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Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomog-
raphy (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal
disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan
alignment as well as for the segmentation and analysis of spinal disks and vertebral bodies in Computer
Aided Diagnosis (CAD) applications. In this article, we present a novel method that combines Marginal
Space Learning (MSL), a recently introduced concept for efficient discriminative object detection, with
a generative anatomical network that incorporates relative pose information for the detection of multiple
objects. It is used to simultaneously detect and label the spinal disks. While a novel iterative version of
MSL is used to quickly generate candidate detections comprising position, orientation, and scale of the
disks with high sensitivity, the anatomical network selects the most likely candidates using a learned
prior on the individual nine dimensional transformation spaces. Finally, we propose an optional case-
adaptive segmentation approach that allows to segment the spinal disks and vertebrae in MR and CT
respectively. Since the proposed approaches are learning-based, they can be trained for MR or CT alike.
Experimental results based on 42 MR and 30 CT volumes show that our system not only achieves superior
accuracy but also is among the fastest systems of its kind in the literature. On the MR data set the spinal
disks of a whole spine are detected in 11.5 s on average with 98.6% sensitivity and 0.073 false positive
detections per volume. On the CT data a comparable sensitivity of 98.0% with 0.267 false positives is
achieved. Detected disks are localized with an average position error of 2.4 mm/3.2 mm and angular error
of 3.9�/4.5� in MR/CT, which is close to the employed hypothesis resolution of 2.1 mm and 3.3�.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Examinations of the spine in both Magnetic Resonance (MR)
imaging and Computed Tomography (CT) require a standardized
alignment with the vertebral column. While some physicians
may prefer to align an oblique multi-planar reconstruction in the
acquired 3D volume, improved image quality is achieved when
incorporating the alignment into image generation. In CT, for
example, specialized reconstruction algorithms can compute obli-
que slices from the spiral raw data. In MR, oblique acquisition
matrices as well as saturation bands for suppressing lipid artifacts
have to be aligned with the spine based on a scout scan. As manual
alignment is both time-consuming and operator-dependent, it is
desirable to have a robust, fully automatic, and thus reproducible
approach.

For reporting, physicians are also interested in an automatic
labeling of the vertebrae (C1, C2, . . . , T1, . . . , L5, S1) that avoids er-
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ror-prone manual counting. Such a labeling may further support
systems for semantic body parsing (Seifert et al., 2009; Seifert
et al., 2010; Criminisi et al., 2011) and semantic description of ana-
tomical locations through vertebra names as frequently done by
physicians (Klinder et al., 2009; Seifert et al., 2010). Furthermore,
an automatic system for localizing the spinal disks can also be part
of a computer-aided diagnosis system for analyzing pathologies of
the spine, the spinal disks or the vertebrae (Wels et al., 2012). Ap-
proaches modeling biomechanical behavior of the spinal column
(Adams and Dolan, 2005) could also benefit from such a system
by supporting patient-specific analyses to guide therapeutic deci-
sions (Tschirhart et al., 2007; Seifert and Dillmann, 2007; Adams
and Dolan, 2011).

An automatic procedure for detecting and segmenting the
spinal column faces various challenges, however. Varying con-
trasts, image artifacts and pathologies can compromise the detec-
tion of spinal disks based on local image features. Thus, a global
spine model is required to robustly identify individual disks from
their context. Such a model must also cope with missed detections
and pathologic deformations of the spine such as various types of
scoliosis, kyphosis and lordosis. Finally, the overall approach
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should run reasonably fast (within seconds) to allow clinical
application.

In this article we propose a novel approach that combines effi-
cient local object detection based on an iterative version of Mar-
ginal Space Learning (MSL) (Zheng et al., 2008) with a global
probabilistic prior model for the vertebral column. Furthermore,
we propose an adaptive segmentation approach that, initialized
with an oriented bounding box around a detected spinal disk or
a vertebra, may be used to obtain detailed boundaries. Since our
whole system is learning-based, it can easily be trained for use
with CT as well as various MR sequences (Georgescu et al., 2005).
Compared to a previous version of this work published in (Kelm
et al., 2010), here, we elaborate on some details of the proposed
algorithm and present additional results on CT data, structure seg-
mentation and an analysis of hyperparameters.

1.1. Related work

Recently, spine detection and spinal shape analysis have re-
gained interest. Boisvert et al. (2008) present a model that de-
scribes the statistical variations of the spine in terms of
sequential rigid transformations of the local vertebra coordinate
systems. Using principal component analysis on the Riemannian
manifold of rigid transformations, clinically meaningful eigen-
modes can be extracted. Although relying on the same metrics,
we extend upon that by formulating a probabilistic spine model
that is applied for detection rather than statistical analysis.

The detection of spinal disks in 3D MR scout scans has recently
been addressed by Pekar et al. (2007). The authors propose a three-
step approach using a special-purpose 2D image filter for disk can-
didate detection, followed by a customized spine tracking method
and a final labeling step based on counting. Since their approach is
designed to work on MR data only, it might not be easily adapted
to CT image volumes.

