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Abstract. Decomposition methods based on nonparametric density es-
timation define a cluster as the basin of attraction of a local maximum
(mode) of the density function, with the cluster borders being repre-
sented by valleys surrounding the mode. To measure the significance of
each delineated cluster we propose a test statistics that compares the
estimated density of the mode with the estimated maximum density on
the cluster boundary. While for a given kernel bandwidth the modes
can be safely obtained by using the mean shift procedure, the detec-
tion of maximum density points on the cluster boundary (i.e., the saddle
points) is not straightforward for multivariate data. We therefore develop
a gradient-based iterative algorithm for saddle point detection and show
its effectiveness in various data decomposition tasks. After finding the
largest density saddle point associated with each cluster, we compute
significance measures that allow formal hypothesis testing of cluster ex-
istence. The new statistical framework is extended and tested for the
task of image segmentation.

Keywords: grouping and segmentation; image features; nonparametric cluster-
ing; cluster significance.

1 Introduction

Data clustering as a problem in pattern recognition and statistics belongs to
the class of unsupervised learning. It essentially involves the search through the
data for observations that are similar enough to be grouped together. There is a
large body of literature on this topic [5,12,17]. Algorithms from graph theory [6,
10], matrix factorization [25, 27], deterministic annealing [16], scale-space theory
[20,26], and mixture models [7,23] were successfully used to delineate relevant
structures within the input data.

However, the clustering task is inherently subjective. There is no accepted
definition of the term cluster and any clustering algorithm will produce some



partitions. Therefore, the ability to statistical characterize the decomposition
and to assess the significance of the resulted number of clusters is an important
aspect of the problem.

Approaches for estimating the number of clusters can be divided into global
and local methods. The former evaluate some measure over the entire data set
and optimize it as function of the number of clusters. The latter consider in-
dividual pairs of clusters and test whether they should be joined together. A
general description of methods used to estimate the number of clusters is pro-
vided in [18] while a study described in [21] conducts a Monte Carlo evaluation
of 30 indices for cluster validation. These indices are typically functions of the
within and between cluster distances and belong to the class of internal mea-
sures, in the sense that they are computed from the same observation used to
create a partition. Consequently, their distribution is intractable and they are
not suitable for hypothesis testing.

As a result, the majority of existing methods for estimating the validity of
the decomposition do not attempt to perform a formal statistical procedure but
rather look for a clustering structure under which the statistic of interest is
optimal, i.e, maximize or minimize an objective function [19, 24].

Validation methods that do not suffer from this limitation were recently pro-
posed [29, 30], but are computationally expensive, since they require simulating
multiple datasets from the null distribution.

In this paper we present a new and practical approach to compute the sta-
tistical significance (p-value) of each delineated cluster. A nonparametric model
is assumed in which the clusters correspond to local maxima (modes) in the
probability density function of the data [8, p.533]. The test statistic that we
develop compares the estimated density of the mode with the estimated density
of the highest saddle point on the cluster boundary. To find the saddle points in
the multivariate density surface we develop and test a gradient-based iterative
algorithm. Note that for both the mode and saddle point finding only the density
estimate and its normalized gradient are used (and not the Hessian matrix of
second derivatives). Because of this, our the methods scale well with the space
dimension.

The organization of the paper is as follows. Section 2 discusses the importance
of the modes and saddle points of the density for characterizing the underlying
data structure. The mean shift-based data decomposition is shortly reviewed in
Section 3. Section 4 describes the new algorithm for saddle point detection, while
the test statistic is developed in Section 5. Experimental results are shown in Sec-
tion 6. The application of our new statistical framework for image segmentation
is discussed in Section 7.

2 Importance of Modes and Saddle Points

Clustering using the nonparametric estimation of the data density is achieved
by identifying local maxima (modes) and their basins of attractions in the multi-
variate surface of the data density function. The modes of the density are usually



detected using the gradient ascent mean shift procedure [4, 3], discussed in the
next section. All the data points lying in the basin of attraction of a mode will
form a separated cluster. In the case of a density function with constant values
at a peak, the points on this peak are considered a single mode, called a plateau.
Similarly, all the data points lying in the basin of attraction of a plateau form a
separated cluster.

The number of observed modes depends on the bandwidth of the kernel used
to compute the density estimate. In general the number of modes decreases with
the increase of the bandwith. The most common test for the true number of
modes in a population [28] is based on critical bandwidths, the infimum of those
bandwidths for which the kernel density estimate is at most m-modal.

