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Robust Anisotropic Gaussian Fitting
for Volumetric Characterization of

Pulmonary Nodules in Multislice CT
Kazunori Okada*, Dorin Comaniciu, and Arun Krishnan

Abstract—This paper proposes a robust statistical estimation
and verification framework for characterizing the ellipsoidal
(anisotropic) geometrical structure of pulmonary nodules in the
Multislice X-ray computed tomography (CT) images. Given a
marker indicating a rough location of a target, the proposed so-
lution estimates the target’s center location, ellipsoidal boundary
approximation, volume, maximum/average diameters, and
isotropy by robustly and efficiently fitting an anisotropic Gaussian
intensity model. We propose a novel multiscale joint segmenta-
tion and model fitting solution which extends the robust mean
shift-based analysis to the linear scale-space theory. The design is
motivated for enhancing the robustness against margin-truncation
induced by neighboring structures, data with large deviations
from the chosen model, and marker location variability. A
chi-square-based statistical verification and analytical volumetric
measurement solutions are also proposed to complement this esti-
mation framework. Experiments with synthetic one-dimensional
and two-dimensional data clearly demonstrate the advantage
of our solution in comparison with the -normalized Laplacian
approach (Linderberg, 1998) and the standard sample estimation
approach (Matei, 2001). A quasi-real-time three-dimensional
nodule characterization system is developed using this framework
and validated with two clinical data sets of thin-section chest
CT images. Our experiments with 1310 nodules resulted in 1)
robustness against intraoperator and interoperator variability
due to varying marker locations, 2) 81% correct estimation rate,
3) 3% false acceptance and 5% false rejection rates, and 4) correct
characterization of clinically significant nonsolid (GGO) opacity
nodules. This system processes each 33-voxel volume-of-interest
by an average of 2 s with a 2.4-GHz Intel CPU. Our solution is
generic and can be applied for the analysis of blob-like structures
in various other applications.

Index Terms—Anisotropic scale-space, Chi-square verification,
covariance estimation, Gaussian model fitting, mean shift, multi-
scale analysis, multislice X-ray CT image analysis, part- and non-
solid nodules, pulmonary nodule characterization and segmenta-
tion, robust estimation.
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I. INTRODUCTION

LUNG cancer is the most common cause of cancer death
in the U.S. for both sexes [3]. This makes the analysis

of pulmonary nodules as one of the major issues in the com-
puter-aided diagnosis (CAD) studies. In general, such CAD sys-
tems aim to realize 1) cancer therapy monitoring and surgical
follow-up examination by quantifying the volumetric change of
the pathological lesions between the preoperative and postop-
erative scans and 2) classification of malignancy/benignity of
the detected pulmonary nodules. The advent of these technolo-
gies are sought for reducing the mortality rate and improving
the quality of the cancer care management.

X-ray computed tomography (CT) is the most sensitive
imaging domain for the pulmonary nodule analysis among
others [4]. The multislice and helical CT scanners, the recent
technological advances, also greatly improved image resolu-
tion and scanning time, making the analysis of small nodules
( in diameter) feasible. Study of such small nodules
is clinically important because the small tumors can still be
malignant and early detection of such malignancy can drasti-
cally increase the chance of patient survival [5]. The improved
image resolution indeed helps radiologists to detect nodules
more accurately [6], however, it also costs them more burden
increasing the amount of data they need to interpret. Thus,
automation of the analysis with computer-assisted systems is
much needed for reducing this burden and also improving the
diagnostic accuracy especially for the small nodules.

The main goal of our investigation is to solve the problem of
how to best represent the nodules numerically for various anal-
ysis tasks. We refer to this problem by nodule characterization
problem. In past decades, the technical advances in the field of
computer-assisted analysis of pulmonary nodules [7], [8] have
facilitated the emergence of a number of research subdomains,
such as automatic nodule detection [9]–[12], nodule segmen-
tation [13], [14], volume quantification [15], [16], and malig-
nancy classification [17], [18]. The above fundamental problem
cannot be avoided for realizing a solution for any of the above
topics. And the solution to this problem should serve as one of
the important building blocks for developing the general CAD
solutions.

Within this context, this paper focuses on geometrical and
volumetric characterization of pulmonary nodules. We pro-
pose a comprehensive and generic computational framework
based on robust multiscale Gaussian intensity model fitting.
Exploiting the model’s analytical advantages, our solution
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Fig. 1. An illustration of pulmonary nodule examples with typical data noises captured in 3-D CT images. From left to right; (a) nodule attached to pleural
surface in 2-D dissection; (b) 1-D horizontal profile of (a) through the nodule center; (c) nonsolid vascularized nodule; and (d) 1-D vertical profile of (c). The
voxel-intensities in (b,d) indicate the Hounsfield unit with an offset 1024. “+” denotes markers used as initialization points provided by expert radiologists. The
estimated nodule center and anisotropic spread are shown by “�” and 35% confidence ellipses, respectively.

provides nodule characterizations in terms of 1) nodule center,
2) ellipsoidal boundary [three-dimensional (3-D) segmentation
approximation], 3) nodule volume, 4) maximum diameter,
5) average diameter, and 6) isotropy. Throughout this study,
it is assumed that an observer provides a marker indicating
rough location of a target lesion. This allows us to focus on
the semi-automatic characterization rather than the automatic
detection problem. The extension of the proposed framework
to the automatic nodule detection problem is out of this paper’s
scope but will be briefly discussed in Section VII.

A. Previous Work on Nodule Analysis

Automatic nodule detection is by far the most studied topic
within the field of computer-assisted nodule analysis [9]–[12],
[19]. In these studies, the nodules were often characterized as
spherical shapes of various size [10], [11]. However, this spher-
ical assumption is not adequate for describing general geom-
etry of the lesions. This is because their shape can be irregular
and nonspherical due to the spiculation or the attachments to the
pleural surface (i.e., juxtapleural and peripheral) and to the ves-
sels (i.e.,vascularized) [14].

