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Abstract—Transcatheter aortic valve implantation (TAVI)
is a minimally invasive procedure to treat severe aortic valve
stenosis. As an emerging imaging technique, C-arm computed
tomography (CT) plays a more and more important role in TAVI
on both pre-operative surgical planning (e.g., providing 3-D valve
measurements) and intra-operative guidance (e.g., determining
a proper C-arm angulation). Automatic aorta segmentation and
aortic valve landmark detection in a C-arm CT volume facilitate
the seamless integration of C-arm CT into the TAVI workflow and
improve the patient care. In this paper, we present a part-based
aorta segmentation approach, which can handle structural vari-
ation of the aorta in case that the aortic arch and descending
aorta are missing in the volume. The whole aorta model is split
into four parts: aortic root, ascending aorta, aortic arch, and
descending aorta. Discriminative learning is applied to train a
detector for each part separately to exploit the rich domain knowl-
edge embedded in an expert-annotated dataset. Eight important
aortic valve landmarks (three hinges, three commissures, and two
coronary ostia) are also detected automatically with an efficient
hierarchical approach. Our approach is robust under all kinds of
variations observed in a real clinical setting, including changes in
the field-of-view, contrast agent injection, scan timing, and aortic
valve regurgitation. Taking about 1.1 s to process a volume, it is
also computationally efficient. Under the guidance of the auto-
matically extracted patient-specific aorta model, the physicians
can properly determine the C-arm angulation and deploy the
prosthetic valve. Promising outcomes have been achieved in real
clinical applications.

Index Terms—Aorta segmentation, aortic valve landmark de-
tection, C-arm computed tomography (CT), transcatheter aortic
valve implantation, transcatheter aortic valve replacement.

Manuscript received July 05, 2012; revised August 16, 2012; accepted Au-
gust 19, 2012. Date of publication August 31, 2012; date of current version
November 27, 2012.Asterisk indicates corresponding author.
*Y. Zheng is with the Imaging and Computer Vision Technology

Field, Siemens Corporate Research, Princeton, NJ 08540 USA (e-mail:
yefeng.zheng@siemens.com).
R. Liao and D. Comaniciu are with the Imaging and Computer Vision Tech-

nology Field, Siemens Corporate Research, Princeton, NJ 08540 USA (e-mail:
rui.liao @siemens.com; dorin.comaniciu@siemens.com).
M. John, A. Nöttling, and J. Boese are with the Healthcare Sector, Siemens

AG, 91301 Forchheim, Germany (e-mail: matthias.mj.john@siemens.com;
alois.noetting@siemens.com; jan.boese@siemens.com).
J. Kempfert and T. Walther are with the Department of Cardiac Surgery,

61231 Bad Nauheim, Germany (e-mail: kempfertj@googlemail.com;
t.walther@kerckhoff-klinik.de).
G. Brockmann is with the Department of Cardiovascular Surgery, German

Heart Center, 80636 Munich, Germany (e-mail: brockmann@dhm.mhn.de).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMI.2012.2216541

I. INTRODUCTION

T HE open-heart aortic valve replacement is an effective
method to treat severe aortic valve disease. With 50 000

procedures performed annually, it is the most common valvular
heart surgery in the United States [1]. However, at least 30%
of patients cannot tolerate the surgical trauma due to the ad-
vanced age or the presence of various comorbidities [2]. Tran-
scatheter aortic valve implantation (TAVI) [also known as tran-
scatheter aortic valve replacement (TAVR)] is an emerging, less
invasive procedure to treat severe aortic valve stenosis, where
the prosthetic valve is inserted and deployed using a catheter
through a small puncture of the femoral artery (the transfemoral
approach) or a small cut at the heart apex (the transapical ap-
proach). After the first in-human TAVI case performed in 2002,
the procedure has been adopted rapidly, especially after the ap-
proval for commercial use in Europe in 2007, with more than
30 000 TAVI procedures performed in the world so far [3]. TAVI
has already accounted for more than 20% of aortic valve re-
placement procedures in Germany [4]. It is expected to grow fast
in the United States too after the recent approval for commercial
use in November 2011. The recent randomized trials show that
TAVI significantly reduces the mortality rate for a patient who
is too sick or weak to be a candidate for surgical valve replace-
ment, compared to the current standard medical therapy [2]. For
a high-risk patient who can still tolerate the surgical valve re-
placement, TAVI has comparable outcomes to the open-heart
surgical procedure [5].
Before the TAVI procedure, several important parameters of

the aortic valve (see Fig. 1 for the aortic valve anatomy) need
to be measured for surgical planning. For example, the distance
between the coronary ostia and the aortic valve hinge plane (the
lowest level of the valve cusps) is a critical parameter for patient
selection since a short distance increases the risk of blocking
coronary circulation after valve deployment. The diameter of
aortic valve annulus needs to be measured accurately to select
a prosthetic valve with an appropriate size. Fluoroscopy is cur-
rently the main working-horse imaging modality for TAVI (see
Fig. 2), where real-time images are captured on a C-arm system
to provide guidance to physicians [6]. The aortic root structure
is normally indistinguishable from the background [Fig. 2(c)];
therefore, whenever necessary, the contrast agent is applied to
temporarily enhance the valve structure [Fig. 2(b)] for a short
period. However, the contrast agent is toxic and its usage should
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Fig. 1. Anatomy of the aortic valve with aortic hinges indicated by red arrows,
aortic commissures indicated by purple arrows, and left/right coronary ostium
indicated by the green/blue arrow, respectively. Note: The third aortic commis-
sure is at the back of the valve and blocked in this view.

Fig. 2. Transapical aortic valve implantation under X-ray guidance. (a) An an-
giographic C-arm system able to acquire interventional 3-D CT images in an
operating room. (b) Contrast injection via a pigtail catheter (the white arrow)
immediately prior to valve (the yellow arrow) deployment. (c) Implanted valve.

be minimized. Overlaying a patient-specific aorta model ex-
tracted from 3-D images onto real-time fluoroscopy provides
valuable visual guidance to the physician. Computed tomog-
raphy (CT) is often used to provide the necessary 3-D geometric
measurements in pre-operative surgical planning. However, CT
images are rarely used intra-operatively during valve implanta-
tion because 2-D/3-D overlay (or registration) of data captured
from different imaging devices is quite difficult.
C-arm CT has recently emerged as a new imaging technique

with the following advantages, compared to conventional CT.
Since both the 3-D volume and 2-D fluoroscopic images are
captured on the same device, overlay of the 3-D patient-spe-
cific aorta model onto a 2-D image is straightforward and ac-
curate (except for relatively small cardiac and respiratory mo-
tion). Please refer to SectionV formore detail about the 2-D/3-D
overlay of the aorta model. Therefore, besides providing the 3-D
valve measurements as CT, C-arm CT can be easily integrated
into the intra-operative TAVI workflow to provide visual guid-
ance. Furthermore, since C-arm CT is scanned shortly before
the valve deployment (instead of days before as conventional
CT), it better reflects the current state of the patient’s anatomy.
In this paper, we propose robust and efficient methods for au-

tomatic aorta segmentation and aortic valve landmark detection
in C-arm CT for TAVI, as shown in Fig. 3. Besides providing the
aforementioned 3-D valve measurements, our system has a few
specific applications to the TAVI workflow. For example, the

Fig. 3. Applications of C-arm CT to transcatheter aortic valve implantation.
(a) A C-arm CT volume. (b) Automatically segmented aorta together with the
detected valve landmarks. (c) 3-D geometric measurements of the valve. (d)
Overlay of the segmented aorta onto a 2-D fluoroscopic image for visual guid-
ance during valve deployment.

detected aortic hinges can be used to predict a proper C-arm an-
gulation1 to mitigate the foreshortening of the aorta, therefore
reducing the tilting of the prosthetic valve with respect to the
aortic root after deployment. Selecting a proper angulation to re-
duce foreshortening is important for many fluoroscopy guided
interventional procedures, e.g., coronary angiography [7]–[9],
and C-arm CT can also be used to reduce the overlap with other
irrelevant structures of high attenuation (e.g., spine and ribs) [9].
Overlay of the detected aortic commissures helps to guide the
deployment of some nonrotation-symmetric valves, which need
to be aligned with the valve cusps. In summary, there are four
major potential applications of the proposed automatic segmen-
tation system in TAVI:
1) provide 3-D valve measurements for surgical planning;
2) provide a proper angulation (perpendicular to the aortic
annulus) for a C-arm system;

3) provide orientation guidance for implanting prosthetic
valves that are not rotation symmetric;

4) overlay of the detected coronary ostia onto 2-D fluoro-
scopic images provides guidance to physicians to avoid
blocking the ostia after valve deployment.

