressures using the principles of fluid dynamics by
solving the reduced-order Navier-Stokes equations, with blood being
modeled as an incompressible fluid with constant viscosity. For the
healthy nonstenotic coronary arteries, a reduced-order model is used
in combination with a lumped parameter model for the coronary
microvasculature (29). To enable accurate pressure computation in the
stenotic regions for a given anatomical model, locally defined pressure
drop models are embedded into the reduced-order blood flow model,
leading to a modified hybrid reduced-order formulation. This is done
to account for the complex shape of the stenosis and its impact on the
pressure drop across the respective vessel segment. A systemic cir-
culation model and a heart model are included to provide proper
proximal and distal boundary conditions for the coronary circulation.
For more details, we refer the reader to the APPENDIX.

The boundary conditions are estimated based on allometric scaling
laws that describe the relation between form and function; the resting
total coronary flow is derived from the reference radius values of the
branches in the anatomical model (8, 22). The resting total coronary
flow is distributed over the coronary anatomical model following
Murray’s law (34), and the total microvascular resistance at each
outlet is determined (47) with an automatic parameter estimation
algorithm (20). In the CFD model, the effect of adenosine is simulated
by appropriately modifying the boundary condition, specifically by
decreasing the total resistance of each coronary outlet (57). cFFRcrp
is finally computed throughout the entire coronary artery tree as ratio
of cycle-averaged pressure at the corresponding location and cycle-
averaged aortic pressure.

Feature extraction and training of ML algorithm. The ML algo-
rithm is used to compute cFFRy;. at all locations along the centerline
of the given coronary anatomical model. Hence, features are com-
puted separately for each location along the centerline of the coronary
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geometries. Since the pressure and the flow rate at a certain location
are influenced by both the upstream and the downstream circulation,
the features used at each location encapsulate local, upstream, and
downstream information. Upstream information is extracted along the
path of the parent segments. Downstream features are computed along
the path of the main branch. This path is determined automatically
from the healthy reference radius of daughter branches, the number of
generations downstream, and the vessel length downstream.

The ML algorithm is trained using a deep neural network with four
hidden layers (shown in Fig. 3). We use a fully connected network
model (5), i.e., each neuron in a layer is connected to all the neurons
in the following layer, with no convolutional layers being used in this
implementation. The input layer has 28 neurons corresponding to the
different features computed from the coronary anatomy. The hidden
layers contain 256, 64, 16, and 4 neurons, respectively, and use the
sigmoidal activation function. Finally, the output layer has a single
neuron with the linear activation function. To improve the model
training time, each layer was initially pretrained as an autoencoder.
All of the weights were initialized randomly (Xavier initialization).
The entire network is optimized using a mean-squared loss function
with a stochastic gradient descent algorithm. We used a highly
optimized graphics processing unit implementation to speed up the
training process. The original feature set based on the synthetic
coronary trees was randomized and split in a 5:1 ratio, and the smaller
set was used for the validation of the results. In the model training
process, the algorithm was never exposed to any patient data, with
training and validation being done solely with the synthetic data. The
model-learning parameters, like the learning rate, momentum, etc.,
were adaptively refined to control the model convergence behavior.

Local geometric features. At each spatial location, the local fea-
tures used are the effective radius of the vessel, the reference radius of
the branch, and a segment-specific ischemic weight. The ischemic
weight of each segment is a function of the set of reference radii of all
the segments in the coronary tree and is defined as the potential
contribution of the segment to the total ischemic burden of the patient.
This initial ischemic weight is afterwards adapted, as described further
down.

Upstream and downstream geometric features. To compute the
features upstream and downstream, we first identify stenoses upstream
and downstream. This is done with an automatic detection algorithm,
including all stenoses with a degree of radius reduction larger than
10%. The stenoses are then ordered based on the degree of radius
reduction. Finally, the most significant four stenoses upstream and the
most significant four stenoses downstream along the main branch path
are selected. For each of these, we extract the following geometric
features and their nonlinear product combinations (Fig. 4):

1) Proximal, minimum, and distal radius.

2) Entrance length: length along the centerline between the start of
the stenosis and the start of the segment with minimum radius.

cFFRy. Fig. 3. Deep-learning network architecture used for
training the model. The network has 4 hidden layers and

uses a fully connected architecture.

3) Minimum radius length: length along the centerline between the
start and the end of the segment with minimum radius.