For characterizing nodules in 3-D CT data, the tumor size or
volume is most intuitive and the well-established method [4],
[7]. Such underlining scales of lesions provide important clin-
ical information, enabling to measure the tumor growth that cor-
relates highly with probability of malignancy. The recent ap-
proaches for the tumor size estimation can be roughly catego-
rized into segmentation- and model-based methods. The seg-
mentation-based methods are based on delineation of the voxels
belonging to the nodules by using voxel intensity thresholding.
For instance, in their study for quantifying growth-rate of nod-
ules, Kostis et al. [14] characterized different types of nodules
by segmenting them based on the intensity thresholding fol-
lowed by the morphological operations. On the other hand, the
model-based methods describes nodules by fitting geometrical
or intensity models to the data. For the pulmonary nodules, the
model describing voxel intensity distribution in the 3-D data
space is preferred to the one representing geometry of 3-D tumor
boundary (e.g., deformable contour model [20]), because the in-
tensity distribution conveys more information than the tumor
boundary which may be ill-defined for a certain type of nodules
[21]. The most common approach for the model-based methods

is the template matching of isotropic Gaussian intensity tem-
plates [10], [11]. For instance, Lee et al. [10] developed a system
for automatic nodule detection by using four different sizes of
spherical nodule templates in their genetic algorithm-based tem-
plate matching technique.

For volume quantification, the segmentation-based ap-
proaches have often been employed due to their capability to
handle irregular geometry. In practice, however, it is difficult to
achieve high volume estimation accuracy due to the intrinsic
uncertainty of the voxel values caused by different scanner
settings as well as the nonsolid opacities of the tumor boundary.
On the other hand, the model-based approaches may be more
rigid but they can also incorporate a variety of statistical
methods for improving the estimation accuracy (e.g., Markov
random field [11], nonparametric density analysis [12]).

B. Our Approach

Robustness is one of the key issues addressed in this paper.
We seek a nodule characterization solution that is robust against
the characteristics of the real CT data with noise which is in-
trinsic to the measurement process and also the pathology and
anatomy of our interest. For example, a recent clinical study sug-
gested that the part- and nonsolid or ground-glass opacity nod-
ules, whose intensity distribution is largely irregular, are more
likely to be malignant than solid ones [21]. Despite this clin-
ical demand, to our best knowledge, no comprehensive solutions
for detecting, segmenting, and/or characterizing these difficult
cases have been proposed. Fig. 1 illustrates examples of such
difficult cases. The figure shows two-dimensional (2-D) dissec-
tions and one-dimensional (1-D) profiles of the two lesions for
the juxtapleural [14] and nonsolid nodules. In developing an al-
gorithm to describe them, our solution must be robust against:

1) influences from surrounding structures such as the pleural
surface and vessels [i.e., margin-truncation: Fig. 1(a) and
(b)];

2) deviation of the signal from a Gaussian intensity model of
our choice [i.e., non-Gaussianity: Fig. 1(c) and (d)];

3) uncertainty in the marker location given by system
users [i.e., initialization: Fig. 1(a) and (c)].

In another words, we seek a method that estimates the nodule
boundary (shown by the solid-line ellipses around the center
in the figure) and its volumetric measurements even with the
presence of these problems.
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The proposed framework consists of three successive stages:
1) model estimation; 2) model verification,; and 3) volu-
metric measurements. As our solution to the model estimation
problem, this paper presents a novel statistical framework
for robust multiscale joint segmentation and model fitting.
Addressing the issues discussed in the previous section, our
solution utilizes the model-based approach. The anisotropic
(nonspherical) Gaussian function is chosen as our intensity
model. Such anisotropic Gaussian captures the 3-D nodule
center by its mean location and the 3-D anisotropic spread (i.e.,
shape and orientation of an ellipsoid) by its fully parameterized
covariance matrix, making our model more flexible than the
spherical one.

Our multiscale analysis is driven by Gaussian scale-space
[22], [23] over a set of discrete analysis scales given a priori.
For each scale, we estimate the Gaussian mean and covariance
that fits best to the corresponding scale-space image, resulting
in a set of the mean and covariance estimates. In order to choose
the best fit among this set, a stability test is performed by evalu-
ating Jensen-Shannon divergence over the analysis scales. The
estimate with the minimum divergence corresponds to the most
stable estimate and serves as the best fit.

At a specific scale, the mean and covariance are estimated
by using a novel mean shift-based analysis. This paper presents
a formal extension of the mean shift analysis to the Gaussian
scale-space by unifying the robust statistical methods for den-
sity gradient estimation [24] and continuous linear scale-space
theory [1], [22], [23]. By likening the arbitrary positive func-
tion describing an image signal to the probability density func-
tion, the density mean shift-based analysis is extended toward
the Gaussian model fitting in the continuous function domain.
The resulting scale-space mean shift defines a convergent gra-
dient-ascent in the Gaussian scale-space image, as well as the
basin of attraction of a target tumor. Using this scale-space mean
shift, the mean is estimated by the convergence of majority of
initial points sampled around the marker location. The covari-
ance is estimated by solving a set of linear equations constructed
with mean shift vectors convergent to the estimated mean. We
present a closed-form analytical solution to this least-squares
problem with the symmetric positive definite constraint. The
joint segmentation and model fitting is achieved for the mean
and covariance estimations by using only convergent mean shift
vectors, ignoring the nonconvergent mean shifts as outliers and
exploiting inlier statistics only from the basin of attraction of the
target tumor.

The robustness of this framework is facilitated by a number
of factors. The stability criterion used for scale (bandwidth) se-
lection facilitates the robustness against the non-Gaussianity be-
cause it does not depend on specific error measures of ill-fitting.
This should enable our solution to handle part- and nonsolid
nodule cases with high non-Gaussianity. The joint segmenta-
tion and model fitting approach facilitates the robustness against
the margin-truncation because information from the nontarget
neighboring structures can be ignored by treating them as out-
liers. This should help to fit the model correctly with the cases
surrounded by vessels or pleural surfaces. The scale-space mean
shift-based covariance estimation also mitigates the initializa-
tion variation because a set of inliers used for the least-squares

do not depend on specific initializations, leading to low intra-
operator and interoperator variability with varying marker loca-
tions.

For the model verification problem, a statistical verification
method based on chi-square analysis is also proposed to comple-
ment the robust estimation framework. One of the advantages of
our statistical approach is the availability of such goodness-of-fit
measures that provide information of how well the resulting sta-
tistical estimates and the specific model function fit to the data.
In practice, such measures are of extreme importance, enabling
to reject accidental ill-estimates.