Schmidt et al. (2007) propose a trainable approach based on ex-
tremely randomized trees in combination with a complete graph-
ical model. They employ an A⁄-search based inference algorithm
for exact maximum a posteriori (MAP) estimation. The approach
only considers the position of the spinal disks, while we also deter-
mine their orientations and scales. However, their parts-based 3D
approach is similar to ours.

Corso et al. (2008) and Alomari et al. (2011) argue that a two-
level probabilistic model is required to separate pixel-level proper-
ties from object-level geometric and contextual properties. They
propose a generative graphical model with latent disk variables
which they solve by generalized expectation maximization (EM).
Although the approach only provides position estimates and has
only been evaluated for lumbar disks in 2D T2-weighted MR data,
it could in principle be extended to full 3D estimation. But since
EM only finds a local optimum of the expected log likelihood,
which can render such an approach very sensitive to initialization,
it is not clear how the approach would scale to higher-dimensional
estimation including 3D position, orientation, and scale.

Huang et al. (2008), Huang et al. (2009) propose a three-step ap-
proach comprising a vertebra detector based on AdaBoost, spinal
column fitting using the random sample consensus (RANSAC) algo-
rithm and a final segmentation step using an iterative normalized-
cut algorithm. They apply their method to sagittal slices from 22
spinal MR datasets, thus only present results based on 2D spinal
MR images.

Various approaches for automated spinal column extraction
and partitioning have also been proposed for CT data. One such
method is presented by Yao et al. (2006). It consists of the follow-
ing steps: thresholding for initial spine segmentation, spinal canal
extraction, four-part model-based vertebral region segmentation,
and intensity profile analysis for spinal column partitioning. Vali-
Please cite this article in press as: Kelm, B.M., et al. Spine detection in CT and M
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dation has been carried out by visual examination. By lacking a
quantitative analysis of the method’s accuracy it is difficult to as-
sess its practical applicability. Several design decision are made
paying respect to particular intensity and contrast characteristics
of CT data. For this reason adaptation of the method to MR data
may not be straight-forward.

Jäger et al. (2009) rely on an iterative spinal cord segmentation
method based on Markov random fields for assessing spinal geom-
etry in terms of computed planes through the vertebral bodies,
which is a less specific representation of the final detection results
than chosen by us. In order to pay respect to, in particular, scoliot-
ically deformed spinal columns, their method does not depend on
any prior information about the shape of the spine nor on the
shape of the vertebral bodies. It aligns with other methods for
the segmentation of the spinal cord (McIntosh and Hamarneh,
2006; Coulon et al., 2002).

A comprehensive system for spine segmentation was proposed
by Klinder et al. (2009). The approach starts with the tracking of
the spinal canal which is subsequently used for a curved planar ref-
ormation (CPR) of the CT volume. The detection of vertebra candi-
dates employs the generalized Hough transform on that CPR
volume. Vertebrae are then identified and labeled using an appear-
ance model learned from annotated data. Finally, the vertebrae are
segmented using a vertebra-specific point distribution model. The
algorithm, in particular the vertebra detection step, is tuned to-
wards CT and is not directly applicable to MR data. It was evaluated
on 64 CT volumes including cases with various pathologies. Further
methods for the localization of the spine in tomographic images
substantially rely on the segmentation of individual vertebrae like,
for example, the method of Peng et al. (2006).

While a motivation for our probabilistic model is found in the
great success of conditional random fields (Lafferty et al., 2001),
i.e. discriminative models, their training with nonlinear potential
functions is difficult (Dietterich et al., 2008) and has been avoided.
Instead we followed the common approach of combining a proba-
bilistic generative model and a discriminative model with indepen-
dent training like, for example, Wels et al. (2008) and Donner et al.
(2011). Alternative approaches for combining the strengths of gen-
erative and discriminative probabilistic models have been pro-
posed by Lasserre et al. (2006), Kelm et al. (2006) and Tu et al.,
2008.

2. Methods

We propose a learning based approach that can be applied to
MR and CT alike. Our approach can be subdivided into four major
steps (cf. Fig. 1). To constrain the search range for the disks, the
spine is roughly located within the given volume first. To this
end we use the MSL approach (Zheng et al., 2008) for detecting ori-
ented bounding boxes around the cervical, the thoracic and the
lumbar spine parts. Second, disk candidates are generated with
high sensitivity using a novel iterative extension of the MSL ap-
proach. Third, a global probabilistic spine model is used to select
the most likely disk candidates based on their appearance proba-
bilities and their relative poses. Simultaneously, this model also as-
signs an appropriate label to each disk. In the final, optional step,
the oriented bounding boxes around the detected disks are used
for a case-adaptive segmentation (detailed boundary delineation)
of the spinal disks in MR and the vertebral bodies in CT
respectively.