Various methods have been proposed to segment the aorta.
However, they work on a well established imaging modality,
such as CT or magnetic resonance imaging (MRI). Automatic
segmentation of the aorta in a C-arm CT volume is far more
challenging. First, the image quality from different clinical
sites varies quite a lot since C-arm CT is too new to have a
well accepted scanning protocol. We also observed significant

1The C-arm gantry has two degrees of freedom in rotation. Angulation means
the gantry orientation after combined rotation around both the primary and sec-
ondary axes.
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variations inside the same clinical site since physicians were
testing different scanning parameters (e.g., the amount of con-
trast agent and timing of the image acquisition). Conventional
image processing techniques, e.g., intensity-based thresholding,
region growing, and the watershed method, are usually not
robust under such large variations. We propose to use machine
learning techniques to exploit the rich information embedded
in an expert-annotated dataset. Second, the field-of-view varies
quite a lot for C-arm CT. For example, the aortic arch and de-
scending aorta may be captured in some volumes, but missing
in others. To address this challenge, we propose a part-based
aorta model. The whole aorta is split into four parts: aortic root,
ascending aorta, aortic arch, and descending aorta. Using the
part-based model, the whole aorta does not need to be fully
present. Depending on the parts that can be detected, different
workflows can be exploited; therefore, a large structural varia-
tion can be elegantly handled.
Aortic valve landmarks play an important role in the surgical

planning and visual guidance for TAVI. However, there is very
limited work on automatic aortic valve landmark detection, ex-
cept coronary ostium detection in CT angiography (CTA) for
coronary analysis [10]–[14]. In this work, we detect eight impor-
tant aortic valve landmarks (three hinges, three commissures,
and two coronary ostia). Independent detection of each land-
mark [15] is not robust since some landmarks are barely visible
due to imaging noise and the washout of contrast agent. The
detected landmarks may be inconsistent in their relative posi-
tioning due to the lack of constraints in independent detection.
In this paper, we propose to use a hierarchical approach by

first detecting a global object comprised with all eight valve
landmarks. The global object is detected efficiently using the
marginal space learning (MSL) method [16]. From the posi-
tion, orientation, and scale of this global object, we can infer
the rough position of individual landmarks. Each landmark is
then refined in a small region under the guidance of its own spe-
cific landmark detector. There is no standard way to define the
pose of the global object and an ad hoc solution is by no means
optimal. We propose an optimization-based method to define
global object pose tominimize the error of the inferred landmark
position. Besides the improved robustness, our approach is also
more efficient than the independent detection scheme [15].
Full automation, robustness, and efficiency are the keys for

the success of a system in a real day-to-day clinical utilization.
Our approach is robust under all kinds of variations observed
in a real clinical setting, including changes in the field-of-view,
contrast agent injection, scan timing, and aortic valve regurgi-
tation. Taking about 1.1 s to process a volume on a computer
with 2.33-GHz quad-core processors and 3 GB memory, it is
much more computationally efficient than the previous work
[12], [17], [18]. Automation and segmentation speed may be
less of a concern for pre-operative surgical planning, but ex-
tremely important for an intra-operative application. The pa-
tient is lying on the table with many medical devices inserted
(e.g., transesophageal echocardiographic transducer and various
catheters). The whole surgery team (including interventional
cardiologists, cardiac surgeons, nurses, and technicians, etc.)
may be halted, waiting for the segmentation result. In such a
clinical setting, an efficient, automatic segmentation system is

highly appreciated, being much easier to be seamlessly inte-
grated into the workflow. Under the guidance of our system,
promising outcomes have been achieved in real clinical appli-
cations. To the best of our knowledge, this is the first work to
apply automatic segmentation to C-arm CT for TAVI, and our
preliminary results have been published as conference papers
[19], [20].
The proposed methods are built upon our previous work on

MSL [16], which is applied to detect/segment the aortic root,
aortic arch, and the global valve landmark object. However, be-
sides the novel application to the TAVI procedure, this work also
presents two major contributions to the detection/segmentation
techniques. First, using a part-based aorta model, MSL is ex-
tended to segment the aorta under large structural variations due
to the limited field-of-view. Second, a novel method is proposed
to reduce the shape initialization error. After estimating the pose
of the global valve landmark object using MSL, a mean shape
(composed with eight valve landmarks) is aligned to the esti-
mated pose to generate the initial position of the landmarks. In
this work, we propose an optimization-based method to deter-
mine the best mean shape from a training set so that the land-
mark initialization error is minimized. This technique can be ex-
tended for better initialization of other nonrigid structures, e.g.,
heart chambers and livers.
The remainder of the paper is organized as follows. The re-

lated work on aorta segmentation and aortic valve landmark de-
tection is reviewed in Section II. The part-based aorta modeling
and segmentation is presented in Section III, followed by de-
tailed description of the proposed aortic valve landmark detec-
tion method in Section IV. In Section V, we briefly describe how
the automatic detection/segmentation is integrated in the TAVI
workflow. Quantitative evaluation is performed in Section VI
for the aorta segmentation, aortic valve landmark detection, and
the 3-D valve measurements derived from the automatic seg-
mentation. Furthermore, the accuracy of the imaging guidance
is evaluated. This paper concludes with Section VII for discus-
sions of the future work.

II. RELATED WORK

There is far more prior work on aorta segmentation than valve
landmark detection, while the latter is dominated by the detec-
tion of coronary ostia for coronary analysis. Aorta segmenta-
tion is primarily used for aortic aneurysm analysis [21]–[33]
and coronary analysis [10]–[14], though it can also be applied
for aortic calcium detection [34], connective tissue disorder de-
tection [17], blood flow quantification [35], and pulse wave ve-
locity measurement [36], etc. Only recently, we see its appli-
cation on TAVI [6], [18], [37]. Most of the proposed methods
focus on one part of the aorta, e.g., the descending aorta for
aneurysm analysis and the ascending aorta for coronary anal-
ysis. CT and MRI are the major imaging modalities of the aorta,
with only a few exceptions using ultrasound [38] and C-arm
CT [6], [37]. With a tubular shape, the aorta can be detected
and segmented using generic tubular structure segmentation ap-
proaches [39]–[41] as those applied to a coronary artery, which
mainly use various vesselness filters to enhance and extract the
centerline, followed by lumen segmentation. Since the aorta is
a much bigger structure than a coronary artery, more efficient
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methods (e.g., region growing, active contours, and level sets)
have been proposed to segment the lumen directly without ex-
tracting the centerline first [10], [17].
Aortic aneurysm analysis (including aneurysm detection,