Once the model estimation and verification stages are per-
formed, the approximation of the 3-D nodule boundary seg-
mentation is provided as the confidence ellipsoid of the fitted
Gaussian with a specific limit of probability mass, forming a 3-D
equal-probability contour. Such an ellipsoid can be used an intu-
itive visualization of the 3-D nodule shapes. Consequently, the
volumetric measurements of the target nodule are derived from
the volumetry of the confidence ellipsoid. We propose closed-
form analytical solutions for measuring the volume, maximum
and average diameter, and isotropy in a physical unit as a func-
tion of eigenvalues and eigenvectors of the estimated covari-
ance matrix. The proposed solutions inherit the robustness of the
Gaussian fitting process, facilitating low intraoperator and inter-
operator variability. On the other hand, we have recently devel-
oped a nonparametric 3-D tumor segmentation solution which
employs the Gaussian model fitted by the proposed method as a
prior [25]. Such a solution enables more accurate volume mea-
surement than the proposed ellipsoidal approach, however, the
analytical nature of the presented solution provides the type of
measurement, such as average diameter and isotropy, that are
difficult to obtain by using the conventional segmentation or
manual methods.

C. Related Work

There are a number of techniques in the literature that are
related to our proposed method. In general, Gaussian model fit-
ting is a well-studied standard technique [26, ch.2]. It is, how-
ever, not trivial to fit such a model to data with outliers and
margin-truncation induced by neighboring structures. For ex-
ample, minimum volume ellipsoid covariance estimator [27] ad-
dresses the robustness to the outliers, however, its effectiveness
is limited regarding the truncation issue.

Bahalerao and Wilson [28] proposed an intensity model fit-
ting method applied for visualizing 3-D vascular structures in
MR images. They utilized anisotropic model similar to ours,
however, their method does not exploit the robust statistics and
involves an expensive EM algorithm-based iterative solution for
the model fitting. Our proposed method exploits a closed form
algebraic solution, making it more efficient.

Despite the seminal work by Perona and Malik [29], the ex-
tension of the Gaussian scale-scale theory to the anisotropic
analysis kernel has not been thoroughly studied for its applica-
tion toward nonedge feature extraction. Manmatha and Srimal
[30] developed a hand writing segmentation system utilizing an
anisotropic scale-space-based blob detection technique. How-
ever, they considered anisotropy only up to a diagonal covari-
ance matrix. The extension to the full anisotropy along arbitrary
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axis is provided by our solution. Robust anisotropic diffusion
proposed by Black et al. [31] addresses the exploitation of the
robust statistics within the anisotropic diffusion paradigm. Al-
though we share the same motivation toward the robust estima-
tion, the resulting method is not directly related to ours and not
applicable to our problem. Finally, to our knowledge, there are
no pulmonary tumor analysis systems reported in the literature,
which employ the robust estimation methods for describing the
ellipsoidal tumor structure and for deriving volumetric measure-
ments from the fitted ellipsoid.

D. Organization

This paper is organized as follows. The proposed methods
are described in Sections II–IV. Sections II–IV formally de-
scribe the proposed model fitting, model verification, and volu-
metric measurement methods, respectively. An overview of the
proposed algorithm is given in Section V. Section VI provides
the results of our experiments. The robustness of the proposed
methods is empirically studied with synthetic data and the re-
sults are described in Section VI-A. The nodule analysis system
based on the proposed framework is evaluated in Section VI-B.
This paper is concluded by discussing our findings and future
work in Section VII.

II. ROBUST MULTI-SCALE GAUSSIAN MODEL FITTING

This section presents the robust parameter estimation for
the multiscale Gaussian-based model fitting as a solution for
characterizing 3-D nodule boundary. In the following, the terms
mean and covariance are used interchangeably with spatial
local maximum and spread, respectively.

A. Gaussian-Based Intensity Model

The pulmonary nodule in a chest CT image typically appears
as a local concentration of high CT values surrounded by very
low CT values of lung parenchyma as background. One of the
most common model functions for describing the characteristics
of such bounded signals is the Gaussian function.

We treat the volumetric CT image as the discretization of a
-dimensional continuous nonnegative signal over a

3-D regular lattice. The nonpositiveness is assured by using the
offset with 1024 to the CT values in Hounsfield unit. The symbol

is used for describing the location of a spatial local maximum
of (or a mode in the sense of density estimation). Suppose that
the local region of around can be approximated by a product
of a -variate Gaussian function and a positive multiplicative
parameter

(1)

(2)

where is a set of data points in the neighborhood of , be-
longing to the basin of attraction of . An alternative is to con-
sider a model with a dc component so that .
It is, however, straightforward to locally offset the dc compo-
nent. Thus, we will not consider it within our estimation frame-

work favoring a simpler form. Later, we will revisit this ex-
tended model for the statistical verification of the resulting esti-
mates. The problem of our interest can now be understood as the
parametric model fitting and the estimation of the model param-
eters: mean , covariance , and amplitude . The mean and
covariance of describe the spatial local maximum and spread
of the local structure, respectively. The anisotropy of such struc-
ture can be specified only by a fully parameterized covariance.

B. Anisotropic Scale-Space Representation

The scale-space theory [1], [22], [23] states that, given any
-dimensional continuous signal , the scale-space

representation of is defined to be the solu-
tion of the diffusion equation, , or equivalently
the convolution of the signal with Gaussian kernels
of various bandwidths (or scales)

(3)

When , represents the solution of the
isotropic diffusion process [1] and also the Tikhonov regular-
ized solution of a functional minimization problem, assuming
that scale invariance and semi-group constraints are satisfied
[32]. When is allowed to be a fully parameterized symmetric
positive definite matrix, represents anisotropic scale-space1

that is the solution to a partial differential equation:
.

C. Mean Shift Procedure for Continuous Scale-Space Signal

In this section, we extend the fixed-bandwidth mean shift
[33], introduced previously for the nonparametric point density
estimation, toward the analysis of continuous signal evaluated
in the linear scale-space.

The gradient of the scale-space representation can
be written as convolution of with the Gaussian derivative
kernel , since the gradient operator commutes across the
convolution operation. Some algebra reveals that can be
expressed as a function of a vector whose form resembles the
density mean shift

(4)

(5)

Equation (5) defines the extended fixed-bandwidth mean shift
vector for . Setting in (5) results in the same form
as the density mean shift vector. Note, however, that in (5) is
an ordinal variable while a random variable was considered in
[33]. Equation (5) can be seen as introducing a weight variable

1This is different from the well-known anisotropic diffusion [29] that is with
the inhomogeneous, thus spatially dependent, bandwidth H(x).
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to the kernel . Therefore, an
arithmetic mean of in our formulation of mean shift is not
weighted by the Gaussian kernel but by its product with the
signal .

The mean shift procedure [24] is defined as iterative updates
of a data point until its convergence at

(6)

Such iteration gives a robust and efficient algorithm of gra-
dient-ascent, since can be interpreted as a normalized
gradient by rewriting (4); .

is strictly nonnegative valued since is assumed to be non-
negative. Therefore, the direction of the mean shift vector aligns
with the exact gradient direction when is isotropic with a pos-
itive scale.