In the following, we first elaborate on the global probabilistic
spine model used for detection. We then review standard MSL
(Zheng et al., 2008) followed by the introduction of its iterative
extension. Finally, we describe a case-adaptive segmentation ap-
proach based on graph cuts that exploits the bounding boxes of
the detected spinal disks or the vertebrae.
R using iterated marginal space learning. Med. Image Anal. (2012), http://
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Fig. 1. Left: Four-step approach to the detection and segmentation of the spinal column. Right: Volume rendering showing the final 3D segmentations of the vertebral bodies
in CT.
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2.1. Global probabilistic spine model

The typical spatial structure of the spine gives rise to a prior on
the relative poses of the spinal disks. This has been modeled by the
factor graph (Kschischang et al., 2001) depicted in Fig. 2. We have
chosen a chain model with potentials considering position, orien-
tation and scale of the spinal disks. Each of the (vector-valued) ran-
dom variables b1 to bN represents the pose of a certain spinal disk,
thus bs holds a 3D position ps = [xs, ys, zs]T, a unit quaternion qs rep-
resenting the orientation and an anisotropic scale ss ¼ sx

s ; s
y
s ; sz

s

� �T

for every disk s 2 {1, . . . , N}. Thus, a distribution over disk poses
is defined by the log probability

log Prðb1; . . . ;bNjH;XÞ ¼
X

s

Vsðbsjhs;XÞ þ
X
s�t

Vstðbs;bt jhstÞ

� AðHÞ ð1Þ

where A(H) is the log partition function, X = (xi)i=1, . . . , M represents
the image data and H = {hs, hst} subsumes all model parameters
which are detailed in the following.

The pair potential between two neighboring disk bs and bt com-
bines relative position, relative scale and relative orientation terms

Vstðbs; btjhstÞ ¼ Vpos;st þ Vsca;st þ Vrot;st: ð2Þ

Relative position is modeled by a Gaussian pair potential

Vpos;stðbs;btÞ ¼ �
1
2

dT
posðbs;btÞR�1

pos;stdposðbs; btÞ; ð3Þ

where the displacement vector dposðbs;btÞ ¼ R�1
s ðpt � psÞ � lpos;st is

computed relative to the orientation of disk candidate bs. Thus the
position term is invariant with respect to translations and rotations
applied to both disk candidates bs and bt. The parameters of the po-
sition term are the mean displacement vector lpos,st and the covari-
ance matrix Rpos,st which is assumed to be diagonal here. Mean and
bs bt bNb1

V(bt)V(bs)

V(bs,bt)

Fig. 2. Factor graph modeling the relation between the spinal disks.
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covariance of the displacement vector are estimated from the anno-
tated training data for each pair potential of the spinal chain model
independently.

The scale term is modeled by a Gaussian potential as well:

Vsca;stðbs;btÞ ¼ �
1
2

dT
scaðbs;btÞR�1

sca;stdscaðbs;btÞ; ð4Þ

where the scale difference is dsca(bs, bt) = st � ss � lsca,st. Again,
mean scale difference lsca,st and diagonal covariance Rsca,st are esti-
mated from the training data.

For the orientation term, we follow an approach from Pennec
(2006) which suggests to employ the intrinsic metric of the under-
lying Riemannian manifold SO3. For the spine model this intrinsic
metric is the rotation angle between the orientations of the disk
candidates bs and bt. Thus, the orientation term is modeled as
the univariate Gaussian potential

Vrot;stðbs;btÞ ¼ �
a qtq�1

s l�1
rot;st

� �2

2r2
rot;st

ð5Þ

where qs (qt) is the quaternion associated with the rotation matrix
Rs (Rt) and the rotation angle a(q) = a([q0 q1 q2 q3]) is computed
from the quaternion as 2 arccos (q0). The orientation term defines
the variance parameter rrot,st and the quaternion mean parameter
lrot,st, which is determined as the Fréchet mean (Pennec, 2006). Col-
lecting all instances of a certain disk pair (bs,bt) into the training
sample Pst , the Fréchet mean for the corresponding orientation
term is determined as

lrot;st ¼ argminjqj¼1

X
ðbs ;bt Þ2Pst

a qtq
�1
s q�1

� �2
: ð6Þ

Here, the mean was computed using the eigen-decomposition pro-
posed by Karney (2007) and the variance was estimated with

r2
rot;st ¼

1
jPst j � 1

X
ðbs ;btÞ2Pst

a qtq
�1
s l�1

rot;st

� �2
: ð7Þ

Finally, the single site potentials, which are determined by iterated
marginal space learning as described in Section 2.2.2, encode im-
age-based likelihood, i.e.,

Vsðbsjhs;XÞ ¼ logðPrðbsjhs;XÞÞ: ð8Þ
R using iterated marginal space learning. Med. Image Anal. (2012), http://
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Fig. 3. Graphical overview of marginal space learning and its iterative extension (blue). (For interpretation of the references to color in this figure legend, the reader is
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Note that while the pair potentials, by their definition, are invariant
under global rigid transformations (translation and rotation), the
single site potentials that capture the appearance of disks are not
necessarily. However, since a common disk detector is trained for
different spine parts, the learned appearance models capture many
disk poses and thus exhibit some invariance towards rigid transfor-
mations. Hence, the resulting global probabilistic spine model is
insensitive towards slight changes of the spine pose. Furthermore,
models capturing only parts of the complete spine can be easily
constructed by just omitting certain disk variables. Since all poten-
tial parameters are determined independently (i.e., the likelihood
decouples), no retraining is required and a probabilistic model
appropriate for the current acquisition protocol, e.g., a lumbar spine
protocol, can be assembled at runtime.
2.2. Local probabilistic detection model