segmentation, measurement, stent simulation, and virtual
endoscopy) is a major application of aorta segmentation in
previous work. Accurate segmentation of the aorta (including
the lumen and thrombus outer wall) facilitates the measuring
of the maximum aneurysm diameter and thrombus volume,
which are critical for a physician to decide if the patient should
be treated immediately or can still be on monitoring [33].
Normally, CT angiography (CTA) is the imaging modality and
only the abdominal or thoracic part of the descending aorta is
segmented. The intersection of the descending aorta with a CT
image slice has an elliptic shape, which is relative easy to track
along slices. Compared to the thrombus outer wall, the lumen
is much easier to segment in contrasted CTA images. However,
most algorithms are not fully automatic and a user still needs
to click at least one or two points to initialize the segmentation
[24], [25]. Thrombus segmentation needs more interactive user
corrections [24] or to be constrained by the segmented lumen
[25].
The ascending aorta is often segmented on CTA images to de-

tect coronary ostia, therefore providing seeds for the following
coronary artery centerline extraction and lumen segmentation.
Many methods require at least one user click inside the aorta to
initialize the segmentation. For example, in [10], starting from a
user clicked point, the aorta is segmented using a slice-by-slice
region growing algorithm. It is possible to detect the intersec-
tion of the ascending aorta on each slice using a Hough trans-
form-based circle detector, therefore making the whole proce-
dure fully automatic [13]. To avoid leakage into the left ven-
tricle, some heuristic rules have to be exploited to stop the region
growing or circle tracking [10], [13]. To improve computational
efficiency, the Hough transform is performed only once in [14]
to detect a seed point, followed by region growing based tracing.
Tek et al. [12] proposed a significantly different method for au-
tomatic aorta segmentation. The left ventricle is segmented first
and used to constrain the search for the aorta. Since the left ven-
tricle is segmented too, the whole procedure is time consuming,
taking about 6.2 s on a computer with a 2.8-GHz CPU.
MRI is another important imaging modality of the aorta to

detect the connective tissue disorder [17], and to measure the
aorta elasticity [42], blood flow [35], and pulse wave velocity
[36], etc. In these applications, the whole aorta is often pre-
sented in the volume and need to be segmented; therefore, the
tortuous aortic arch needs to be handled properly [42]. Zhao et
al. [17] proposed a semi-automatic method to segment the aorta
in cine MR images. Starting from user specified seed points, a
fast marching method is applied to provide an initial segmenta-
tion. The optimal surface method incorporating the motion in-
formation is developed to refine the segmentation.
Most of the previous methods are semi-automatic (a user

needs to click at least one point [17]) and slow (taking up to 450
s to process one volume [40]). Furthermore, the previous work
on aorta segmentation focuses on a relatively consistent imaging
protocol with much fewer variations than ours. For example, a
roughly same portion of the aorta is captured and the usage of

contrast agent is consistent, resulting in stable image charac-
teristics. However, our C-arm CT data exhibit large variations
in both contrast agent injection and field-of-view (resulting in
missing aorta part in a volume). In robust active shape models
(ASM), the missing part can be treated as outliers, which are
detected based on random sub-sampling [43], [44] or checking
the ratio of inter-landmark distances [45]. However, the robust
estimation methods have an implicit assumption that the ma-
jority of the landmarks are inliers. Therefore, the performance
starts to break down quickly when the outlier ratio is more than
50% [45]. In our application, more than half of the aorta is
often missing from a volume. Specific to aorta segmentation,
the method proposed by Peters et al. [46], [47] can also handle
variation in the field-of-view, where the segmented heart cham-
bers are used to predict the initial aorta position. Therefore, one
can determine which part of the aorta is presented in the volume
and process it properly. However, in our application, we cannot
rely on the segmentation of heart chambers since they are nor-
mally not contrasted in C-arm CT for TAVI, therefore difficult
to segment.
Previous work on aortic valve landmark detection focuses on

coronary ostia in CTA for coronary analysis. The process starts
from segmenting the ascending aorta and a coronary artery is
detected as a thin tubular structure attached to the aorta. The
position of the attachment is taken as the detected ostium. For
example, the largest connected components on each side of the
aortic root are picked as the left and right coronary arteries in
[10]. However, simple connected component analysis is not ro-
bust under imaging noise, resulting in a success rate of only
57%. Alternatively, coronary centerlines can be tracked from
the aorta surface in order to detect coronary ostia [12]. Since the
computationally expensive centerline tracing algorithm needs to
run on the whole aorta surface, it is more time consuming. Com-
pared to coronary ostium detection, there is less work on the de-
tection of other aortic valve landmarks, i.e., the aortic hinges and
commissures in this case. Ionasec et al. [48] presented a com-
prehensive aortic valve model, which includes all eight valve
landmarks. Since the trajectory of the landmarks in the whole
dynamic sequence is detected holistically, the detection accu-
racy on a static 3-D volume is not clear. In their early work
[15], the landmarks are detected independently to each other in
a static volume. Independent detection of multiple landmarks is
time consuming and may result in unrealistic geometric config-
urations due to the lack of constraints.
With the rapid adoption of TAVI, recently, we saw some work

on aorta segmentation for TAVI surgical planning [6], [18], [37],
[49], [50]. For example in [18], the cardiac chambers and the
aorta are segmented in pre-operative CT, and a detailed aortic
valve model is proposed and integrated into the heart model.
The initial position of coronary ostia is predicted from the seg-
mented aortic valve, followed by model-based adaptation for
the final detection. More closely related to our work, Gessat et
al. [6], [37] proposed a semi-automatic method on pre-opera-
tive C-arm CT for TAVI surgical planning. The aorta is seg-
mented using a region growing method starting from a user
specified point. The coronary ostia and aortic hinges are manu-
ally labeled. The extracted aorta model is then manually aligned
and overlaid onto intra-operative fluoroscopy to provide guid-
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Fig. 4. Diagram of marginal space learning-based nonrigid object detection and segmentation [16].

ance. In our approach, all these steps are fully automatic and
can be finished in about one second. Since the segmentation is
performed on intra-operative C-arm CT, the overlay of the aorta
model to fluoroscopy is also automatic using the intrinsic C-arm
coordinate system.

III. PART-BASED AORTA SEGMENTATION

In this section, we first give a brief introduction of our generic
3-D object detection and segmentation method using marginal
space learning (MSL) [16], which is used to segment the aortic
root and aortic arch. We then present our part-based aorta detec-
tion and segmentation method in detail.

A. Marginal Space Learning for 3-D Object Segmentation

Recently, we proposed marginal space learning (MSL) [16]
as an efficient and robust method for 3-D anatomical structure
detection and segmentation in medical images. Here, we give
a brief overview of MSL and interested readers are referred to
[16] for more details. Our technique is based on recent advances
in learning discriminative models to exploit rich information
embedded in a large expert-annotated database. We formulate
the segmentation as a two-step learning problem: anatomical
structure localization and boundary delineation.
Object localization (or detection) is a prerequisite for an au-

tomatic segmentation system and discriminative learning-based
approaches have proved to be efficient and robust for solving
2-D object detection problems [51]. In these methods, object
detection is formulated as a classification problem: whether an
image block contains the target object or not. The object pose
parameter space is quantized into a large set of discrete hy-
potheses and exhaustive search is used to pick the best hypoth-
esis. To be specific, each hypothesis is tested by the trained
classifier to get a detection score and the hypothesis with the
largest score is taken as the final detection result. To accurately
localize a 3-D object, nine pose parameters need to be esti-
mated (three for translation, three for orientation, and three for
anisotropic scaling). With the exponential increase of poten-
tial pose parameter combinations, exhaustive search is not prac-
tical for 3-D object detection. The idea of MSL is not to learn
a classifier directly in the full similarity transformation space
but to incrementally learn classifiers on marginal spaces. In our
case, we split the estimation into three steps: position estima-
tion, position-orientation estimation, and position-orientation-
scale estimation. After each step, we only keep a small number
of promising hypotheses; therefore, the pose parameter space is
pruned significantly to increase the detection efficiency.
After objection detection, we get the position, orientation, and