D. Robust Spatial Local Maxima Estimation

We assume that the data is given with information of where
the target structure is roughly located but we do not have explicit
knowledge of its spread. The marker point indicates such lo-
cation information. We allow to be placed anywhere within
the basin of attraction of the target structure. To increase the
robustness of this approach, we run mean shift procedures
initialized by sampling the neighborhood of uniformly. The
majority of the procedure’s convergence at the same location in-
dicates the location of the maximum. The point proximity is de-
fined by using the Mahalanobis distance with . This approach
is efficient because it does not require the time-consuming ex-
plicit construction of from .

E. Robust Anisotropic Covariance Estimation by Constrained
Least-Squares in the Basin of Attraction

In the sequel we estimate the fully parameterized covariance
matrix in (1), characterizing the -dimensional anisotropic
spread and orientation of the signal around the local maximum

. Classical scale-space approaches relying on the -normalized
Laplacian [1] are limited to the isotropic case, thus, not appli-
cable to this problem. Another approach is the standard sample
estimation of by treating as a density function [2, p. 179].
However, this approach becomes suboptimal in the presence
of the margin-truncations. Addressing this issue, we present a
constrained least-squares framework for the estimation of the
anisotropic fully parameterized covariance of interest based on
the mean shift vectors collected within the basin of attraction of

.
With the signal model of (1), the definition of the mean shift

vector of (5) can be rewritten as a function of

(7)

Further rewriting (7) results in a linear matrix equation of un-
known

(8)

where and .
An over-complete set of the linear equations can be formed

by using all the trajectory points located
within the basin of attraction . For efficiently collecting a suf-
ficient number of samples , we run mean shift
procedures initialized by sampling the neighborhood of uni-
formly. This results in samples , where de-
notes the number of points on the convergent trajectory starting
from . The system described in (8) is solved by considering
the following constrained least-squares problem [34], [35]

(9)

where denotes a set of symmetric positive definite ma-
trices in .

Following [36], the unique solution of (9) is expressed
by

(10)

which involves symmetric Schur decompositions [35, p. 393]
of the matrices and given

, i.e.,

The solution is derived from finding in the Cholesky
factorization of . It can be shown that uniquely
minimizes an area criterion where de-
notes the Frobenius norm. This area criterion is related to the
total least-squares [37] since errors in both and are consid-
ered for the minimization.

F. Scale Selection Criterion

The multiscale analysis treats as a variable parameter. It is
supposed that a set of analysis bandwidths
is given a priori. Our scale selection criterion is based on the
stability test [33]. Given a set of estimates for a se-
ries of the successive analysis bandwidths, a form of the Jensen-
Shannon divergence is defined by

(11)

where and define the neighbor-
hood width of the divergence computation. The most stable esti-
mate across the analysis bandwidths provides a local minimum
of the divergence profile. We treat this result as the final estima-
tion of our multiscale analysis .
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Fig. 2. Comparison of our method (solid-line) with 
-normalized Laplacian (dashed-line) and standard sample estimate (dot-dashed-line) using 1-D synthetic
data. The ground-truth u = D=2 and��� = � = 1 are denoted by dotted-line. Test data is generated by superimposing two Gaussians with a varying distance D for
evaluating robustness of estimates against biases caused by neighboring structures. (a) Local maxima estimates, (b) scale estimates, (c) our method’s break-point
D = 0:8, below which estimations are subjected to the bias. (c) 
-normalized Laplacian’s break-point D = 6:2.

Fig. 3. Examples with 2-D synthetic data. (a), (b) Ground-truth and our method’s estimate for an anisotropic Gaussian ��� = [2�2;�2 5] with random additive
noise. (c), (d) Those for two Gaussians with the noise. The center of the smaller Gaussian is deviated by 2 Mahalanobis distance away from the target Gaussian.
“+” and dashed-ellipses indicate ground-truth local maximum and spread. “�” and solid-ellipses display those estimated by our 2-D algorithm.

III. STATISTICAL VERIFICATION

In this section, we present a goodness-of-fit measure for vali-
dating the resulting estimates. Such statistical verification gives

a principled means for rejecting accidental ill-estimates. We
treat this problem as analysis of chi-square fitting residual er-
rors. We employ a linear model with an additive parameter of
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the dc component; . Recall that our estimation
model in (1) is without the dc. The additional degree of freedom
introduced serves as another goodness-of-fit indicator. Given the
estimate pair , the following defines the signal response
estimate with two unknowns

(12)

where is a set of data points in the neighborhood of , be-
longing to the basin of attraction of , as introduced in (1).
The chi-square statistic indicates the residual error of the fitted
model [38, p. 660]

(13)

where is local uncertainty of normally distributed error
and denotes an appropriate support of

the data space, within which the verification process performs
sampling. Note that this verification support may be dif-
ferent from the model support , which will be discussed in
Section VI-B [p. 19].

Parameters and are estimated by chi-square fitting. Since
both are nonnegative, we introduce parameters and such that

and . The estimates and are given by
solving and

if and

if and

if and

if and
(14)

where for all

(15)

(16)

and is the number of samples in and all the summations
are over .

Given the above parameter estimates, is computed by
using (13). Chi-square probability function [38, p. 221] is
employed to indicate an ill-fit of our model to the given signal

(17)

In (17), is the incomplete gamma function [38, ch.6.2] with
the number of degrees of freedom , and is
the number of parameters.

Finally, we obtain the following rejection criterion

(18)

The threshold for is set conservatively to the common confi-
dence level [38, p. 664]. Having a large estimate
for also indicates an ill-fit with our estimation model without
the dc. The threshold for can be learned from training
samples for specific applications.

IV. VOLUMETRIC MEASUREMENTS

This section presents our solutions for deriving volumetric
measurements of the target tumor from the Gaussian model
fitted to the data. First, tumor boundary segmentation is ap-
proximated by a 3-D ellipsoid defined from the fitted model.
We propose solutions for analytically deriving target tumor’s
1) volume, 2) maximum diameter, 3) average diameter; and 4)
isotropy, directly from the ellipsoidal segmentation result. An
extension of these solutions toward arbitrary voxel dimensions
will also be provided.