The single site potentials defined in Eq. (8) require a probability
estimate for the presence of a spinal disk at every possible position,
orientation and scale in the image volume. However, an exhaustive
evaluation of the single site as well as the pair potentials on the
uniformly discretized nine dimensional parameter space (3 posi-
tion, 3 orientation and 3 scale parameters) would quickly become
computationally infeasible. Hence, we adopt the MSL paradigm
(Zheng et al., 2008), a novel approach to object detection that
has recently proven successful in numerous applications (e.g. Feng
et al., 2009; Ionasec et al., 2009; Wels et al., 2009; Chen et al.,
2009).
2.2.1. Object detection using marginal space learning
Instead of searching the whole nine dimensional parameter

space for possible objects, the MSL heuristic proposes to employ
three estimation steps (cf. Fig. 3) and to greedily follow the most
promising partial candidate solutions in a fashion similar to beam
search (Koller and Friedman, 2009, p. 1156).

For the first step, a machine learning classifier is trained on
Haar-like features using integral volumes similar to the 2D ap-
proach proposed by Viola and Jones (2001). Like Zheng et al.
(2008), we used the probabilistic boosting tree (PBT) classifier
but other classifiers such as random forests (Breiman, 2001) work
as well. This position classifier is used to evaluate a number of Hpos

positions (e.g. some volume on a rectangular grid) and to collect
the Npos most likely candidate positions for the sought object. For
the second step, each candidate position is augmented by a dis-
crete number of Hort orientation hypotheses yielding NposHort par-
tial candidate solutions. These are evaluated by a second
classifier using steerable features (Zheng et al., 2008) and the Nort

most likely candidates are collected. Similarly, the third steps aug-
ments the position-orientation candidates with Hsca scale hypoth-
eses and determines the Nsca most likely detections among the
NortHsca candidate solutions. In the final step, an aggregate estimate
for position, orientation and scale is constructed from the Nsca esti-
mates obtained in the third step, for which a simple mean (Fréchet
Please cite this article in press as: Kelm, B.M., et al. Spine detection in CT and M
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mean for the orientations) is usually sufficient and may yield errors
below the discretization resolution.

Compared with exhaustive search, which would require the
evaluation of N = HposHortHsca candidate solutions, MSL only re-
quires the evaluation of N = Hpos + NposHort + NortHsca (partial) candi-
date solutions, which is considerably smaller for reasonably chosen
parameters Npos and Nort. Beyond this obvious speed-up obtained
through the MSL heuristic, it also leads to more robust and accu-
rate detection results than an exhaustive full space search (Zheng
et al., 2009b; Zheng et al., 2009a). This effect can be attributed to
the application of three classifiers, the first two of which are tuned
towards high sensitivity. Starting with a relatively low specificity
(‘first discard the obvious cases’), each stage is designed for reject-
ing false positives without loosing the true positives, which resem-
bles the idea of the cascade approach proposed by Viola and Jones
(2001). A crucial difference to the cascade approach is, however, that
the two first classifiers employed in the MSL approach only model
marginal distributions of the object parameters, which simplifies
the classification problem and leads to better generalization perfor-
mance (Zheng et al., 2009b). The approach of discarding candidates
with low probabilities at early stages also resembles the hierarchical
approach of Zhou et al. (2007) and can be generalized into applying
whole networks of detectors as described by Sofka et al. (2011).

2.2.2. Iterated marginal space learning
MSL has been designed to detect a single, specific object such as

a particular organ or landmark. If multiple objects of the same type,
such as spinal disks, are to be detected, the final aggregation step
has to be adapted to include some type of clustering before the
aggregation. But even then, this MSL approach may end up with
detections for the most salient disks only, i.e., many disks may be
missed. Although the sensitivity could be improved by drastically
increasing the number of considered candidates in each step,
MSL would then loose its computational efficiency and render such
an approach impracticable.