scale of the object. The mean shape is aligned to the estimated
transformation to get a rough estimate of the object shape. We

then deform the shape to fit the object boundary. Active shape
models (ASM) [52] are widely used to deform an initial esti-
mate of a nonrigid shape under the guidance of image evidences
and shape prior. The nonlearning-based generic boundary de-
tector in the original ASM [52] is not robust under complex
background or weak edges. We use a learning-based method to
exploit more image evidences to achieve robust boundary detec-
tion. Fig. 4 shows the system diagram for MSL-based nonrigid
object detection and segmentation.
MSL provides a generic framework for automatic object de-

tection and segmentation. Its efficiency can be further boosted
by exploiting the prior constraints among the pose parameters
in the marginal spaces [53], resulting in detection speed of less
than a second for most applications. MSL has been success-
fully applied to many 3-D anatomical structure detection and
segmentation problems in all major medical imaging modalities
[53], e.g., livers in abdominal CT, and heart chambers in both
CT and ultrasound images.

B. System Diagram for Part-Based Aorta Segmentation

Due to the variation in the field-of-view, the aorta in a C-arm
CT volume has no consistent structure; therefore, our MSL-
based approach cannot be applied directly. In this paper, we
propose a part-based aorta model (as shown in Fig. 5) by split-
ting the whole aorta into four parts: aortic root, ascending aorta,
aortic arch, and descending aorta. The aortic root and aortic arch
are consistent in anatomy; therefore, we can apply MSL to train
two separate detectors with one for each. The length of the as-
cending and descending aorta parts varies; therefore, we use a
tracking-based method to handle this variation. Fig. 6 shows the
system diagram of the proposed part-based aorta segmentation
method. We first detect the aortic root since it should always
be present in the volume. The aortic arch detector is then ap-
plied. If the aortic arch is not presented, therefore, not detected,
the descending aorta is often also missing in the volume.2 We
track the ascending aorta starting from the aortic root until the
top volume border. If the aortic arch is detected, we track the
ascending aorta starting from the aortic root until the arch. We
also track the descending aorta downward from the arch if the
arch is detected. After tracking, we get the centerline of the
whole aorta and a tube is synthesized as an initial rough esti-
mate of the shape. We then adjust each mesh point along the
surface normal to an optimal position, which has the largest re-
sponse from a learning-based boundary detector. Generic mesh
smoothing [54] is applied to enforce the smoothness constraint.

2Volumes with missing aortic arch are reconstructed with slice size of
, instead of The slice resolution is roughly the

same, resulting in a much smaller trans-axial field-of-view. Therefore, the de-
scending aorta is also outside the volume.
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Fig. 5. Part-based aorta model. The whole aorta is split into four parts, namely
aortic root, ascending aorta, aortic arch, and descending aorta.

Fig. 6. System diagram for part-based aorta segmentation.

Mesh point adjustment and mesh smoothing can be iterated a
few times to improve the boundary delineation accuracy.

C. Aortic Root Segmentation

In anatomy, the aortic root refers to the aorta segment between
the aortic hinges and the sinotubular junction. Previous non-
model-based approaches [10], [13], [14] have difficulty to ex-
actly delineate the boundary between the aortic root and the left
ventricular outflow tract (LVOT) since they are fully connected
and both contrasted in CTA. In C-arm CT, the contrast agent
is directly applied to the aortic root; therefore, the boundary is
clear if the aortic valve is fully closed. However, due to the aortic
valve regurgitation, the contrast agent may leak into the LVOT
in about 20%–30% of cases. The amount of leakage varies de-
pending on the severity of the regurgitation, which creates an
extra challenge to an automatic segmentation method. As a con-
sistent anatomy, the aortic root is segmented using MSL in our
system by fitting a surface mesh model into the data. Fig. 7
shows the aortic root segmentation results on a few data, demon-
strating the robustness of MSL under the variations of contrast
agent and aortic valve regurgitation. The contrast of the first
volume is strong (though with some imaging artifacts presented
around the aortic root), while the second volume has quite weak
contrast. The amount of regurgitation also varies quite a lot from
no regurgitation [Fig. 7(a)] to severe regurgitation [Fig. 7(d)].

Fig. 7. Aortic root segmentation results under the variations of contrast agent
and aortic valve regurgitation.

D. Aortic Arch Segmentation

The aortic arch is missing in about half of our dataset due to
the limited field-of-view of the C-armCT; therefore, the missing
or presence of the aortic arch needs to be detected automatically.
Since the aorta has a tubular shape, the intersection perpendic-
ular to its centerline is close to a circle. A tracking-based ap-
proach is often used to trace the circular shape, which works
well on the ascending and descending aorta parts. However, the
aorta centerline orientation needs to be estimated and updated
robustly during the tracking of the bending arch [42]. Otherwise,
a tracking error may be propagated to the following slices, re-
sulting in a failure (e.g., tracing into the supra-aortic arteries or
the nearby pulmonary artery). In this paper, we treat the aortic
arch as a holistic anatomical structure. In our part-based aorta
model (Fig. 5), the aortic arch is defined as the part from the
top of the aorta to the axial slice where the intersection of the
aorta diverges into two separated parts. As the case of the aortic
root, MSL is applied to detect and segment the aortic arch. By
segmenting the bending aortic root and arch with a model-based
approach, the remaining parts are much easier to handle. Since
the intersection of the ascending and descending aorta parts to
an axial slice is close to a circle, it can be tracked efficiently
without estimating the centerline orientation.

E. Tracking of Ascending and Descending Aorta Parts

The length of the visible ascending and descending aorta parts
varies significantly from volume to volume. Consequently, we
propose to use a tracking technique to deal with this variation.
After excluding the aortic arch, which is detected withMSL, the
remaining aorta has a close to circular shape on the trans-axial
intersection. Instead of using a time-consuming Hough trans-
form based circle detector [13], [14], we use machine learning
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Fig. 8. Aorta boundary refinement. (a) Initial synthesized tubular mesh after tracking the ascending and descending aorta parts. (b) Final segmentation after
boundary refinement. The first three columns show three orthogonal cuts of the volume and the last column shows the corresponding 3-D meshes.

technique to train a 2-D circle detector on an axial image slice
using 2-D Haar wavelet features [51]. Though the part close to
the bottom of the aortic arch has a more elliptical shape, the
deviation from a circle is still well constrained. Trained on all
such intersections, our circle detector is robust, though the circle
is a less accurate approximation of a more elliptical shape. The
tracking of the ascending aorta starts from the top of the aortic
root and is performed slice by slice, moving toward the patient’s
head. The detected circle on a slice is propagated to the next slice
and the circle detector is applied in a neighborhood of mm
around the initial estimate. For an image slice containing the as-
cending aorta, normally, the detector may find multiple circle
candidates around the true position. We pick the one closest to
the circle on the previous slice. If the aortic arch is detected in
the volume, the tracking procedure stops on the slice touching
the aortic arch. Otherwise, it stops when no aortic circles are de-
tected or it reaches the top volume border. Tracking of the de-
scending aorta is quite similar. The aortic arch is a bended tube
with two arms, one for the ascending aorta and the other for the
descending aorta. Tracking of the descending aorta starts from
the topmost axial slice touching the descending arm of the aortic
arch. The intersection of the already segmented aortic arch mesh
on that slice provides the initial position of the descending aorta.
The same procedure (as the tracking of the ascending aorta) is
then used to track the descending aorta slice-by-slice towards
the patient’s abdomen. The tracking stops on the slice with no
aortic circles detected or reaching the bottom volume border.
Slice-by-slice tracing is less robust than the MSL-based

global object detection. In this application, it is sufficient for
the ascending aorta, which is short and well constrained by the
aortic root at the bottom and the aortic arch at the top. However,
the tracking error of the descending aorta may build up since it
is a very long tubular structure. In addition, the contrast agent
inside the descending aorta is often pretty weak and gradually

washes out. Most of the aorta segmentation error comes from
the descending aorta. Fortunately, the descending aorta is less
important than the other parts in guiding the TAVI procedure.
Therefore, the clinical requirement of the segmentation accu-
racy is less strict.