The multiscale Gaussian-based model fitting, described in
Section II, results in the mean and covariance estimates
of a Gaussian function that fits the given data best. Treating the
fitted model as a normal probability distribution ,
the tumor boundary segmentation can be approximated by a
confidence ellipsoid forming a 3-D equal-probability contour.
Such a confidence ellipsoid is defined by the following generic
quadratic equation

(19)

where is a squared Mahalanobis distance, defining the con-
fidence limit. A specific value of the confidence limit has to
be chosen so that the equal-probability contour coincides well
with the tumor boundary. Throughout this paper, we use an em-
pirically determined value , corresponding to the
35% confidence limit. Figs. 3 and 4 illustrate the segmentation
results with this confidence limit.

Given , the volumetry of an ellipsoid can be determined as
a function of three radii along its major and two minor orthog-
onal axes. The radii are denoted by . The
following derives from the eigen decomposition of the covari-
ance . Such eigen decomposition can be expressed in a matrix
equation: . is a column matrix of the eigenvectors

and is a diagonal matrix of the corresponding eigenvalues
. Right-multiply the matrix equation with

yields the symmetric Schur decomposition of
. Since , with a coordinate transform

, (19) can be simplified to: .
Substituting three points, ,
which are known to lie on the ellipsoid surface, to the quadratic
equation results in

(20)

As a result, the following volumetric measurement formulae can
immediately be derived for the volume ,
the maximum diameter , the average diameter

, and the isotropy , where ,
, and are in the voxel unit and the isotropy ranges in ,

taking the value 1 when it becomes a sphere. The bias of these
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volumetric measurements are caused solely by the segmenta-
tion error. Therefore, these formulae are exact, thus, free from
the partial volume effect when the tumor boundary is well-char-
acterized by the ellipsoidal segmentation.

Given a voxel dimension in a physical unit, the volumetric
measurement formulae above can be revised to produce the
measurements in the unit. This is a crucial step for any compar-
ative and differential studies because the voxel dimension can
vary across different scans. Suppose that a voxel dimension is
given as in millimeter or any other unit. After
a coordinate transform, eigenvalues in the unit of millimeter,

, can be expressed as a function of the voxel dimensions and
eigenvectors

(21)

(22)

where the eigenvector is denoted by . This
leads us to the following formulae which takes the voxel dimen-
sion into account

(23)

(24)

(25)

(26)

where . Note that must be re-sorted from
the original order given by the eigen decomposition because the
coordinate transform may change such an order.

V. ALGORITHM OVERVIEW

The proposed algorithm consists of three stages: 1) the
anisotropic structure estimation; 2) the verification of the
estimates; and 3) volumetric measurements. The first stage as-
sumes that a marker indicating the rough location of the target
nodule is given a priori. Such information can be provided by
a user of a GUI-based system (see Section VI-C for example).
The estimation algorithm is as follows.

Problem Given the 3-D input data , a marker point , a
set of analysis scales , estimate the 3-D
anisotropic structure of a nodule .

Scale-specific estimation For each .

1) Perform uniform sampling centered at , resulting in a
set of starting points.

2) Perform the mean shift procedure in (6) from each starting
point.

3) Take the convergence point of the majority of the points
as the location estimate .

4) Perform uniform sampling centered at , resulting in a
set of starting points.

5) Perform the mean shift procedure from each starting
point.

6) Construct the system in (9) with the mean shift vectors
along the converging trajectories.

7) Solve the system by (10), resulting in the covariance esti-
mate .

Scale selection With estimates .

1) Compute the divergence using (11) for
.

2) Find the most stable solution by finding a local
minimum of .

The second stage provides the binary decision of acceptance
or rejection of the estimates in the following algorithm.

Problem Given the 3-D input data and thresholds and
, verify the estimate for the acceptance or rejection

decision.

Statistical verification With .

1) Compute and by the chi-square fitting of (14).
2) Compute by (13).
3) Compute the Chi-square probability by (17).
4) Apply (18) to and . Reject if (18) holds

otherwise accept it.

The ellipsoidal segmentation of the accepted nodule estimate
is given by the 35% confidence ellipsoid of the normal distri-
bution in the form of (19) with . The
third stage provides a number of volumetric measurements of
the accepted estimate,

Problem Given the accepted estimate and the voxel di-
mension , provide the volumetric measurements
of the target nodule.

Volumetric Measurements With , , and
.

1) Compute the eigen decomposition of .
2) Compute by (22).
3) Sort the transformed eigenvalues in (21).
4) Derive the tumor volume by (23).
5) Derive the maximum diameter of the tumor by (24).
6) Derive the average diameter of the tumor by (25).
7) Derive the tumor isotropy by (26).

VI. EXPERIMENTAL RESULTS

A. Synthetic Data

The proposed framework is examined with 1-D and 2-D syn-
thetic data with the presence of noise. Fig. 2 compares local
maximum and scale estimates by a 1-D implementation of our
algorithm with those by the -normalized Laplacian [1] and the



IE
EE

Pr
oo

f

OKADA et al.: ROBUST ANISOTROPIC GAUSSIAN FITTING FOR VOLUMETRIC CHARACTERIZATION OF PULMONARY NODULES IN MULTISLICE CT 9

Fig. 4. Examples of the estimation results with 3-D HRCT data. The marker locations are indicated by “+”. The estimated local maxima are indicated by “�”.
The estimated spread of the nodules are shown as 2-D intersections of 35% confidence ellipsoids. Cases (a) and (b) are nonsolid (GGO) nodules identified by
experts. Cases (c)–(f) are vascularized nodules with irregular nonspherical shapes. Cases (g) and (h) illustrate nodules attached to pleural surface.
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Fig. 5. Experimental results for the verification process. The top plot illustrates the Q probability (solid-line) and � estimate (dashed-line) for each test case. The
symbols “+” and “�” indicate correct and failure cases, respectively. The correct symbol “+” placed above zero also indicate nonsolid (GGO) nodule cases. �
values are normalized to fit within the range of this plot. A horizontal dashed-line indicates the �-threshold th = 400. The bottom images show examples of
correctly rejected failures. Legend of these images are the same as Fig. 4. Cases (a) and (c) satisfied the rejection conditions of both Q and � while Case (b) met
only the Q condition and Cases (d) and (e) met only the � condition.