Algorithm 1. Iterated marginal space learning (iMSL).
R using iterated marginal space learning. Med. Image Anal. (2012), http://
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We therefore propose a novel extension to MSL, iterative MSL
(iMSL), to cope with multiple objects of the same type (cf. Algo-

rithm 1 and Fig. 3 blue parts). It is designed to achieve a higher sen-
sitivity than usual MSL at moderate computational costs. Like for
standard MSL, the position detector is evaluated in each voxel of
the given image volume region first. The N0 most likely candidates
are collected in the set of initial position candidates P0. Then, the
best Npos (Npos� N0) candidates from P0 are evaluated using the
orientation detector whose top candidates are evaluated using
the scale detector. The resulting set Dsca contains disk candidate
detections with all estimated parameters. Using pairwise aver-
age-linkage clustering (Hastie et al., 2001) with Euclidean distance,
clusters of candidate disks are obtained. The number of clusters is
determined by the cut in the dendrogram for which the distance of
the merged clusters first exceeds twice a specified radius R. The
most likely NA box candidates of each resulting cluster are aver-
aged and added to the set of detected disk candidates D. After
removing all position candidates from P0 that are closer than the
cluster radius R to any of the detections in D, orientation and scale
detection are repeated on the remaining position candidates until
no position candidates are left or no new disk candidates are
detected.

After the first iteration, iMSL produces the same results as stan-
dard MSL with equivalent parameters. Formally, the number of
candidate evaluations that are necessary for iMSL is N = Hpos +
Niter(NposHort + NortHsca) where Niter is the number of executed itera-
tions (which is case-specific and depends on N0). Since the number
of positions examined with the position classifier Hpos is the same
for both, iMSL and MSL, and since it dominates the number of eval-
uations N for sufficiently small Npos and Nort, iMSL does not require
significantly more computation time than MSL with the same can-
didate numbers Npos and Nort (DN = (Niter � 1)(NposHort + NortHsca)).
Starting with the second iteration, however, iMSL will examine less
likely partial solution candidates obtained with the position detec-
tor thus increase the detection rate, i.e., the sensitivity of the
detector.

2.2.3. Spinal disk detection
The probabilistic spine model described in the previous section

is discretized using the disk candidates detected with iMSL. Each
random variable bs is transformed into a discrete random variable
where each state represents one of the detected disk candidates. In
order to allow for missed detections, an extra ‘‘missing’’ state is
introduced. Note, that iMSL detects disk candidates with high sen-
sitivity which usually results in more disk candidates than actual
disks (cf. Fig. 1). The MAP estimate, i.e., the maximum of Eq. (1),
provides the optimum assignment of a disk candidate to one of
the disk variables according to the probabilistic spine model. Thus,
only those disk candidates that form a valid spine are selected and
are implicitly assigned a suitable label. The MAP is efficiently com-
puted by belief propagation where, due to the tree structure of the
factor graph (cf. Fig. 2), a single forward–backward pass yields the
exact solution (Kschischang et al., 2001).

2.3. Patient-adaptive structure segmentation

Once the position, orientation and scale of the spinal disks
bs = (ps, qs, ss), s 2 {1, . . . , N} are found, they can be exploited for ini-
tializing and guiding a detailed segmentation of disks and verte-
brae in MR and CT respectively. Since the vertebral disks and
bodies in one patient data set exhibit similar contrasts and thus
share the same basic appearance, we propose the following case-
adaptive segmentation method based on the graph cuts framework
(Boykov and Funka-Lea, 2006) as an optional post-processing step.

In this formulation, graph cuts are used to efficiently determine
the MAP estimate of a Markov random field by minimizing an en-
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ergy function defined by submodular potential functions (Kol-
mogorov and Zabin, 2004) that weighs between a local data-
based likelihood term and a global smoothness term:

Y � ¼ arg min
Y

XM

i¼1

VðxijyiÞ þ
X
i�j

V ijðyi; yjÞ
 !

ð9Þ

where i and j 2 {1, . . . , M} are indices to an image voxel, xi is the ob-
served intensity at voxel i and i � j denotes neighboring voxels
according to the employed 26-neighborhood system on the regular
3D lattice. The vector of fore-/background labels yi for all voxels in
the examined subvolume is denoted by Y 2 {+1, �1}M.

Here we use the spatially varying pair potential proposed by
Boykov and Funka-Lea (2006),

Vijðyi; yjÞ / exp �ðxi � xjÞ2

2r

 !
�

dyi–yj

distði; jÞ ; ð10Þ

where xi and xj denote the observed intensities at voxels i and j,
respectively, and the Kronecker delta dyi – yj

is one for yi – yj and
zero otherwise. The function dist (i, j) denotes the physical distance
between voxels i and j, which varies when working on image vol-
umes with anisotropic voxel spacing. The model emphasizes homo-
geneous classifications among neighboring voxels but weighs
penalties for heterogeneity according to intensity similarities of
the voxels involved. It assumes the noise among neighboring voxels
of an input volume to be distributed in a Gaussian manner. Discon-
tinuities between voxels of similar intensities are penalized if the
intensity difference jxi � xjj is smaller than r. However, if the voxel
intensities are very different, that is to say, the difference jxi � xjj is
larger than r the penalty is small.