F. Aorta Boundary Refinement

After tracking the ascending and descending aorta parts, we
get the centerline of the whole aorta. A generalized-cylinder
model is synthesized as an initial estimate of the aorta shape
and the radius at each centerline point is set to the radius
of the detected circle. Fig. 8(a) shows the synthesized tube
after tracking. The initialization is close to the true aorta
boundary; however, a circle does not fit the boundary exactly.
A learning-based boundary detector is exploited for final
boundary delineation. Interested readers are referred to [16]
for more details of the learning-based boundary detector. One
difference to the boundary delineation of the aortic root or
arch is that we cannot use the active shape models (ASM) to
enforce prior shape constraint since the aorta is not consistent
in structure due to the variation in the field-of-view. Instead,
a generic mesh smoothing technique [54] is used to achieve
a smooth surface for the segmented aorta. To be specific, a
two-step iterative approach is used.
1) Use the learning-based boundary detector to adjust each
mesh point along the surface normal to the optimal position
where the response of the boundary detector is the largest.

2) Apply generic mesh smoothing.
The above two steps are iterated a couple of times to improve

the boundary delineation accuracy. Fig. 8(b) shows the result
after boundary refinement. More examples of the aorta segmen-
tation results are shown in Fig. 9.
Note that, almost all previous work uses bottom-up ap-

proaches [11], [17], [39], [40], [42] to track the aorta centerline
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Fig. 9. Automatic aorta segmentation on a few example volumes. (a) Good
contrast in the whole aorta. (b) Severe aortic valve regurgitation. (d) Low con-
trast. (d) Contrast agent is almost washed out due to bad timing.

to handle variations. They are neither automatic nor robust to
noisy images. In comparison, we use the top-down MSL [16]
to detect the aortic root and arch, and use bottom-up tracking to
detect ascending and descending aorta parts, which have large
variations in length. Our system is a nice combination of both
approaches.

IV. AORTIC VALVE LANDMARK DETECTION

Besides segmenting the aorta, we detect eight aortic valve
landmarks (see Fig. 1), i.e., three aortic hinges, three aortic com-
missures, and left and right coronary ostia, since they are im-
portant in both surgical planning and providing visual guidance
during valve deployment. Though it is possible to detect each
landmark independently [15], the detection results may be in-
consistent in geometry. It also wastes computational power by
ignoring the strong geometric constraint among the landmarks.
We propose an efficient hierarchical approach by first detecting
a global object comprised with all eight valve landmarks. From
the position, orientation, and scale of this global object, we can
infer the rough position of individual landmarks. Each landmark
is then refined in a small region (e.g., a cube of 10 mm centered
on the initial position) under the guidance of its own specific
landmark detector.

A. Optimal Mean Shape for Accurate Shape Initialization

Similar to aortic root detection, we use marginal space
learning (MSL) [16] to efficiently detect the position, ori-
entation, and scale of the global landmark object. For a
learning-based method, we need to specify the ground truth
of object pose for each training volume; thereby, a learning
algorithm can learn the implicit relationship between the image
and object pose, which is later used to infer the correct pose

from an unseen volume. However, there is no standard way to
define the pose of the global object containing eight landmarks.
After detecting the global landmark object, we align the mean
shape (which is the average shape of the training set after global
transformation has been compensated) to the global pose to
get an initial estimate of each individual landmark’s position.
This initialization needs to be accurate. Otherwise, the final
boundary evolution may get stuck in a wrong position due to
the complication of the surrounding tissues. The mean shape is
generally calculated as an average of the normalized shapes in
an object-centered coordinate system. Therefore, the optimal
mean shape and optimal pose definition are closely related. In
[16], the orientation of a heart chamber is defined by its long
axis; the position and scale are determined by the oriented
bounding box of the chamber surface mesh. Although working
well in applications with relatively small shape variations, the
mean shape derived using the oriented-bounding-box based
method is not optimal at all.
In this paper, we present an approach to searching for an op-

timal mean shape that can represent the whole population
well. A group of training shapes, are sup-
posed to be given and each shape is represented by points

( for the aortic valve landmarks).
The optimal mean shape should minimizes the residual er-
rors after alignment

(1)

Here, is the corresponding transformation from the mean
shape to each individual shape . This procedure is called
generalized Procrustes analysis [55] in the literature. An itera-
tive approach can be used to search for the optimal solution. We
first randomly pick an example shape as a mean shape. We then
align each shape to the current mean shape. The average of the
aligned shapes (the simple average of the corresponding points)
is calculated as a new mean shape. The iterative procedure con-
verges to a locally optimal solution after a few iterations.
The similarity transformation with isotropic scaling is often

used as the transformation . However, MSL can efficiently es-
timate anisotropic scales of an object. By removing more defor-
mations, the shape space after alignment is more compact and
the mean shape can represent the whole population more accu-
rately. Therefore, we use an anisotropic similarity transforma-
tion to represent the transformation between two shapes, i.e.,
represents translation , rotation (represented as
a rotation matrix ), and anisotropic scaling . The
transformation of a 3-D point is

(2)

The optimal to align two shapes and is

(3)
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Suppose there is a common scale , and
let , , and . Equation (3) can
be rewritten as

(4)

Since there are no closed-form solutions for estimating the
anisotropic similarity transformation, we propose a two-step it-
erative approach to searching for the optimal transformation.
1) Starting from the given anisotropicity , we es-
timate the similarity transformation with isotropic scaling,

.
2) With the given similarity transformation , we up-
date the anisotropicity .

In the first step, at beginning, we can assume the scaling is
isotropic, , , and . The isotropic similarity
transformation can be estimated using a closed-form solution
[55, p. 84 ]. After some mathematical derivations, we find that
the second step also has a closed form solution as follows:

(5)

where

(6)

Since each step reduces the residual shape error after alignment,
the process converges. In practice, it converges quickly in three
to five iterations.
With a module solving the anisotropic similarity transforma-

tion between two shapes, we can plug it into the generalized Pro-
crustes analysis method to search for the optimal mean shape
. Besides the optimal mean shape, the optimal alignment

from the mean shape to each training shape is also obtained. The
transformation parameters of the optimal alignment provide the
pose ground truth that MSL can learn to estimate.

B. Unique Mean Shape for Aortic Valve Landmarks

The optimal mean shape is not unique. Any translation,
rotation, and scaling of is also an optimum since the transfor-
mation of the mean shape can be compensated by the individual
transformation . We remove the unnecessary flexibility of the

mean shape using the oriented-bounding-box based approach
[16] as follows. We first define a unique orientation. Suppose
three aortic hinges are denoted as , , and ; three aortic
commissures are denoted as , , and ; and and
represent the left and right coronary ostium, respectively. Let

be the mass center of three aortic
hinges and be the mass center of
three aortic commissures. The axis is defined as a unit vector
pointing from the hinge center to the commissure center

(7)

The axis is derived as follows:

(8)

(9)

(10)

Here, initial axis is defined as a unit vector pointing from
the left coronary ostium to the right coronary ostium . We
then rotate the axis inside the plane spanned by the and
axes to make it perpendicular to the axis, arriving axis . The
final axis is achieved by normalizing to a unit vector. The
axis is then a cross product of the and axes, .
After defining the orientation of the global shape, we calcu-

late an oriented bounding box for the eight landmarks. We set
the origin of the object-centered coordinate system to the center
of the box. We scale the bounding box anisotropically to make it
a cube of 1 mm in length. The optimal mean shape is tightly
bounded in the cube. After each iteration of the generalized Pro-
crustes analysis, is normalized using the above procedure,
therefore uniquely defined. We would like to emphasize that
such normalization of the mean shape does not change its
optimality, but helps to achieve a unique solution.