A different approach is proposed for the univariate case in [22] where the
validity of each mode is tested separately. The test statistic is a measure of
the size of the of mode, the absolute integrate difference between the estimated
density and the same density with the mode in question removed at the level of
the higher of its two surrounding antimodes. The p-value of the test is estimated
through resampling. Note that an antimode is defined for the univariate data as
the location with the lowest density between two modes. The main advantage
of this technique is that each individual suspected mode is examined, while the
bandwidth used in the test can be selected adaptively as smallest bandwidth at
which the mode still remains a single object.

Our work is related to the technique in [22] by defining a similar procedure
for the testing of multivariate data. However, since we would like to avoid resam-
pling, we will define a test statistic whose distribution can be evaluated through
statistical inference, by taking into account its sampling properties. In addition,
since the antimodes defined for univariate data translate into saddle points for
the multivariate case we will need an algorithm for saddle point computation.

To give the reader an initial view on the problem we present in Figure la a
sample data set drawn from two bivariate normals, while Figure 1b, Figure 1c,
and Figure 1d show the corresponding probability density estimate obtained
with a two dimensional normal kernel with bandwidth h = 0.6, h = 0.9, and
h = 1.35, respectively. The detected modes are marked with green dots, while
the saddle points are marked with red dots.

A number of observations can be made using Figure 1. First, for a given
bandwidth, the number of observed modes determines the number of distinct
structures in the density estimate. The mode density is an indication of the
compactness of the associated structure. The difference between the mode den-
sity and the saddle point density is an indication of the isolation of the observed
structure. In addition, both the mode density and the mode-saddle density dif-
ference decrease with the increase of the bandwidth. When the mode density
becomes equal to the saddle density the observed structures are amalgamated
into a new one. Hence, the appropriate analysis bandwidth should be the smallest
bandwidth at which the mode in question still remains a single object.

For a rigorous treatment of the evolution of the zero crossings of the gradi-
ent of a function along the bandwidth see [1,32]. The catastrophe theory [11]
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Fig. 1. Importance of modes and saddle points. (a) Input data containing 100 points
from each bivariate N([-1.8,0],I) and N([1.8,0],I). (b) Density estimate with a two di-
mensional symmetric normal kernel with A = 0.6. The modes are marked with green
dots, while the saddle point is marked with a red dot. (c) Density estimate with h = 0.9.
(d) Density estimate with A = 1.35. The two modes and the saddle point collapse into
one mode.

investigates the behavior of the singularities of a function in families of functions
such as the family of densities generated by using various bandwidths.

3 Mean Shift Based Data Decomposition

In this section we define the mean shift vector, introduce the iterative mean shift
procedure, and describe its use in the data decomposition.



3.1 The Mean Shift Procedure

Given n data points x;,% = 1 ...n in the d-dimensional space R%, the multivariate
mean shift vector computed with kernel K in the point x is given by [9, 3]

Lz %iK (XhX;) _x, (1)

= 2?21 K (x;lxl-

where h is the kernel bandwidth. In the following we will use the symmetric
normal kernel defined as

mg (x

K () = ()~ %exp (=5l &)

It can be shown that the mean shift vector at location x is proportional to the
normalized density gradient estimate computed with kernel K

mic (x) = p2 VI 3)

fr(x)
The normalization is by the density estimate in x obtained with kernel K. Note
that this formula changes a bit for kernels different from the normal [3].

The relation captured in (3) is intuitive, the local mean is shifted toward the
region in which the majority of the points reside. Since the mean shift vector
is aligned with the local gradient estimate it can define a trajectory leading to
a stationary point of the estimated density. Local maxima of the underlying
density, i.e., the modes, are such stationary points. The mean shift procedure is
obtained by successive

— computation of the mean shift vector mg (x),

— translation of the kernel K (x) by mg(x),
and is guaranteed to converge at a nearby point where the density estimate has
zero gradient [3].

3.2 Data Decomposition

Let us denote by {yj}].:1
K, where

,  the sequence of successive locations of the kernel

S ik (Y)
S K (YRE)

is the weighted mean at y? computed with kernel K and y! is the center of the
initial kernel.

By running the mean shift procedure for all input data, each point x;, i =
1,...,n becomes associated to a point of convergence denoted by y, where the
underlying density has zero gradient. A test for local maximum is therefore

JH1 _

y j=12... (4)




needed. This test can involve a check on the eigenvalues of the Hessian matrix
of second derivatives, or a check for the stability of the convergence point. The
latter property can be tested by perturbing the convergence point by a random
vector of small norm, and letting the mean shift procedure to converge again.
Should the convergence point be the same, the point is a local maximum.