4) Exit length: length along the centerline between the end of the
segment with minimum radius and the end of the stenosis.

5) Percentage diameter reduction (DR).

T, n
= ] +100

9DR=|1— —"""—
|: (rprox + rdist)/2

where rgen is the minimum radius of the stenosis, rprox 1S the healthy
radius proximal to the stenosis, and rg;s s the healthy radius distal to
the stenosis.

Note that the automatic detection algorithm identifies also very
mild stenoses, which individually have a small effect on the flow
characteristics, but, when aggregated, may have a significant effect.
At each location, we also compute aggregated values of the features
described above at all upstream locations along the centerline, as well
as aggregated downstream values. In addition, the upstream and
downstream coronary lengths are also used as features.

In the coronary circulation, there is a significant degree of interde-
pendence between branches. For example, in Fig. 5A, the hemody-
namics at points A and B are influenced by the stenosis on the side
branch: the presence of the stenosis leads to a decreased flow and
hence to a lower pressure drop in the parent branch. This in turn
influences the absolute pressure in the daughter branch to which point
B belongs. Similarly, in Fig. 5B, the presence of the stenosis in the
main branch influences the hemodynamics at point C: the stenosis
leads to a lower flow and a lower pressure drop in the parent branch,
and thus to different absolute pressure levels in the side branch.

To capture this interbranch dependence, the ML model has func-
tionality to adapt the initial ischemic weights of the coronary seg-
ments, computed as described above, to account for the interaction
between different branches. Specifically, the ischemic weights are
made dependent on the stenosis specific features on upstream, down-
stream, and side branches.

Entrance Minimum Exit

length fadius length

| length | |

Proximal

radius Y
\ 4 Minimum radius
A

Fig. 4. Stenosis specific features.
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Fig. 5. Flow interaction between vessels. A: stenosis on the side branch. B:
stenosis in the main branch. See METHODS for details.

RESULTS

We validated the methodology in three different steps,
which are presented below.

Validation of cFFRy vs. cFFRcrp on synthetic anatomical
models. The 12,000 synthetic geometries were randomly split
into six sets, whereas five of them were used for training and
one for testing. We compared cFFRyp. and cFFRcpp at all
locations in the testing set, and the correlation was excellent in
all experiments (R = 0.9998, P < 0.001). There was no
systematic bias between cFFRyy. and cFFRcpp (mean differ-
ence was 0.0008). When cFFRcpp was considered as ground
truth, with a cutoff of 0.8, cFFRmy1 predicted cFFRcgp with an
accuracy of 99.7%.

Validation of cFFRyy vs. cFFRcrp on patient-specific an-
atomical models. We used a database of 87 patient-specific
anatomical models generated from CT data using image seg-
mentation, following a protocol described in Refs. 9 and 43.
Invasive FFR was measured for 125 lesions in these 87
patients. The FFR measurement locations were either deter-
mined from the angiogram images showing the pressure wire,
or marked at a location that was approximately located 20 mm
downstream from the stenosis (41). Correlation between cF-
FRyp and cFFRcgp was excellent (0.9994, P < 0.001), and no

.06

cFFR,,

0 1 1 1
0 0.2 0.4 0.6 0.8 1

cFFR..,
Fig. 6. Scatterplot of cFFRmi. and cFFRcrp (correlation = 0.9994).
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Fig. 7. Bland-Altman analysis plot comparing cFFRmr and cFFRcrp shows no
systematic bias (95% limits of agreement, —0.0085-0.0067).

systematic bias was found in Bland-Altman analysis between
cFFRm1, and cFFRcgp: mean difference was —0.00081 =+
0.0039, as shown in Figs. 6 and 7. The average computation
time required for computing cFFRyy, in the entire coronary
tree of one patient was 2.4 £ 0.44 s, whereas the cFFRcrp
computations required 196.3 = 78.5 s, both on a 3.4-GHz Intel
7 8-core CPU.

Table 2 displays a more detailed analysis of the differences
between cFFRyp. and cFFRcrp, where the lesions have been
grouped in five different bins based on the cFFR¢gp values (0.0
to 0.6, 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and 0.9 to 1.0), either
for all lesions, or separately for the three main branches: left
anterior descending artery, left circumflex artery, and right
coronary artery. Although the mean difference slightly de-
creases with increasing cFFRcgp values, overall the variation
is very small and the agreement between cFFRyy and
cFFRcpp is high for all bins and all locations.