standard sample estimation [2, p. 179]. The test data is gener-
ated at each location by taking the maximum of two superim-
posed 1-D Gaussians offset by a varying distance between the
two peaks. The one in right is treated as the target while the left
one acts as a nontarget neighboring structure. Each Gaussian
has the same variance and hight . Fig. 2(a)
and (b) shows the estimated mean and variance of the target as
a function of the varying distance . The ground-truth mean
and variance are . Fig. 2(c) and
(d) shows the break-points by our and -normalized Laplacian
methods, respectively. The break-point is defined as the dis-
tance of the two peaks, below which estimations are subjected
to the bias due to the margin-truncation effect described in the
introduction. The 1-D system employs all the available data
points and 40 analysis scales with 0.05 in-
terval ( for ). For the sample
variance estimation, the densities are approximated by

normalized by the probability mass within around
the true maximum. The results indicate much lower break-point
of our method than of others. This suggests that our method
can achieve robust and accurate estimations even with the pres-
ence of the severe margin-truncations, demonstrating the advan-
tage of our framework. Fig. 3 shows examples with 2-D syn-
thetic data. A 2-D implementation of our method are applied
for two test data: 1) the 2-D target Gaussian with random noise
[Fig. 3(a)] and 2) the same target with the same noise and a
nontarget Gaussian Fig. 3(c)]. The ground-truth and their cor-
responding estimates by our method are shown as 35% confi-
dence ellipses in Fig. 3(a)–(d), respectively. This 2-D imple-

mentation utilizes all available data points and 12 analysis scales
. The results are almost identical

to the ground-truth despite the presence of the random noise and
the neighboring structure, confirming the results of our 1-D ex-
periment.

B. Lung HRCT Data

A 3-D implementation of the proposed algorithm is evalu-
ated with two clinical data sets of the thin-section (1.25 mm
slice thickness) chest high-resolution computed tomography
(HRCT) images including pathological lesions. The data
is recorded by Multislice CT scanners (Somatom Volume
Zoom and Somatom Sensation 16; Siemens) and anony-
matized. Each volumetric image consists of 12-bit positive
values over an array of 512 512 lattices. The number of
slices in a CT volume and the dimensions of a voxel vary
across volumes in our data set. The number of slices ranges
between 217 and 616. The voxel dimensions range within

in millimeter.
A straightforward implementation of our algorithm without

any 3-D specific adaptation provides the 3-D nodule analysis
system. The marker locations are provided by trained radiolo-
gists. Our visual inspection with a 3-D renderer revealed, how-
ever, that most of the markers are noticeably off-centered, devi-
ating from the (unknown) true nodule centers with a certain de-
gree. A 33-voxel cubic volume-of-interest (VOI) is extracted for
processing each nodule. The analysis bandwidths are given by
18 scales with 0.25 interval . Uni-
form sampling in the 3-voxel neighborhood of the marker (i.e.,
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) is used for estimating local maximum. The 3-voxel
size is determined empirically. The same strategy is employed
for initializing the mean shift trajectories around the local max-
imum (i.e., ). The neighborhood width of the divergence
computation is set to (considering only three adjacent
scales). For the verification, all data points that lie within the
90% confidence ellipsoid of are used as the support .
This includes data points that may not converge to the estimated
nodule center. For parameter estimation, it is natural to exclude
such samples in order to realize a robust algorithm. For verifi-
cation, however, such nonconvergence of samples also provide
valid information of the model being ill-fit, thus, should be kept
for improving the rejection-acceptance margin. The rest of pa-
rameters are set as follows. The degrees of freedom in (17) are
given by . The threshold in Criterion (18)
is set to . The global uncertainty in (13) is estimated
from the sample variance of 77 lesions, resulting in .

The first data set consists of HRCT images of 14 patients in-
cluding the total of 77 pulmonary nodules. All of the nodules
are small . The data is recorded by a Siemens So-
matom volume zoom scanner. Due to the lack of ground-truth
for nodule center and segmentation, the classification of the cor-
rect or failure estimation is given manually by eye-appraisal of
experts using a 3-D render view and its corresponding 3 orthog-
onal slice views (Fig. 6 shows an example of such views). The
results of performance evaluations with this data set are given
as follows. 63 cases (81.8%), including all the solitarty nodules,
resulted in correct estimation. All the 14 failures were success-
fully rejected by the verification process without false rejec-
tion and false acceptance. Most of the failures were due to very
small nodules that are heavily embedded into pleural
surface. Given an off-centered marker, this can cause a nearby
rib to be falsely estimated as nodule center (e.g., Fig. 5). The
data includes six cases of the part- and nonsolid or ground-glass
opacity nodules classified by the radiologists [<Author: Define
acronym GGO?> (GGO) nodules, see Figs. 1(c) and (d) and
4(a) and (b)]. All the GGO nodules were successfully estimated
and accepted.

Fig. 4 shows examples of the resulting center and spread es-
timates. It illustrates cases with the irregular, nonsolid (GGO),
and juxtapleural nodules whose geometrical shapes and/or
intensity distributions are largely deviated from the Gaussian
structure. The correct estimations for these difficult cases
demonstrate the robustness and effectiveness of our framework.
Fig. 5 shows the results of the statistical verification and ex-
amples of the rejected cases. For evaluating the generalization
capability, we apply the same verification process to the data of
3 patients who are different from the ones used for deriving the
parameters and . This experiment resulted in 96% correct
verification rate (4 false acceptances among 100 trials), similar
to the results shown in Fig. 5.

The second data set is much larger than the first set, consisting
of HRCT images of 39 patients with the total of 1310 pulmonary
nodules. Moreover, the data is recorded by multiple scanners
(Somatom volume zoom and Somatom Sensation 16; Siemens),
and the data includes much wider range of nodule sizes (3–30
mm). Thus evaluation with this data set provides more realistic
performance benchmark of our method in the clinical settings.

TABLE I
RESULTS OF PERFORMANCE EVALUATION OF OUR METHOD WITH THE LARGE

DATA SET. THE DATA SET CONSISTS OF 39 PATIENTS WITH 1310
NODULES WHOSE SIZE RANGES FROM 3 MM TO 30 MM. MULTIPLE

SCANNERS ARE USED FOR DATA COLLECTION

TP: true positive, accepted correct estimates. FN: false
negative, rejected correct estimates. TN: true negative,
rejected false estimates. FP: false positive, accepted false
estimates.

TABLE II
THE STANDARD DEVIATION OF THE VARIOUS ESTIMATES INDUCED BY

RANDOM PERTURBATION OF INITIAL MARKER LOCATIONS WITHIN THREE

SAMPLING RANGES,
p
1,
p
2, AND

p
3 MAHALANOBIS DISTANCE,

AROUND THE TUMOR CENTER ESTIMATED FROM THE MARKER GIVEN

BY THE RADIOLOGISTS

�Mean: the average of standard deviations (SD) for single coor-
dinate variables, �Cov: SD of the frobenius matrix norm, �Vol:
SD of the 3-D volume in voxel unit, �MaxD: SD of the max-
imum diameter in voxel unit, �AveD: SD OF THE average di-
ameter in voxel unit, and �iso: SD of the isotropy parameter
ranging within [0; 1].