Depending on the local structure of the density hypersurface, the convergence
points can form ridges or plateaus. Therefore, the mean shift procedure should
be followed be a simple clustering which links together the convergence points
that are sufficiently close to each other. The algorithm is given below [3].

Mean Shift Based Decomposition

1. For each i = 1,...,n run the mean shift procedure for x; and store the
convergence point in y,.

2. Identify clusters {B,},_, ,, of convergence points by linking together all
y; which are closer than h from each other.

3. For each u = 1...m join together in cluster D,, all the data points x; having
the corresponding convergence point in B,,.

Fig. 2. Decomposition example. The mean shift procedure with A = 0.6 is applied for
the data set presented in Figure la. The trajectory of each point is shown together with
the two modes superimposed on the density surface. The view angle is from above.

A decomposition example is shown in Figure 2. Observe that the mean shift
trajectories are smooth, verifying a property remarked in [3], that the cosine of
the angle between two consecutive mean shift vectors is strictly positive when a
normal kernel is employed.

The advantage this type of decomposition is twofold. First is requires a weak
assumption about the underlying data structure, namely, that a probability den-
sity can be estimated nonparametrically. In addition, the method scales well with



the space dimension, since the mean shift vector is computed directly from the
data.

4 Saddle Point Detection

This section presents an algorithm for finding the saddle points associated with
a given bandwidth h and a partition {D,},_; ,, obtained through mean shift
decomposition. We are interested in the detection of saddle points of first order,
having the Hessian matrix with one positive eigenvalue and all other eigenvalues

negative.
Select a cluster index v and define the complementary cluster set
C, = [ D.. (5)
UFY

In the following we will drop the index v for the simplicity of the equations. We
define two functions

A 1 X —Xp
for(xX) = — K (6)
DK nhd XDZED ( h )
and .
A _ X — X
fox(x) = o xge:oK ( 5 ) (M)

whose superposition at x equals the density estimate at x

i = g S (57 = Fo) + oo ®

Computing now the gradient of expression (8), multiplying by h?, and normal-
izing by fk it results that

A

I (x)

mg (x) = h? = = ap(x)mp, i (x) + ac(x)me, k(%) (9)
fr(x)
where
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are the mean shift vectors computed only within the sets D and C respectively,

and R R
ap(x) = fp,kx(x) ao(x) = fo.x(x)

Fx() ) (2



with ap(x) + ac(x) = 1. Equation (9) shows that the mean shift vector at any
point x is a weighted sum of the mean shift vectors computed separately for the
points in the sets D and C.

Our idea is to exploit this property for the finding of saddle points. Let us
assume that x; is a saddle point of first order located on the boundary between
D and C. The boundary condition is

mg(x;) =0 (13)

which means that the vectors ap (xs)mp, k (xs) and ac(xs)me, k (x5) have equal
magnitude, are collinear, but point towards opposite directions. This explains
the instability of x,. Indeed, a slight perturbation of x; towards C and along the
line defined by ap(xs)mp k(x,) and ac(xs)me,k (xs) will induce an increase
in the magnitude of ac(xs)me i (x5), which will move more x, towards C, and
so on. The same effect stands when x, is perturbed towards D. Note that the
process is one dimensional, no matter the dimensionality d of the space.
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Fig. 3. Solving first order saddle point instability. (a) A slight perturbation of x;
towards C along the line defined by ap(xs)mp k(xs) and ac(xs)me k(xs) will de-
termine the point xs to start moving towards C. (b) By employing the new vectors
rp(xs) and r¢(xs) the saddle point becomes stable and has a basin of attraction.
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A simple modification, however can make a saddle point stable. Let us define

the vectors

_ llac(x)me,x ()|l
= TapGmp i o) “> Xm0 ) (14)

rp(x)

and
ro(x) = llap(x)mp k (x)||
llac(x)me,k (x) |
obtained by switching the norms of ap(xs)mp x(xs) and ac(xs)me, k(Xs).
This time, in the case of a perturbation, the resultant

r(x) = rp(x) + ro(x) (16)

will point towards the saddle point and not away from the saddle point. Since the
saddle point is of first order, it will be also stable for the directions perpendicular
to r(z) hence it will be a stable point with basin of attraction.

ac(x)me g (x) (15)



Our algorithm will use the newly defined basin of attraction to converge to
the saddle point. The convergence proof will be given in a subsequent paper, the
flavor of the proof being similar to the mean shift convergence discussed in [4,
3].