C. Efficient Hierarchical Aortic Valve Landmark Detection

On our evaluation dataset with 278 volumes (see
Section VI-A), the mean landmark error [the Euclidean distance
defined in (3)] inferred from the aligned mean shape is about
2.77 mm using the oriented-bounding-box based approach.
The Procrustes analysis converges after three iterations and
the mean landmark error is significantly reduced to 1.90 mm.
It demonstrates that the optimal mean shape derived using the
proposed method can better represent the whole shape popu-
lation. Fig. 10(a) and (b) show the distribution of the aligned
landmarks using the oriented-bounding-box based approach
and the proposed optimization approach, respectively. It is
clear that the distribution is more compact using the proposed
method.
After inferring the initial landmark position from the pose of

the detected global object, each landmark is then refined in a
small region (e.g., a cube of 10 mm centered on the initial posi-
tion) under the guidance of its own specific landmark detector.
Trained with the probabilistic boosting tree classifier, our land-
mark detector is similar to the detector used by Ionasec et al.
[48], but using the steerable features [16] that can be efficiently
extracted from the original volume. On the contrary, the method
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Fig. 10. The aligned of aortic valve landmarks and mean shape (represented
as big circles) using (a) the oriented-bounding-box based approach [16] and (b)
the proposed optimization approach.

Fig. 11. The aortic valve landmark detection results on two example data with
red dots for the hinges, purple for the commissures, blue for the left coronary
ostium, and green for the right coronary ostium. Each row shows three orthog-
onal cuts of a volume.

of Ionasec et al. needs to resample the original volume to an
isotropic resolution (e.g., 1 mm) to use the Haar wavelet fea-
tures. Fig. 11 shows the detected aortic valve landmarks after
local refinement on two example volumes.

V. WORKFLOW INTEGRATION FOR TAVI

In this section, we describe the integration of the automatic
aorta segmentation and aortic valve landmark detection into the
TAVIworkflow.We follow the steps the system performs during
the valve deployment and discuss the potential user interac-
tions. All described components have been integrated into an an-
giographic C-arm system (Artis zee/zeego with Siemens syngo
Workplace, Erlangen, Germany). Right before the implantation,
the physician starts to obtain a 3-D C-arm CT volume of the
aortic root by acquiring a rotational 2-D image sequence of 200
over 5 s on the C-arm system. Via a pigtail catheter, 15–25 ml
contrast agent (diluted to 75 ml) is injected over 5 s (with a 1-s
X-ray delay) into the aortic root. To minimize the respiratory
motion artifact, the physicians temporally stop mechanical ven-
tilation to the patient. Furthermore, rapid ventricular pacing3 is
applied to a heart rate that yields no effective heart pumping
and minimal blood flow. This allows using a relatively small

3Rapid pacing is regarded as a safe procedure by many physicians. How-
ever, a few physicians have concern that rapid pacing may peel off some
cardiac calcifications into the blood circulation, raising the risk of strokes.

Fig. 12. Screen shot of our prototype. Detected landmarks (coronary ostia in
blue and green, commissures in purple, hinges in red, centerline in yellow) and
derived structures (perpendicularity circle and ruler in red) are shown in 3-D
volume rendering and three orthogonal intersection planes with 15 mm slice
thickness. The panel in the lower right shows the user interface we added to the
existing system.

amount of contrast agent, compared to approximately 80 ml for
a conventional CT and approximately 15 ml for a single 2-D
angiogram [56]. After the rotational run is finished on the C-arm
system, all of the following steps 1–5 are started and performed
fully automatically.
1) Reconstructing 3-D CT volume from acquired rotational

image sequence.
The 3-D volume is reconstructed based on a software avail-

able with the angiographic C-arm system [57], which takes
about 12 s.
2) Segmenting the aorta and detecting the aortic valve land-

marks from 3-D volume.
The proposed method is applied to segment the aorta and de-

tect eight aortic valve landmarks: the aortic hinges that are the
lowest points of aortic root cusps (to support finding a C-arm
angulation perpendicular to the aortic root), the coronary artery
ostia (which have to stay open after prosthesis implantation),
and the aortic commissures where the cusps meet (to help ori-
enting anatomically designed valve prostheses). The aorta cen-
terline is also calculated from the segmented aorta mesh. This
process is quite fast, taking about 1 s.
3) Deriving additional structures from detected landmarks.
We derive a circle parallel to the plane spanned by the three

aortic hinges (see the red circle in the bottom-right quadrant of
Fig. 12). Visually, this perpendicularity circle degenerates to a
straight line if and only if the three aortic hinges are aligned
[see Fig. 13(a)], which corresponds to a perpendicular angula-
tion for valve implantation. It is important to avoid tilting of the
deployed prosthetic valve with respect to the aortic root (i.e., the
centerline of the prosthetic valve should be aligned accurately to
the centerline of the aortic root) to minimize the postprocedure
complications (e.g., valvular regurgitation and aortic root rup-
ture) [3]. The tilting inside the imaging plane is relatively easy
to correct by the physician during prosthetic valve positioning
under the guidance of fluoroscopy. The out-of-plane tilting is
avoided if both the aortic root and the prosthetic valve have no
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Fig. 13. Evaluation of imaging guidance in the TAVI workflow. (a) Overlay
with almost perfect matching. (b) Measurement of potential tilting of the pros-
thesis (for better illustration we show an image from an angulation not used for
valve deployment).

foreshortening on the imaging plane. The metal frame of a pros-
thetic valve is clearly visible under fluoroscopy, therefore, can
be adjusted to avoid tilting by checking the top or bottom ring of
the prosthesis [see Fig. 13(b)]. However, it is much more diffi-
cult to find a proper angulation for the aortic root. As soft tissue,
the aortic root is not visible under fluoroscopy and contrast agent
needs to be injected to check the foreshortening. Previously,
multiple iterations of adjustments need to be performed, com-
posed with 1) injecting contrast to check the foreshortening, 2)
determining the next angulation to try, and 3) rotating the C-arm
to that angulation. Using our system, the physician can perform
virtual rotations to get a proper angulation (on which the de-
rived perpendicularity circle degenerates into a straight line)
and, once done, the C-arm can automatically rotate to the se-
lected angulation. Additionally, contrast injections for perpen-
dicularity checks can be avoided in this process.
To estimate the likelihood for the coronary ostia to stay open

after implantation, the physician wants to measure their distance
to the aortic hinge plane. We create a ruler orthogonal to that
plane (see the red ruler in the top-right quadrant of Fig. 12).
We decided to show a ruler instead of numbers, because this
makes the measurement process transparent to the physician
and allows for user compensation of the measurement in case of
misdetected landmarks. The coronary artery dilates to a funnel
shape around its ostium, with a diameter up to 5 mm. Tradition-
ally, the ostium landmark is put at the center of the funnel shape
(as we did in this work), while some physicians may prefer to
put the ostium landmark at the bottom edge close to the aortic
hinge plane to get a more conservative distance measurement. A
ruler gives the physicians flexibility to adjust the measurement
based on their own preference.
4) Extract interior of segmented aortic shape out of 3-D

volume for volume rendering.
The interior of the segmented aorta is extracted from the

volume and visualized with volume rendering. Visualization of
coronary arteries is also important, but automatic segmentation
is difficult. To make them visible without segmenting them ex-
plicitly, we add voxels within 15 mm (determined heuristically)
to each detected coronary ostium into volume visualization.
5) Computing optimized volume rendering transfer function

parameters.
We want to avoid letting the user find manually the appro-

priate volume rendering parameters for transfer function

center and for transfer function width. Therefore, they are
calculated automatically based on the voxel intensities