Table 2. Detailed analysis of the differences between
CFFRML and CFFRCFD

Lesions cFFRcrp Bin No. Lesions Mean Difference = SD
All 0.0-0.6 8 0.001 = 0.004

0.6-0.7 14 —0.001 = 0.004
0.7-0.8 23 0.000 = 0.0040
0.8-0.9 40 —0.001 = 0.004
0.9-1.0 40 —0.002 = 0.003

LAD 0.0-0.6 6 0.000 = 0.005
0.6-0.7 10 —0.003 = 0.004
0.7-0.8 16 0.000 = 0.004
0.8-0.9 27 —0.002 = 0.004
0.9-1.0 20 —0.002 = 0.003

LCx 0.0-0.6 2 0.002 = 0.003
0.6-0.7 1 0.002 = 0.000
0.7-0.8 4 0.001 = 0.003
0.8-0.9 5 —0.000 = 0.003
0.9-1.0 11 —0.003 = 0.003

RCA 0.0-0.6 0
0.6-0.7 3 0.003 = 0.001
0.7-0.8 3 0.000 = 0.004
0.8-0.9 8 0.001 = 0.002
0.9-1.0 9 0.001 = 0.002
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Table 3. Diagnostic parameters in all vessels (N = 125)

cFFRcEp cFFRmL
True positive, no. 31 31
False positive, no. 14 14
True negative, no. 73 73
False negative, 7 7

no.
Sensitivity, %
Specificity, %
PPV, %
NPV, %
Accuracy, %
Correlation
Mean *= SD

81.6 (66.6-90.8)
83.9 (74.8-90.1)
68.9 (54.3-80.2)
91.2 (83.2-95.7)
83.2 (75.6-88.7)
0.725
0.814 = 0.135

81.6 (66.6-90.8)
83.9 (74.8-90.1)
68.9 (54.3-80.2)
91.2 (83.2-95.7)
83.2 (75.6-88.7)
0.729
0.815 = 0.135

Values in parentheses are ranges. A positive event, representing a hemody-
namically significant stenosis, is defined by invasive FFR = 0.80. cFFRcrp
diagnostic parameters are obtained with the CFD algorithm; cFFRwmy. diagnos-
tic parameters are obtained with the ML algorithm. PPV and NPV, positive and
negative predictive values, respectively.

Diagnostic performance of cFFRyy, and cFFRcpp vs. inva-
sive FFR. We used the same set of 87 patients to compare the
performance of cFFRyy against invasively measured FFR.
Invasive FFR = 0.80 was regarded as criterion for positive
ischemia and was found in 38 lesions out of 125. For cFFRm1,
sensitivity was 81.6%, specificity 83.9%, and accuracy 83.2%.
Table 3 displays the diagnostic performance of cFFRcgrp and
cFFRymp. vs. invasively measured FFR, with corresponding
95% confidence intervals. The overall correlation between
cFFRpp (0.814 = 0.135) and invasive FFR (0.838 + 0.11) was
0.729 (P < 0.001). Figure 8 displays the scatterplots of
cFFRcpp and cFFRy vs. invasive FFR, while Fig. 9 displays
the Bland-Altman analysis between cFFRcprp/cFFRyp, and
invasive FFR. The close overlap between the two methods
further demonstrates the statistical equivalence of the two
approaches.

In Figs. 10-12, representative case examples are shown,
illustrating the almost perfect agreement between the two
algorithms at each point on the coronary tree. The receiver-
operator characteristic curves for cFFRcpp and cFFRyp are
presented in Fig. 13. The area under the curve was 0.90 for
both CFFRCFD and CFFRML.