The single site potentials V(xijyi) are derived from a probabilistic
model that is estimated from the detected spinal disks and verte-
brae for each individual patient prior to the structure segmenta-
tion. Let cs be the index closest to the detected disk position
ps; F s ¼ fj 2 f1; . . . ;Mgjdistðj; csÞ 6 rg the set of voxel indices
within a certain radius r around cs, and Bs ¼ fj 2 f1; . . . ;

Mgjj 2 Csg the set of voxel indices covered by the surface Cs of bs.
Certainly, the radius r should be chosen small enough to not exceed
the size of the object to be segmented. The combined random sam-
ples F ¼

SN
t¼1F t for the foreground and B ¼

SN
t¼1Bt for the back-

ground over all detected objects, i.e., vertebral disks or bodies,
are used for histogram estimates cPrðxj þ 1Þ and cPrðxj � 1Þ of the
associated distributions of fore- and background intensities,
respectively. Also taking into account fore- and background seed
points we have,

Vðxijyi ¼ þ1Þ ¼
0 if i 2 F ;
1 if i 2 B;
� logcPrðxij þ 1Þ otherwise;

8><>: ð11Þ

and

Vðxijyi ¼ �1Þ ¼
1 if i 2 F ;
0 if i 2 B;
� logcPrðxij � 1Þ otherwise:

8><>: ð12Þ

By computing the observation models based on detection results
obtained on-the-fly during processing, it is ensured that the fore-
and background models accurately characterize the intensity distri-
butions that are present in the current patient data set. This way, a
case-adaptive segmentation model is generated that is more precise
than models generated off line from a collection of patient data sets.
Due to degenerative diseases or slightly changed acquisition param-
eters, fore- and background models may vary a lot between differ-
ent patient data sets. Imperfections of individual detection results
R using iterated marginal space learning. Med. Image Anal. (2012), http://
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are compensated as the models are computed from multiple
structures.
3. Experimental

3.1. Data

Experiments have been conducted based on 42 MR and 30 CT
volumes. T1-weighted MR volumes (FL3D-VIBE sequence) were ob-
tained from 42 healthy volunteers. About one half of the volumes
has been acquired on two 1.5T scanner models (MAGNETOM Avan-
to and MAGNETOM Espree, Siemens AG, Erlangen) with TR = 5/
4 ms, TE = 2 ms and a flip angle of 10�. The other half has been ob-
tained from two 3T scanner models (MAGNETOM Trio, MAGNE-
TOM Verio, Siemens AG, Erlangen) with TR = 4/3 ms, TE = 1 ms
and again a flip angle of 10�. Each of the volumes was recorded
in a two station scan and subsequently combined to a volume cov-
ering the whole spine (approximately 860 mm � 350 mm �
190 mm). Susceptibility artifacts and intensity variations due to
magnetic field inhomogeneities were present in the data. No bias
field correction was performed.

CT data covering the thoracic and lumbar spine was acquired
from 30 patients with bone lesions. It was reconstructed in sag-
ittal slices, most at about 3 mm distance (three volumes with
2 mm and one with 1.2 mm), using various medium to hard
convolution kernels (B50f, B60f, B70f). The in-plane resolution
was between 0.48 mm and 1.70 mm. Various hyperdense dis-
ease patterns were present in the data stemming from osteo-
blastic bone lesions and diffuse sclerotic areas within the
vertebral bodies. In some patients, metallic spinal fixators
yielded severe streaking artifacts that contributed to the chal-
lenge of this data set.

Both, CT and MR volumes were resampled to an isotropic reso-
lution of 2.1 mm for spinal disk detection and to an isotropic reso-
lution of 6 mm for spine part localization. The segmentation
experiments were performed in the resolution of the original
reconstruction.
Table 1
Disk detection results using 10-fold cross validation based on 42 T1-weighted MR
volumes and 30 CT volumes. Left: position error. Right: angular error between
normals.

Position error (mm) Angular error (degree)

Cerv. Thor. Lumb. Avg. Cerv. Thor. Lumb. Avg.

MR Mean 2.09 2.41 2.86 2.42 4.86 3.38 3.80 3.85
Stdev 1.06 1.33 1.30 1.28 3.34 2.11 2.40 2.62
Median 1.84 2.18 2.68 2.19 3.89 2.90 3.37 3.17

CT Mean – 3.40 2.80 3.22 – 4.77 3.72 4.47
Stdev – 1.78 1.59 1.75 – 3.07 2.57 2.97
Median – 3.11 2.54 2.94 – 4.32 3.21 3.97
3.2. Ground truth and hyperparameters

Each spinal disk has been manually annotated with four defined
landmarks. From these, ground truth boxes have been derived for
the spinal disks as well as for the lumbar, thoracic and cervical
spine regions.

For spine part detection, standard MSL was run using Npos = 500
position, Nort = 50 orientation and Nsca = NA = 20 scale candidates.
For hypothesis generation we used position hypotheses at the vol-
ume resolution of (6 mm), orientation hypotheses at a resolution of
3.3� and scale hypotheses at 6 mm resolution.

For disk detection, iMSL was employed with a cluster radius of
R = 6 mm, N0 = 3000 initial position candidates and 500 candidates
for the remaining detection steps (Npos = 500, Nort = 500, Nsca = 500).
In each cluster, the top NA = 20 candidates were then averaged to
obtain a disk candidate. Hypotheses were again generated at vol-
ume resolution (2.1 mm), orientation hypotheses again at 3.3�
and scale hypotheses at 4.0 mm resolution.