The same system, including the parameter values for both esti-
mation and verification, is used for this evaluation.

Table I summarized the results. 1064 cases (81.2%) resulted
in successful estimation confirmed by the same visual inspec-
tion used for the small data set. This correct estimation rate
was almost identical to the one for the first smaller data set,
confirming the scalability of our algorithm. Similar to the first
data set, most failures were caused by small juxtapleural nod-
ules. Note that our method resulted in correct estimation for
many juxtapleural cases as shown in Fig. 4(g)–(h). When a jux-
tapleural nodule is very small and deeply embedded into the
surface, however, our method tends to provide biased estimates
since the tumor center may not correspond to spatial maximum
for such cases. For verification, small percentage of cases re-
sulted in false acceptance (false positive (FP): 3%) and false re-
jection (false negative (FN): 5%), similar to the results of the
generalization experiment with 100 trials. The most false posi-
tive cases occurred when a marker was placed outside of the at-
traction basin of the target nodule, causing the characterization
of a nearby nonpathological structure (e.g., rib bones and ves-
sels) which was accidentally Gaussian-like. On the other hand,
the false negative cases were mostly caused by heavily vascu-
larized or wall-embedded nodules that were correctly character-
ized by our robust algorithm but classified as nonnodule due to
large chi-square fitting error. Except for these special cases, the
majority of both correct and incorrect estimates are successfully
accepted and rejected, respectively.

Another important question is the stability or robustness of
our system against the initial localization of the markers. Such
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TABLE III
THE STANDARD DEVIATION OF THE VOLUMETRIC ESTIMATES SHOWN AS A FUNCTION OF FIVE DIFFERENT TUMOR SIZE RANGES. THE RANGES ARE

DESCRIBED IN BOTH VOLUME (VOL) AND AVERAGE DIAMETER (AVED) IN voxel AND voxel UNITS, RESPECTIVELY. THE LARGEST SAMPLING

RANGE,
p
3, IS USED FOR THIS EXPERIMENT

stability is a key factor for realizing low intraoperator and inter-
operator variability and high reproducibility. First, we study the
characterization performance with additional duplicate markers.
The second data set contained 150 additional duplicate markers
provided by the radiologists, which are deviated from the other
indicating the same nodule within 6 Euclidean voxel distance.
Including these markers, the same performance evaluation for
Table I is carried out with the total of 1469 markers. The results
were almost identical to the ones without the duplicate markers;
correct estimation: 81.3%, failed estimation: 18.7%, true pos-
itive: 76.3%, false negative: 5.0%, true negative: 15.4%, false
positive: 3.3%.

Second, the robustness is evaluated by numerical stability
analysis of estimation variances induced by random pertur-
bation of initial marker locations. For this experiment, we
randomly select 550 nodules from the second database which
are correctly estimated and verified (confirmed by our eye ap-
praisal) and are of size between 3 and 20 voxels in the average
diameter. For each selected nodule, its mean and covariance
are estimated by our method from the marker given by the
radiologists. A set of 10 test markers are randomly sampled
around the estimated mean within Mahalanobis distance
range for each nodule. The variance of estimates with the 5500
test markers are studied for center (mean), spread (covariance),
volume, maximum/average diameter, and isotropy.

Tables II and III summarize the results shown as a function
of sampling ranges and tumor sizes, respectively. The spread
variance is quantified by the standard deviation of the
Frobenius norm of the covariance matrix. While the isotropy pa-
rameter is nondimensional, the variance for the center, volume,
maximum/average diameters are expressed by the standard de-
viation of the estimates in unit. Since the voxel dimension
of our data is bounded by a 1 mm cube and roughly isotropic,
these volumetric estimate variances in unit can be treated
as an upper-bound of the variances in millimeter unit for the
measurements by using (23)–(26). The results in Table II show
that the various estimation variances do not change largely by
using the different sampling ranges from to Mahalanobis
distances, indicating the insensitivity against the marker pertur-
bation. The absolute values for the mean location and spread
variances are also very small, showing the robustness of our
estimation process. Table III shows that the absolute value of
the estimation variances correlates better to the estimated tumor
sizes. For the given range of the tumor sizes, the standard devia-
tions with the Mahalanobis distance perturbation were small
with respect to the corresponding tumor sizes, ranging between
1–3% of the estimated measurement values. The overall results
of the above stability analyses suggest the insensitivity of our

solution against the initialization or intraoperator and interop-
erator variability. Due to the lack of the ground-truth, the error
analysis of the estimation bias was not possible. However, the
eye appraisal of the results using the visualization in the form of
Figs. 4 and 6 indicated at least reasonable accuracy of the mean
location and maximum diameter estimates.

C. System Implementation

The above-described 3-D nodule analysis system is imple-
mented in C language and processes each 33-voxel VOI by an
average of 2 s using an off-the-shelf PC with a 2.4-GHz Intel
CPU. A quasi-real-time nodule characterization and visualiza-
tion software is developed by using this system. The C-imple-
mented system is packaged as the matlab’s mex library which is
used as a computational module of a volume visualization tool
built on the matlab’s GUIDE (GUI development environment).
Fig. 6 illustrates screen-snapshots of the nodule characterization
and visualization process.

VII. DISCUSSIONS

This paper proposed a comprehensive robust framework for
characterizing the 3-D anisotropic pulmonary nodules. The
nodule’s geometric structure is specified by a 3-D ellipsoid that
is provided by robustly fitting the anisotropic Gaussian-based
intensity model to the volume data. The new estimation frame-
work unifies the mean shift-based robust statistical analysis and
the linear scale-space-based multiscale analysis. The unification
is realized by formally extending the density mean shift toward
the continuous positive function representing the volume data.
The proposed verification algorithm also complements the
estimation framework, providing an effective goodness-of-fit
measure for rejecting accidental ill-estimates. The analytical
volumetric measurement solutions are also proposed for effi-
ciently approximating the nodule volume, maximum/average
diameter, and isotropy directly from the fitted ellipsoid.