DISCUSSION

We have introduced a ML algorithm for a workstation-based
near real-time computation of FFR from anatomical models
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Fig. 9. Bland-Altman analysis plot comparing cFFRcep and cFFRmL vs.
invasive FFR (cFFRcep 95% limits of agreement, —0.159-0.207; cFFRmL
95% limits of agreement, —0.159-0.206).

extracted from CCTA. Similar to previously published ap-
proaches based on computational modeling, our approach pro-
vides a noninvasive assessment of FFR from routinely per-
formed CCTA scans. To the best of our knowledge, our
methodology represents the only currently available solution
for noninvasive, near real-time computation of FFR in the
entire coronary tree. Other approaches reported in literature
required several minutes (43) to several hours (36) for execu-
tion of the FFR algorithm. Our approach is potentially well-
suited for a clinical setting, since it is computationally efficient
in terms of both execution speed and hardware requirements
and is based on anatomical data acquired from routine CCTA.
The diagnostic accuracy of our algorithm (83%) is in the same
range as that of previously published data on FFR computed
from CCTA images, which varied from 73 to 85% (9, 12, 26,
24, 32, 36, 43). As more data are emerging from such studies,
the incremental diagnostic value of cFFR over the traditional
CCTA-based visual or quantitative lesion grading is becoming
more evident. As a result, this technology has the potential to
further strengthen the role of CCTA as a gatekeeper to the
catheterization laboratory.

Previous studies have tried to assess the functional signifi-
cance of CAD from geometric features of the stenosis, with

[
|
[ Fig. 8. A: scatterplot of cFFRcep and inva-
| sive FFR (correlation = 0.725). B: scatter-
| E plot of cFFRmr and invasive FFR (correla-
| tion = 0.729).
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A

Fig. 10. Case example of a coronary anatomical
model reconstructed from CT data. A: cFFRcrp map
of the entire coronary tree, including a close-up
view of the left anterior descending artery (LAD),
with invasive FFR = 0.76 and cFFRcrp = 0.71. B:
cFFRwmr map of the entire coronary tree, including a
close-up view of the LAD, with cFFRmy. equal to
cFFRcrp at the invasive FFR measurement location.

Invasive
FFR =0.76

limited success (4, 15, 25). Herein, however, we use a com-
prehensive set of geometric features describing not only the
stenotic region, but the entire coronary arterial tree. Combined
with state-of-the-art ML techniques, our approach demon-
strates that geometric features alone can be used as predictors
of patient-specific hemodynamic states, without the need of
explicitly solving the hemodynamics equations.

The key ingredients for the design of our ML method are the
availability of a comprehensive database of training data, as
well as the proper selection of features that are most significant
for the predicted quantity. In an ideal scenario, the training
database would consist of thousands of anatomical models
extracted from CCTA images, accounting for the variability of
coronary vessels across different patient populations and the
corresponding invasive FFR measurement of each lesion. From
a practical point of view, establishing such a large database
would be prohibitively expensive and time-consuming.

A

Fig. 11. Case example of a coronary anatomical
model reconstructed from CT data. A: cFFRcrp map
of the entire coronary tree, including a close-up
view of the right coronary artery (RCA), with inva-
sive FFR = 0.84 and CFFRCFD = 0.81. B: CFFRML
map of the entire coronary tree, including a close-up
view of the RCA, with cFFRymr = 0.80 at invasive
FFR measurement location.

B

FFR=074 FFR=074

FFR=073

To address this issue, we introduced the concept of a training
database consisting of synthetically generated vascular geom-
etries representing the coronary tree, and corresponding FFR
values computed from a CFD algorithm at all locations of the
coronary tree. The synthetic database is parameterized on
the morphological features of the vascular tree, allowing the
proper sampling of relatively uncommon configurations, such
as serial stenoses, multibranch stenoses, bifurcation stenoses,
diffuse disease, or rare pathological conditions. After training,
the ML algorithm encodes the correlation between the set of
chosen geometric features and the quantity of interest, herein
FFR, predicted by the validated CFD model. In the population
on which the algorithm was tested, the patient anatomical
features were well within the region of high confidence for the
ML algorithm.

Our approach can also be extended to compute other hemo-
dynamic quantities, such as coronary flow reserve, rest distal

iFR =080
/

Invasive
FFR =0.84
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A B

FFR =074
Invasive =~ A\

FFR=0.72
\

FFR =070 (\

FFR =068

coronary pressure-to-aortic pressure ratio (23), the instanta-
neous wave-free ratio (46), hyperemic/basal stenosis resistance
(31, 55), or shear stress (45), each of which can be used as a
ground-truth in the training database.

Additionally, the set of features can be expanded to include
other characteristics of the vascular tree, e.g., plaque compo-
sition, or even information such as the clinical history of the
patient, that could play a role in determining the functional
significance of a lesion and its stability over time (40).

It should be noted that the presented approach is generic
with respect to the CFD model used for training the algorithm.
For this work, we used a reduced-order CFD approach to
generate the training database.