(11)

(12)

Here, is a volume specific value and is determined
by the mean intensity of all voxels outside (inside) the boundary
of the segmented aorta with a fixed distance to it. The six param-
eters , , , , are tuned on a few
training data.
6) Landmark verification or correction.
The automatically detected valve landmarks need to be ver-

ified by the physicians, and corrected if necessary (though it
rarely happens in practice). To give the physicians a good initial
view, the volume is centered and zoomed based on the position
of the two detected coronary ostia and as many landmarks as
possible are shown on the three orthogonal volume intersection
planes (see Fig. 12).
If landmark positions and visualization are satisfactory, the

physician can perform the following steps.
7) Rotating 3-D volume to an appropriate C-arm angulation.
Every rotation of the volume rendering view corresponds to a

C-arm angulation (up to in-plane rotation). Therefore, using the
displayed perpendicularity circle or the commissures, the physi-
cian can virtually choose a view that corresponds to an appro-
priate C-arm angulation. The system then allows automatically
rotating the C-arm to that angulation.
8) Overlay of 3-D structures onto fluoroscopic images.
The live overlay [see Fig. 13(a)] of the rendered 3-D visual-

ization onto fluoroscopic images is based on software available
with the angiographic C-arm system. The 3-D volume is inher-
ently registered to the fluoroscopic images because both images
are acquired on the same system. The information of any further
C-arm rotations and table movements is fed to our application
and the overlay can be dynamically adapted. The adaptation step
is purely based on themachine coordinate system; therefore, it is
robust and fast. However, it does not compensate for patient and
cardiac/respiratory motions, which is part of our future work.

VI. EXPERIMENTS

In this section, we quantitatively evaluate the accuracy of
aorta segmentation and aortic valve landmark detection on a
large diverse C-arm CT dataset. Effectiveness of the C-arm
CT-based imaging guidance system in the real TAVI workflow
is also evaluated, including the aorta model overlay accuracy
and the tilting of the deployed prosthetic valve.

A. Evaluation of Aorta Segmentation and Valve Landmark
Detection

We collected a dataset of 319 C-arm CT volumes from 276
patients from 11 clinical sites over the world (mainly from
Germany, Australia, Japan, Canada, and USA). Most patients
have only one C-arm CT volume. If the image quality of the
first C-arm CT is not good enough, the physicians may perform
another C-arm CT scan. It normally happens on the first few
cases from a new clinical site with limited experience in C-arm
CT. Therefore, those patients may have up to three volumes
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TABLE I
AORTIC VALVE LANDMARK DETECTION ERRORS BASED ON A FOUR-FOLD CROSS-VALIDATION ON 278 VOLUMES.THE MEAN,

STANDARD DEVIATION (STD), AND MEDIAN OF THE ERRORS ARE REPORTED (MEASURED IN MILLIMETERS)

TABLE II
ERRORS OF SELECTED AUTOMATIC 3-D MEASUREMENTS BASED ON A FOUR-FOLD CROSS-VALIDATION ON 278 VOLUMES, INCLUDING THE ERROR
OF THE DISTANCE MEASUREMENT (IN MILLIMETERS) FROM CORONARY OSTIA TO THE AORTIC HINGE PLANE, AND THE ANGLE (IN DEGREES)

BETWEEN THE DETECTED AND TRUE AORTIC HINGE PLANE NORMALS

with variations in contrast agent injection and scan timing. In
our early collection, 15 patients also have a C-arm CT right
after the prosthesis deployment for post-deployment evalu-
ation, e.g., measuring valve regurgitation. Six patients have
prosthetic valves implanted from previous open-heart surgery.
The aortic hinges of the native valve have been destroyed on
all the postdeployment C-arm CT. The size of each slice in a
volume is 256 256 or pixels. A volume contains
around 200–300 slices. The image resolution is isotropic and
varies from volume to volume in the range of mm.
A four-fold cross-validation is performed to evaluate our al-

gorithm. The whole dataset is randomly split into four roughly
equal sets. Three sets are used to train the system and the re-
maining set is reserved for testing. The configuration is rotated,
until each set has been tested once.
The aorta segmentation accuracy is measured using the sym-

metric point-to-mesh distance [16]. For each point on a mesh,
we search for the closest point on the other mesh to calculate
the minimum distance. We calculate the point-to-mesh distance
from the detected mesh to the ground-truth and vice versa to
make the measurement symmetric. The contrast agent gradu-
ally fades out along the descending aorta; therefore, the length
of the segmented aorta may differ from the manual annotation
since it is difficult to determine consistently where the segmen-
tation should stop.When we calculate the error between the seg-
mented mesh and the ground truth, we exclude the extra distal
part of the descending aorta from evaluation. On average, the
length of the excluded part is about 35 mm, which corresponds
to about 15% of the descending aorta. The mean segmentation
error of the remaining aorta is 1.08 mm, with a standard devi-
ation of 0.56 mm. Fig. 9 shows aorta segmentation results on a
few volumes. The proposed method is robust under the varia-
tions of the field-of-view, contrast agent, scan timing, and valve
regurgitation.
We also quantitatively evaluate the valve landmark detection

accuracy. The post-deployment C-arm CT (15 volumes) is ex-
cluded since the native aortic hinges have been destroyed and
the aortic commissures have been significantly deformed. The
patients (six volumes) with prosthetic valves implanted from
previous open-heart surgery are excluded for the same reason.
We also exclude a few volumes (20 volumes) with extremely
poor image quality that the landmarks cannot be identified even
by an expert (though the aorta can be successfully segmented on

these volumes). Fig. 7(b) shows an example volume excluded
in the evaluation of landmark detection. For these patients, a
second C-arm CT scan with better image quality is available,
which is used to guide the TAVI procedure.
A four-fold cross-validation is performed on the remaining

278 volumes for aortic valve landmark detection. The landmark
detection accuracy is measured using the Euclidean distance
from the detected landmark to the ground truth. Table I shows
the detection errors. After global landmark object pose estima-
tion, we can get a good initial estimate of the landmark posi-
tion. The mean errors range from 3.35 to 4.26 mm for different
landmarks. Compared to the aortic hinges and commissures, the
initial coronary ostia have a larger mean error of 4.26 mm due
to the larger variations in the origin of a coronary artery. After
local refinement for each landmark, the errors are significantly
reduced. For example, the mean error of the aortic hinges re-
duces from 3.38 mm to 2.09 mm. The coronary ostia achieve
the largest reduction in detection error, from 4.26 mm to 2.07
mm. Fig. 11 shows the detected valve landmarks in two typical
volumes.
Multiple 3-D valve measurements can be derived from the