The nodule characterization system is validated by two sets
of the large number of nodules as well as 1-D and 2-D synthetic
data. The experimental results with the clinical chest HRCT
data demonstrated a successful application of volumetric nodule
characterization, providing robust estimation of 3-D location
and anisotropic spread, as well as the stable volumetric measure-
ments, of the nonspherical pulmonary nodules. The quasi-real-
time system developed in this study also provides an efficient
tumor visualization that can aid the tasks of radiologists. Such
application for visualization is possible due to the ellipsoidal
nature of our tumor characterization unlike other promising fea-
tures such as fractal dimension analysis [17], [18].
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Fig. 6. Quasi-real-time nodule characterization and visualization. Three slices of the volume data read from dicom files can be viewed in 2-D (top) and 3-D
(bottom) layouts. A mouse-click in the root view (top-left) initiates the nodule characterization process. After an average of 2 s, the process is completed and
results in a zoom-up view of the nodule in the 2-D (top-right) and 3-D (bottom-right) layouts, as well as its volumetric measurements. The estimated nodule spread
is visualized by yellow ellipses in the top-right figure and a red opaque ellipsoid in the bottom-right figure.

As discussed in the introduction, the importance of accurately
diagnosing the small and part- or nonsolid (GGO) nodules has
been revealed by recent clinical studies. Such clinical demands
pose technical challenges since much higher characterization
accuracy in both shape and volume is required for detecting the

malignancy and for quantifying the related tumor growth-rate.
Moreover, the voxel intensity distribution of the subsolid nod-
ules are much more irregular than the typical nodules targeted
by the previous studies. Our experimental results suggest that
the proposed model-based approach is a promising technique
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for segmenting and quantifying the volume of the nonsolid nod-
ules, with which the intensity thresholding-based segmentation
may fail. More GGO cases, especially the part-solid nodules,
should be further evaluated in future for deriving more clini-
cally conclusive result.

One of the contributions of this work is the proposed estima-
tion solution for the fully anisotropic Gaussian intensity model.
The importance of considering the anisotropic covariance in the
scale-space was also suggested by Lillholm et al.6. [39] in their
image reconstruction analyses with various local features de-
fined as combinations of the first and second order scale-space
derivatives. Their results have direct implications to our problem
since the second order derivatives (or Hessian matrix) are ex-
plicitly related to the covariance matrix [2, p. 178], [40].

The main technical strengths of our solution is its robustness
against the effects of the margin-truncation (i.e., attachment to
vessels and pleural surfaces) and the non-Gaussianity (i.e., part-
and nonsolid nodules) that are common in the pulmonary CT
data or clinically significant. Such robustness is due to the nature
of our framework consisting of 1) the multiscale joint Gaussian
fitting and segmentation using only samples within the basin
of attraction, 2) the divergence-based scale selection, and 3)
the constraint least-squares covariance estimation. The robust-
ness against the non-Gaussianity also supports our choice of the
Gaussian intensity model. While such model is appropriate for
small nodules due to the partial volume effect, it may not serve
as an accurate model for large nodules whose intensity profile
tends to resemble a constant plateau or a step function. The
scale-space approach used in our solution helps to fit a Gaussian
function to such data by regularizing a step function into more
Gaussian-like uni-modal signal. Moreover, the stability-based
scale selection algorithm helps to absorb the modeling error by
choosing the best fit regardless of such errors.

The proposed solutions provide volumetric measurements of
target nodules which can be used for the differential diagnosis
in the CAD application context. The advantage of our approach
is three-folds. First, our solution inherits the robustness of our
model estimation solution, resulting in a low intraoperator and
interoperator variability of the measurements. Second, the ellip-
soidal formulation provides the type of measurements such as
the average diameter and isotropy that are difficult to measure by
conventional methods. Third, the robust solution for measuring
the maximum nodule diameter can be related to the clinical RE-
CIST scheme. The main issue of our approach is a bias due to
the ellipsoidal approximation. The ellipsoidal segmentation is
limited to an approximation of true tumor boundary. When the
target tumor possesses irregular surface, the volumetric mea-
surements by our method can be biased from the absolute value
of the (unknown) ground-truth volume. While this issue can be
well addressed by the previous segmentation-based approaches
that explicitly account for the irregular surface structures and the
boundary between the nodule and other structures (e.g., Kostis
et al. [14]), the robustness of such approach has not been fully
investigated. The proposed solution emphasizes the robustness
over the ability to describe fine surface structure. In the context
of the differential diagnosis, this may be a reasonable trade-off

when, due to the robustness, the bias is unique to specific data,
because such bias can be then canceled by differentiating a pair
of volumes.

Our experimental results also indicated that most of the bi-
ased estimations were due to the small nodules with pleural at-
tachments. In the nodule taxonomy introduced by Kostis et al.
[14], our system performed well on the well-circumscribed, vas-
cularized, and pleural tail nodules. Although many juxtapleural
cases were also characterized correctly by our robust method,
most of the failures were due to this type of nodules when they
are small and heavily embedded into the surface. In such situ-
ation, the nodule center may become an unstable spatial local
maximum, forcing the center/mean estimate to be drifted to a
nearby nontarget peak such as rib bones. This is an open issue
of the proposed approach. Further improvement of the system
performance on such case is clinically important since such pe-
ripheral nodules are found frequently in practice.

The issue of the estimation bias due to the ellipsoidal ap-
proximation can be solved by combining the proposed model-
based approach with an additional nonparametric segmentation-
based approach. The ellipsoidal approximation derived from the
Gaussian fitted by our method can be used as the initial prior
state, from which the finer boundary segmentation can be non-
parametrically derived. Moreover, the intensity statistics can be
sampled only within the ellipsoidally segmented nodule area,
reducing the estimation bias. We have recently proposed such
a nonparametric segmentation solution using 4D joint domain
density mean shift analysis where the analysis bandwidth is di-
rectly derived from the fitted Gaussian [25]. Another natural
continuation of this study is the extension of our framework for
the automatic nodule detection problem. The most simple ap-
proach is to apply our nodule characterization solution from a
set of markers distributed over the entire lung volume. This re-
quires an intelligent sampling scheme and voting mechanism
for realizing an efficient automatic detection solution, which re-
mains as our future work.

Overall, our solution is generic and does not depends on se-
mantics of the absolute CT values in the Hounsfield unit. The ro-
bustness, flexibility, and efficiency of the proposed framework,
therefore, facilitates not only the pulmonary nodule applications
in CT sought in this paper but also various other applications in
different imaging domains (e.g., PET scans) and different patho-
logical and anatomical structures (e.g., polyps), involving with
the analysis of blob-like geometrical structures. We plan to ex-
plore such other applications of our method in near future.
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