However, while all the mean shift paths converge to a local stationary point,
the saddle point detection algorithm should be started close to a valley, i.e., at
locations having divergent mean shift vectors coming from the sets D and C

aD(x)aC(x)mD,K(x)TmaK(x) <0 (].7)

Since the data is already partitioned it is simple to search for points that verify
condition (17). If one starts the search from a point in D just follow the mean
shift path defined by me k(x) till the condition (17) is satisfied. Nevertheless,
if the cluster D is isolated, the function fo x(x) (7) will be close to zero for the
data points belonging to x € D and can generate numerical instability. Therefore
a threshold should be imposed on this function before computing m¢ & (x).

The overall algorithm for finding the saddle points lying on the border of D
is given below.

Saddle Point Detection
Given a data partitioning into a cluster D and another set C containing the
rest of the data points. For each xp € D, if the value of fo x(xp) (7) is larger
than a threshold

1. Follow the mean shift path defined by m¢ g (x) (11) until the condition (17)
is satisfied.
2. Follow the mean shift path defined by r(x) (16) until convergence.

Observe that similarly to the mean shift iterations, the saddle point iterations
can stop at saddle point of order larger than one. Therefore, the convergence
point should be tested, either using the Hessian, or through the stability method
discussed in Section 3.2.

Also note that the algorithm from above uses multiple initializations in the
search for the saddle points. Prior knowledge regarding the border of cluster D
can be used to reduce the number of executions.

An example of saddle point finding is shown in Figure 4. The two stages of
the algorithm are visible for some of the trajectories. When the second part of
the algorithm is initialized, the trajectory can have a sharp turn, to return back
towards the valley. Afterwards, however, the trajectory converges smoothly to a
saddle point.

5 Significance Test for Cluster Validity

Denote by x, the saddle point with the largest density lying of the border of a
given cluster characterized by the mode y,,,. The point x, represents the “weak-
est” point of the cluster border. It requires the least amount of probability mass
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Fig. 4. Saddle point finding example. The algorithm was applied twice, for the data
clustered as in figure Figure 2, once for the left cluster and once for the right cluster.
The trajectories are shown together with the two modes and the detected saddle point
superimposed on the density surface. The view angle is from above.

which should be taken from the neighborhood of y,, and placed in the neigh-
borhood of x; such that the cluster mode disappears, as described in [22].

To characterize this process, we will assume in the following that the amount
of probability mass in the neighborhood of the mode is proportional with f K(Ym)s
the probability density at the mode location, and the amount of probability mass
in the neighborhood of the saddle point is proportional to fK(xs), the density
at xs. This approximation is shown in Figure 5, which presents a vertical slice
in the density function.

Note that more evolved formulas can be derived based on the mean shift
trajectory starting from the saddle point, however, for larger dimensions it is
difficult to compute the exact amount of probability mass in a neighborhood.

Using the approximation from above, we model the location of data points
belonging to the cluster of cardinality n. as a Bernoulli random variable which
has a probability of

p== 5 (18)
fe(Ym) + fr(xs)
to lie in the mode neighborhood, and a probability of
g=1-p= 1K) (19)

fK(ym) + fr(xs)

to lie in the saddle point neighborhood. Taking now into account the sampling
properties of the estimator p (seen here as a random variable), the distribution
of p can be approximated under weak conditions as normal, with mean and
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Fig. 5. Approximation of the probability mass. The probability mass in the neighbor-
hood of y,,, and x, is assumed proportional to fx(y,,) and fx(xs), respectively.

variance given by

By =P o, = (20)
The null hypothesis which we test is the mode existence
Hy: p>05 wversus Hi: p<0.5 (21)

Hence, the test statistic is written as

p—0.5

z= (22)
Op
and using (18) and (20) we have
y = \/n_CflK(ym) _fK(XS) (23)

Fre(¥m) Frc(x5)

The p-value of the test is the probability that z, which is distributed with N (0, 1),
is positive
Prob(z > 0) = —— / exp(—12/2)dt (24)
2w J—,
A confidence of 0.95 is achieved when z = 1.65.

Using the framework from above, the clusters delineated with h = 0.6 shown
in Figure 1b have a confidence of 0.99 and 0.98, respectively, derived using the
mode densities of 0.0614 and 0.0598 and a saddle point density of 0.0384.

When h = 0.9 (Figure 1c) the two clusters have a confidence of 0.82 and
0.86, their mode densities are 0.0444 and 0.0460, while the saddle point density
is 0.0369.