segmentation results. Due to the space limit, we only evaluate
the error in measuring the distance from the left and right
coronary ostia to the aortic hinge plane. As shown in Table II,
the mean error for measuring the left coronary ostium to hinge
plane distance is 2.10 mm. The right coronary ostium has a
larger mean error of 2.51 mm. The overall distance measure-
ment error is only slightly larger than the landmark detection
errors (2.07 mm for the coronary ostia and 2.09 mm for the
aortic hinges). The aortic hinge plane normal (calculated from
the detected aortic hinges) plays an important role in selecting
a proper C-arm angulation, which can affect the tilting of the
deployed prosthetic valve; therefore, it needs to be estimated
accurately. We calculate the angle between the estimated hinge
plane normal and its true value derived from the ground truth.
As shown in Table II, the mean angle is 3.68 . A tilting error of
5 is regarded by physicians as almost perfect (Section VI-B).
Our error is within this range, therefore can meet the clinical
requirement.
Regarding the segmentation accuracy, we cannot compare

our error with those reported in the literature directly because
they used different datasets captured from different imaging
modalities. Most of the previous aorta segmentation methods
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TABLE III
COMPARISON WITH PREVIOUS AORTA SEGMENTATION METHODS WITH REPORTED QUANTITATIVE MESH ERRORS

did not present a quantitative evaluation of the segmentation
accuracy [6], [11], [14], [21], [36], [38] or reported in different
error criteria [29], [31], [35], [42]. Table III lists the reported
aorta mesh errors available in the literature. Roughly, our ac-
curacy is comparable to the state-of-the-art, e.g., 1.55 mm re-
ported in [17] on 104 MRI datasets, 1.4 mm reported in [40] on
23 CT datasets, and 0.5 mm reported in [18] on 20 CT datasets.
Most of the previous work on aortic valve landmark detection
focuses on coronary ostia to initialize the tracing of coronary
arteries in CTA [10]–[14]. In that application, the detection ac-
curacy is measured as how many coronary arteries have been
successfully traced and no quantitative distance measurements
are reported. In [15], all eight aortic valve landmarks are de-
tected and the overall landmark detection error is 2.28 mm on
CT data, which is comparable to ours. In [18],Waechter et al. re-
ported smaller errors in aorta segmentation and valve landmark
detection. For example, the detection error of the left and right
coronary ostia are 1.0 and 1.2 mm, respectively, resulting is cor-
respondingly smaller 3-D measurement errors (0.6–0.9 mm for
ostia-to-hinge-plane distance and 1.8 for hinge plane normal
error). The errors are evaluated on a small CT dataset with 20
volumes and one volume with failed coronary ostium detection
is excluded. For comparison, we do not exclude any detection
outliers. Normally, a cardiac CT has a higher resolution (often
around 0.3–0.4 mm for in-slice resolution) than our C-arm CT
(0.70–0.84 mm). Unfortunately, Waechter et al. did not report
the volume resolution of their dataset. If standard high-resolu-
tion cardiac CT is used in [18] and the errors are measured in
voxels, our accuracy in aorta segmentation and landmark detec-
tion is comparable to [18].
Our approach is computationally efficient, taking about 1.1 s

(0.8 s for aorta segmentation and 0.3 s for valve landmark de-
tection) to process a volume on a computer with 2.33 GHz
quad-core processors and 3 GB memory. It is at least 10 times
faster than the previous methods [12], [17].

B. Evaluation of Imaging Guidance in TAVI Workflow

In the following experiments, we evaluate the accuracy of
our imaging guidance system in patients who received an Ed-
wards Sapien valve prosthesis (Edwards Lifesciences, Irvine,
CA). These valves are deployed under rapid ventricular pacing.
Retrospectively, we analyze the first 20 cases that were sup-
ported by our system and where the overlay image scene was
documented. We first evaluate the accuracy of the overlay of
the 3-D model and the X-ray images. We assume that a mis-
alignment corresponds to a shift parallel to the projection plane,

which simplifies the evaluation but ignores rotations. For each
patient, we take an image from the recorded overlay scene that
showed a contrast injection with rapid pacing right before de-
ployment of the prosthesis [see Fig. 13(a)]. We then measure the
shift error as the distance (in pixels) of a landmark point (e.g.,
an aortic hinge or coronary ostium) that could be identified in
the X-ray image and 3-D overlay. Furthermore, we measure the
shift along the aortic root centerline, which is the most impor-
tant direction for guiding the implantation. Because of the pro-
jective geometry of the images, a measurement in pixels must be
scaled using the known length of an object in approximately the
same distance to the X-ray detector. For this, we use the known
length of the implanted prosthesis (in mm) divided by its mea-
sured height (in pixels). For the 20 evaluated patients, we get a
shift error of mm (mean standard deviation) and in
centerline direction a shift error of mm. The reasons
for pronounced deviation in a few patients could be the disloca-
tion of the aortic root by sheath-manipulation and accidentally
movements of the patients caused by the physician. The mea-
sured accuracy is only valid under repeat rapid pacing, which
recovers the heart position that we had during the 3-D imaging;
therefore, the influence of cardiac motion is minimized.
We are also interested in how well the system can help to po-

sition the valve in the aortic root anatomy with minimal tilting.
Since a C-arm angulation suggested by our system influences
the final valve tilting, it would be interesting to evaluate the
post-deployment valve position in the patient anatomy. Unfortu-
nately, this would require a postoperative C-arm CT scan, incur-
ring additional contrast agent injection and X-ray dose; there-
fore, it is not done for most patients. (The 15 postdeployment
volumes in our dataset were captured before the development
of our system. Since the valve deployment was not guided by
our system, we could not use them to evaluate the tilting.) In-
stead, we determine for each patient the tilting angle of the
implanted prosthesis in the 2-D fluoroscopic image under the
chosen angulation. Thereby, we assume the tilting inside the
imaging plane has been corrected by the physician during pros-
thesis positioning right before the deployment, as discussed in
Step 3 of the TAVI workflow in Section V; therefore, ideally,
a proper angulation would result in a valve image not showing
any tilting. With this assumption, we also ignore other factors
like the complex interaction of operators, devices, and patient
anatomy. We measure the minimum and maximum elliptical di-
ameters of the upper prosthesis ring in the image in pixels [see
Fig. 13(b)] and derive the tilting by .
This value says how perpendicular the valve prosthesis is im-
aged right after implantation. For the 20 evaluated patients, we
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get a tilting of (mean standard deviation). Clini-
cally, a tilting of less than 5 can be stated as very good (ob-
tained in 60% of the patients in our study), 5 –10 as good
(30%), 10 – 15 as acceptable (5%), and larger than 15 as in-
appropriate (5%). The values show that a procedure with C-arm
CT support by our system yields overall good results. Reasons
for suboptimal angulation estimation may be due to the extra
dislocation of the aortic root after C-arm CT scan and/or acci-
dental patient movements.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a fully automatic aorta segmen-
tation and valve landmark detection system in C-arm CT with
applications to transcatheter aortic valve implantation (TAVI).
The system is very fast, on average, taking only 1.1 s to process a
volume. It is fully automatic and robust under all kinds of varia-
tions observed in a real clinical setting, including changes in the
field-of-view, contrast agent injection, scan timing, and aortic
valve regurgitation. In practice, landmark adjustments are only
rarely done by the user. The initial clinical trials have demon-
strated the usefulness of our system in the TAVI workflow, e.g.,
providing a proper angulation to avoid large tilting of a pros-
thetic valve after deployment. Hundreds of TAVI procedures
have been performed with our system and live demos have been
presented at several clinical conferences [58]–[60].
A valuable extension of our system would be the integration

of preoperative conventional CT images into the TAVI work-
flow. Our segmentation approach is generic, therefore can be ex-
tended easily to other imaging modalities by simple retraining,
without any manual parameter tuning. A similar automatic de-
tection and segmentation system has been built on cardiac CT
data for surgical planning. Robust 2-D/3-D registration of the
CT model onto real-time fluoroscopy is required to use CT for
visual guidance. An automatic registration algorithm has been
proposed and the preliminary results are promising [61]. Cur-
rently, it is under system integration for clinical evaluation.
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