Note that the choice of hyperparameters is not critical for the
performance of iMSL as long as they are within a reasonable range.
The cluster radius R, for example, determines the minimum dis-
tance that can be obtained between any two detections. For the
cervical disks we measured a distance of 18 ± 2 mm in our training
data which means that the cluster radius R should certainly be
smaller than 9 mm to avoid merging candidates from neighboring
disks. The number of initial position candidates N0, for example,
should exceed a certain minimum number. It can be estimated
Please cite this article in press as: Kelm, B.M., et al. Spine detection in CT and M
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from a few examples by examining the minimum number of can-
didates required to cover all disks after position detection which
we did on some MR volumes. Detailed results from an experimen-
tal analysis of the influence of the hyperparameters are provided in
the following.
4. Results

All evaluation results have been obtained using 10-fold cross
validation, ensuring that training and testing data never originated
from the same subject. Every ground truth annotation for which no
disk within a distance of 10 mm was detected, was counted as a
missed detection.

In MR, spinal disks were detected with a sensitivity of 98.64%
and only 0.0731 false positives per volume, yielding a positive pre-
dictive value of 99.68%. The overall processing time on a 2.2 GHz
dual core laptop computer was between 9.9 s and 13.0 s, and
11.5 s on average where most of the time was spent on disk candi-
date detection. In CT, a sensitivity of 98.04% was achieved while
0.267 false positives per volume were obtained, yielding a positive
predictive value of 98.43%.

The accuracy of the detected spinal disks has been evaluated by
the position distance and the angle between the disk plane nor-
mals of the detected spinal disks and the ground truth annotation
(cf. Table 1). On average, a position error of 2.42 mm (about 1 vox-
el) and an angular error of 3.85� was obtained for the MR data. For
the CT data, the position error of 3.22 mm and the angular error of
4.47� was slightly worse which can be attributed to both, the smal-
ler data set available for training and the presence of pathologies
and artifacts (cf. Fig. 5).

Four examples from the MR data set are shown in Fig. 4. The
right-most example shows a case where the volunteer has been in-
structed to lie down twisted in order to obtain a spine recording
with unusual pose. Still the proposed approach could locate and la-
bel all spinal disks reliably.

Fig. 5 shows four examples from the CT data set. The examples
exhibit various spinal pathologies and age-related degenerations.
Nevertheless, our method could locate and label the spinal disks
with high reliability. The right-most example shows that even in
the presence of severe metal artifact, our spinal disk detector is
sensitive and robust enough to detect the spinal disks that are
hardly visible. However, our method fails to detect the last spinal
disk between L5 and the sacrum, resulting in a shifted labeling of
the detected disks in this example. A detailed analysis reveals that
the L5/S1 disk is detected with iMSL but not selected with the glo-
bal prior model.

The influence of different hyperparameters on the performance
of the proposed iMSL algorithm is visualized in Fig. 6. Each graph
displays the behavior of position error, angular error and sensitiv-
ity when varying one of the hyperparameters while keeping all
others fixed to their default values (NA = 20, R = 6 mm, N0 = 3000,
R using iterated marginal space learning. Med. Image Anal. (2012), http://
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Fig. 4. Four examples from the MR data with detection results. Although the volunteer in the rightmost example lay down in an unusual pose, all spinal disks were detected
and labeled correctly.

Fig. 5. Four examples from the CT data set with detection results. The hyperdense areas within some of the vertebral bodies are either well-defined osteoblastic bone lesions
or diffuse sclerotic areas. The right-most example shows that our method can also cope with severe artifacts, here stemming from a spinal fixation. Note however, that in this
example the last spinal disk was missed and the labeling was erroneously shifted by one.
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Npos = Nort = Nsca = 500). All three performance measures are pro-
vided relative to their values with default parameters which are
marked with vertical, red and dotted lines. The top left graph in
Fig. 6 shows that, as expected, sensitivity starts dropping and the
position error deteriorates for an aggregation radius R above
10 mm (the distance between cervical disks is about 18 mm). For
very small values (<2 mm) the position error also increases while
the angular error remains nearly constant across all tested values.
Please cite this article in press as: Kelm, B.M., et al. Spine detection in CT and M
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The evaluation of the number of aggregation candidates NA reveals
that our default choice was not optimal and that all performance
measures could be improved by just increasing that number. For
the number of initial position candidates N0 our chosen default
value is very close to the minimum required number since any
smaller choice would quickly decrease sensitivity and increase
both position and angular error. Any bigger choice, however, would
be safe and leave the performance measures unaltered. A similar
R using iterated marginal space learning. Med. Image Anal. (2012), http://
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Fig. 6. Analysis of the influence of individual hyperparameters on the position error, angular error and sensitivity of the proposed algorithm on the CT data. All performance
measures are reported in percent relative to the performance obtained with the default parameters employed for all other evaluations, which are indicated by the vertical, red
and dotted lines. The top row shows from left to right results for the cluster radius R, the number of aggregation candidates NA and the number of initial position candidates
N0. The bottom row shows results for varying the number of position candidates Npos, orientation candidates Nort and scale candidates Nsca used in the iteration of the iMSL
algorithm.
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behavior is observed for the number of position (Npos), orientation
(Nort) and scale candidates (Nsca) considered in each iMSL iteration.
While their default choice appears not to be optimal, e.g. Nort and
Nsca could be chosen smaller, a broad range of values beyond a cer-
tain minimum number does not impair the accuracy of the iMSL
algorithm.
Fig. 7. Segmentation results. The two left examples show segmentations of the vertebra
segmentations of the spinal disks as obtained on one of the MR data sets. Even in the pr
bodies are well delineated.