6 Clustering Experiments

Ideally, the input data should be analyzed for many different bandwidths and the
confidence of each delineated cluster computed. This will guarantee the detection
of significant clusters even when they exhibit different scales. An alternative
method, less expensive is to choose one scale and join the least significant clusters
until they become significant. We should, however, be cautious in joining too
many clusters, because the approximation used in the computation of the p-
value of the test assumes a certain balance between the peak and the saddle
point neighborhood.

We applied the agglomerative strategy for the decomposition of the nonlinear
structures presented in Figure 6a. A bandwidth h = 0.15 was employed. In the
final configuration two modes and two saddle point were detected. The two clus-
ters have a confidence equal tp 1.00. The mode densities are 0.7744 and 0.8514
while the saddle densities are 0.2199 and 0.1957. The right saddle point has the
largest density. Note that the density values are one order of magnitude larger
than in the previous experiment. This is not a concern, since both coordinates
were rescaled. Also, note that our test statistic (23 accepts the rescaling of the
measured density.

15 T T T T T T T 150

05 L L L L L L L L L \
-2.5 -2 -15 -1 -0.5 0 0.5 1 15 -25 -15 -0.5 15
X X

(2) (b)

Fig. 6. Clustering of nonlinear structures. (a) Input data containing 270 data points.
(b) The trajectories for saddle point detection are shown. Our algorithm detected two
modes and two saddle points. The view angle is from above.

The next experiment was performed with A = 0.6 for the data shown in
Figure 7a. Initially the algorithm detected four peaks that can be seen in the
density surface shown in Figure 7b. However, the upper left peaks were joined
together, their clusters having low statistical confidence (0.73 and 0.57). The
cluster confidence for the final configuration are 0.921, 0.96 and 0.95. One can
observe that the upper left cluster has the lowest confidence.
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Fig. 7. Three clusters. (a) Input data containing 100 data points. (b) The trajectories
for saddle point detection are shown. Our algorithm detected three modes with high
confidence. Only the largest density saddle point for each cluster is shown. The view
angle is from above.

7 Application to Image Segmentation

We apply the image segmentation framework described in [2], which employs
mean shift to delineate clusters in a joint space of dimension d = r + 2 which
includes the spatial coordinates. For the gray level case, r = 1, while for color
images r = 3.

A clustering example for image-like data is shown in Figure 8. The 200 points
have the z coordinate data points in increasing order (for each unit z coordinate
there is one data point of variable y). A bandwidth of h = 0.4 was employed.
The algorithm detected first 5 clusters of confidence 0.59, 0.79, 0.61, 0.99, and
0.99, which were reduced to 4 clusters of confidence 0.83, 0.61, 0.99, and 0.99,
and finally to three clusters of confidence 1.00, 0.99, and 0.99. All the clusters
that were merged belong to the elongated structure from the left.

In addition, we performed a Monte Carlo test to verify the stability of the
decomposition. Out of 50 simulations only in 7 cases the number of clusters was
different different from three. A confidence of 0.9 was used.

The same agglomerative algorithm was employed for the segmentation of
two test images. Only clusters with confidence larger than 0.9 were retained.
The contours of the decomposition are shown in Figure 9. The same bandwidth
h, = 20 was used for the color information, while for the spatial domain we
used hy = 3 and hs = 4 (the second test image is 512 pixels, much larger than
the first one). The segmentation exhibits high quality contours. Compare for
example our result on Woman image with the segmentation in [31].
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Fig. 8. Clustering of image-like data. (a) Input data containing 200 data points. (b)
The trajectories for saddle point detection are shown. Our algorithms detected three
modes with high confidence. Only the largest density saddle point for each cluster is
shown. The view angle is from above.

8 Discussion

The results presented in this paper show that hypothesis testing for nonparamet-
ric clustering is a promising direction for solving decomposition problems and
evaluating the significance of the results. Although our simulations are not com-
prehensive, we believe that the proposed algorithms are powerful tools for image
data analysis. The natural way to continue this research is to investigate the
data in a multiscale approach and use our confidence measure to select clusters
across scales.

We recently discovered that the problem of finding the saddle points of a
multivariate surface appears in condensed matter physics and theoretical chem-
istry [13]. The computation of the energy barrier for the atomic transitions from
one stable configuration to another require the detection of the saddle point
of the potential energy surface corresponding to a maximum along a minimum
energy path. Numerical algorithms for solving this problem were developed for
the case when both the initial and final states of the transitions are known
[15] or only the initial state of the transition is known [14]. Compared to these
methods which perform constrained optimization on one surface, our technique
exploits the clustering of the data points the guide the optimization relative to
two surfaces whose superposition represents the initial surface.
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