On the other hand, our results also point to the fact that the
accuracy of cFFRyy, will depend on the accuracy of the CFD
model used in the training phase. In general terms, the perfor-
mance of our method is expected to be statistically equivalent
to that of the CFD model.

0.8

o
o
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©
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Fig. 13. Receiver-operator characteristic curves for 189 vessels, as obtained
with ¢cFFRcrp and cFFRymr. AUC, area under the curve.

FFR = 0§D

Fig. 12. Case example of a coronary anatomical
model reconstructed from CT data. A: cFFRcrp map
of the entire coronary tree, including a close-up
view of the LAD, with invasive FFR = 0.72 and
cFFRcekp = 0.71. B: cFFRmi map of the entire
coronary tree, including a close-up view of the
LAD, with cFFRym. = 0.70 at invasive FFR mea-
surement location.

FFR =067

Since the ML algorithm computes cFFR at all locations of a
coronary tree, a natural extension of this work is to generate
virtual pull-back curves, where the variation of cFFR along a
path from ostium to a distal coronary location is depicted. Such
an analysis could be useful for determining the most significant
lesion in case of serial stenoses.

Our study has a number of limitations. Since the proposed
ML algorithm learns the output of a computational blood flow
model, with almost perfect results, the limitations are mainly
given by the limitations of the blood flow model. First of all,
although the set of patient geometries used herein comprises a
significant amount of lesions, further clinical studies are re-
quired for extensive validation of the methodology. In the
present study, the majority of lesions had an invasive FFR
between 0.7 and 1.0 (only 11 lesions had an FFR < 0.7) and
further validation of the model is required under different
conditions. However, the most difficult lesions in terms of
classification are those that are close to the cutoff value of 0.8.
In this regard, one interesting study base was recently con-
ducted (26): cFFRcpp thresholds of 0.74 and 0.87 were deter-
mined for which positive and negative predictive values, re-
spectively, were both >90%. Hence, in the proposed hybrid
approach, cFFRcpp > 0.87 was used to defer revasculariza-
tion, cFFRcpp < 0.74 to confirm treatment, while lesions with
intermediate cFFRcgp values were classified based on invasive
FFR. The hybrid approach resulted in an overall 95% agree-
ment with the FFR-only strategy and would potentially obviate
the need for invasive pressure measurements in 50% of the
patients.

Second, the definition of the parameters of the blood flow
model uses physiological assumptions, which would also re-
quire validation on larger data sets. Such assumptions include,
for example, the allometric scaling laws applied for estimating
the flow rate distribution, the effect of hyperemia (for patients
with microvascular disease, the decreased effect of a hyper-
emia-inducing drug may lead to an underestimation of the FFR
value), the use of population-averaged rheological properties
of the blood, etc. Moreover, the collateral circulation has not
been taken into account. Collaterals can have a significant
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impact on the hemodynamics, especially for very severe le-
sions.

Properties of blood, such as density and viscosity, also
influence the pressure losses. This dependence has not affected
the comparison between CFD and ML results in this paper,
since the same constant density and viscosity were used for the
CFD computations in synthetic and patient-specific geome-
tries. Such parameters can also be easily incorporated into the
ML model by appropriately sampling over these variables in
the synthetic database.

The models used for generating the synthetic coronary trees
are representative of many commonly occurring clinical cases.
However, the database, as used in this paper, does not contain
less frequent pathological conditions, like anomalous origin of
the coronary arteries and coronary artery aneurysms. Further-
more, the shapes of the stenosis used to generate the synthetic
vessel trees are of a smooth nature and do not account for the
noise typically found in medical images. This issue can be
addressed by augmenting the database with noisy variants of
the geometries to improve model robustness.

Finally, an important limitation in leveraging the real-time
capabilities of the algorithm is the time required for data
preparation, i.e., the generation of the coronary anatomical
model, which varies between 10 and 60 min. In this study, we
did not systematically evaluate the time spent in model prep-
aration (i.e., lumen segmentation), but in a different preclinical
study using the same preprocessing pipeline as the one used in
this paper (43), a total processing time of 37.5 = 13.8 min was
reported.

In conclusion, we propose a real-time FFR computation
model with high predictive power and diagnostic accuracy in
detecting positive ischemia, by learning correlations that are
hidden in the “big data” that are now available for each patient.
As a practical application, we demonstrate how we can learn
the behavior of complex physiological models with proven
capability of predicting invasive FFR, using purely anatomical
information available in the clinical routine.