Please cite this article in press as: Kelm, B.M., et al. Spine detection in CT and M
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Exemplary spinal disk segmentation results for the vertebrae in
CT and the spinal disks in MR are presented in Fig. 7. Due to the
renunciation of an overly restrictive shape prior, the obtained seg-
mentations accurately delineate spinal disks and vertebrae also in
the presence of pathologic shape deformations as seen in the CT
examples. The patient-adaptive appearance model helps to cope
l bodies obtained for two of the CT bone lesion patients. The right example shows
esence of severe pathologic degenerations like spinal disk herniations the vertebral
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with various patient-specific intensity characteristics that differ
from the standard due to pathology or degenerations caused by
old age (cf. Fig. 7).
5. Discussion

The results of our proposed method compare favorably with re-
sults presented in previous works. While with only 6s processing
time the approach by Pekar et al. (2007) runs faster than ours, it
has lower sensitivity (95.6% before candidate selection) and does
not provide orientation estimates.

Compared with the best cross validation results on MR data by
Schmidt et al. (2007), the results obtained with our approach are
significantly better. While a competitive but still inferior sensitiv-
ity of 97% is reported, they only achieve a position error of 5.1 mm.
Furthermore, no orientation estimates are provided and the ap-
proach takes several minutes to run. In contrast to Schmidt et al.
(2007), we did not perform any posterior search at the positions
of missing disks which could further increase our sensitivity.

Although Klinder et al. (2009) do not provide position errors for
their vertebra detection step, the example shown in Figure 9 of
their article shows a very blurred Hough score and considerable
variance in the detected local coordinate systems which suggests
that their localization error is considerably bigger than the
3.2 mm achieved by our method. On average, their method re-
quires 27.9 s for candidate generation and another 36.5 min for
vertebra identification. Further considering the required process-
ing steps including two Hough transformations and the generation
of a curved planar reformation, their method appears to be compu-
tationally much more demanding than ours. Unlike our approach,
the method proposed by Klinder et al. (2009) works on volumes
with varying scan ranges and can reliably identify vertebrae if
more than 16 of them are within the scanned range. To this end,
our current approach still requires external information, e.g. from
user input, from the employed scan protocol or from an automatic
scan range detector (Emrich et al., 2010). A combination of our
method with a vertebra identification model similar to Klinder
et al. (2009) is also conceivable and might be a promising approach
if its computational requirements can be reduced.

Our results provide evidence that the presented approach also
works in the presence of pathological deformations of the spinal
column (such as various types of scoliosis, kyphosis, and lordosis)
and pathologies that result in unusual appearance of individual
disks (e.g. degeneration, herniation, desiccation, etc.) and vertebral
bodies (e.g. compression fractures, hemivertebrae, diffuse sclerosis,
etc.). In this as well as other applications we have observed, that
MSL is very robust to imaging artifacts and unusual appearances
of the sought object. Using iMSL increases sensitivity and helps de-
tect disks with very unusual appearance. The CT examples in Fig. 5
show cases in which disks between diseased vertebrae and disks in
the presence of severe artifacts can reliably be detected. Further-
more, since the global spine model is restricted to candidates pro-
vided by the disk detector, abnormalities such as scoliosis,
kyphosis, lordosis, compression fractures and hemivertebrae can
be robustly handled. The volunteer with the unusual pose in
Fig. 4 provides evidence towards this. Simple retraining of our sys-
tem with more abnormal cases added, enables the detectors as
well as the prior model to handle pathologies and degenerations
even more reliably.
6. Conclusion

In this article, we have presented a novel approach to the fully
automatic detection of 3D spinal geometry and labeling of the
spinal disks. The approach uses an iterative extension of MSL for
Please cite this article in press as: Kelm, B.M., et al. Spine detection in CT and M
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disk candidate detection along with an anatomical network that
incorporates spatial context in form of a prior on the nine dimen-
sional disk poses. Since the entire approach is learning-based, it
can be trained for CT and MR alike.

Using 42 MR and 30 CT volume data sets, superior sensitivity
and localization accuracy was obtained as compared to previous
works. With an overall processing time of only 11.5 s, the approach
is sufficiently fast to be used in various clinical applications,
including automatic scan alignment, computer-aided diagnosis
and decision support systems.
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