APPENDIX: REDUCED-ORDER CFD MODEL

The reduced-order CFD model described herein has been previ-
ously introduced in Ref. 18. The model was recently validated in
several clinical studies by comparing cFFRcpp against invasively
measured FFR, and the diagnostic accuracy for the detection of
functionally significant CAD was shown to be good, i.e., between 75
and 85% (3, 9, 10, 12, 26, 43, 56). Furthermore, in a recent meta-
analysis of published clinical studies for CT-based FFR, the perfor-
mance of the CFD model used in this paper was shown to be
comparable with that of the other published CFD-based approaches
(13). We also note that the reduced-order CFD model described herein
has also been applied successfully in other contexts, including com-
putation of FFR based on anatomical models reconstructed from
X-ray angiography (52) and validated against clinical measurements
in patients with aortic coarctation (19, 42).

The reduced-order CFD model is derived from the Navier-Stokes
equations using appropriate assumptions on the nature of the flow in
blood vessels. In healthy, nonstenotic coronary arteries, the flow is
assumed to have a dominant component in the axial direction and
axial symmetry. For axisymmetric flow, the continuity equation is:

du, 19(ru,)
Z =0

dx r o ar

(AD)

where x is the coordinate in the longitudinal direction, u is the

velocity, and r is the radius. By integrating over the cross-sectional
area, while accounting for the changing vessel cross-sectional area,
the following formulation is obtained:

JA(x, t dg(x,t
@D, dgen
at Jx

(A2)

where ¢ is time, A(x,7) is the cross-sectional area, and ¢(x,?) is the flow
rate. For the momentum equations, we also assume that the pressure
is constant within each cross section, varying primarily along the
longitudinal direction. The axial momentum equation is:

lop vad [ du,
+-——=-—{r (A3)
pdx rar\ Or

du Ju Ju
- u—x-l-u, -
at dx ar

where p is the pressure, p is the density, and v is the kinematic
viscosity. By integrating over the cross-sectional area, the following
formulation is obtained:

2
dg(x, 1) +i<aq (x,t)) N
at ax\ A(x,1)

q(x, 1)

A(x, 1) dp(x, 1) _
R A 1)

p ax

(A4)

where the coefficients o and Kr account for the momentum-flux
correction and viscous losses due to friction, respectively. To close the
system of equations, we need a state equation that relates the pressure
inside the vessel to the cross-sectional area. We have modeled the
vessel wall as a purely elastic material, which responds to changing
pressures through radial displacements:

Ap(x)
A(x, t)

4 FEh
pCx, YW (A) + py = gr_(x){l - :| +py (AS)
)

where E is the Young modulus, / is the wall thickness, ro is the initial
radius corresponding to the initial pressure po, and Ao is the initial
cross-sectional area. The elastic wall properties, ., are estimated
using a best fit to experimental data (37). The system of equations is
discretized with a finite difference method and solved with the
Lax-Wendroff numerical scheme.

In the stenotic regions, the simplifying assumption that the axial
velocity is dominant over the radial velocity is no longer valid. Thus,
to enable accurate pressure computation, a pressure-drop model is
embedded into the momentum conservation equation (6). The pres-
sure drop across the stenosis (APs) is formulated as a sum of three
terms (viscous term, turbulent or Bernoulli term, and inertance term):
_pK,  pk <A0

2
pK,L,dq
——1 + — A6
A, )lqlq Ay Ot (46)

AP

+
’ 21Tr8q 243

where . is the dynamic blood viscosity; L is the stenosis length; and
K., K, and K, are the viscous, turbulent, and inertance coefficients,
respectively (quantities indexed with “0” refer to the normal vessel,
while “s” refers to the stenosis). The segments treated as stenosis
segments are coupled to the regular segments by considering conti-
nuity of total pressure and of flow rate.

A lumped heart model (time-varying elastance model) is coupled at
the inlet of the aorta to provide the inlet boundary condition. The
outlet boundary conditions are provided by coronary microvascular
models which account for the influence of the myocardial contraction
on the flow waveform (29).

The model and methods used for personalizing it to patient condi-
tions are described in greater detail in (18). Interested readers are
referred to this publication for more details.
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