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ABSTRACT

In this paper we present a learning based method for vessel
segmentation in angiographic videos. Vessel Segmentation
is an important task in medical imaging and has been inves-
tigated extensively in the past. Traditional approaches often
require pre-processing steps, standard conditions or manually
set seed points. Our method is automatic, fast and robust
towards noise often seen in low radiation X-ray images. Fur-
thermore, it can be easily trained and used for any kind of
tubular structure. We formulate the segmentation task as a
hierarchical learning problem over 3 levels: border points,
cross-segments and vessel pieces, corresponding to the ves-
sel’s position, width and length. Following the Marginal
Space Learning paradigm the detection on each level is per-
formed by a learned classifier. We use Probabilistic Boosting
Trees with Haar and steerable features. First results of seg-
menting the vessel which surrounds a guide wire in 200
frames are presented and future additions are discussed.

Index Terms— Blood vessels, Image segmentation, X-
ray angiocardiography, learning systems

1. INTRODUCTION

Vessel Segmentation is an important task in medical imag-
ing and has been investigated extensively in the past. In this
paper, we develop an automatic segmentation method for ves-
sels in coronary angiography.

Coronary angiography is a medical examination that uses
X-Ray imaging to find stenoses in coronary arteries. To lo-
cate such an abnormal narrowing of a vessel a catheter is put
into an artery in the groin or arm and guided to the heart. A
contrast agent is injected several times to visualize the ves-
sel and aid navigation of the catheter, guidewire, balloon and
stent in the coronary tree. Segmentation is performed during
the short period in which the vessel is visible in order to use
this information later in the procedure and for future analysis.

There is a plethora of different segmentation methods for
vessels. Some are specific to different kinds of vessels, such
as retina vessels or different modalities such as CT or MRI.
Only few papers handle the case of angiographic videos. [1]
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Fig. 1. Examples of main vessel segmentation in angio-
graphic images.

provides an extensive overview of different methods putting
them in categories such as (i) pattern recognition, (ii) model
based, (iii) tracking based and (iv) artificial intelligence.

Few papers exist that use machine learning techniques.
[2] uses wavelet features and k-Nearest Neighbor to label pix-
els as inside or outside of a vessel. A similar approach that
also uses k-Nearest Neighbor ([3]) is one of the few papers
to present quantitative results. However, its results are im-
practical for our purpose, since the method needs about 15
minutes to segment one image of a retina vessel and is not ro-
bust against edges that are not vessels. In angiography, such
edges frequently occur in form of background organs.

Many methods rely on standard conditions, heavy pre-
processing steps such as morphological top hat filters or on
manually set seed points. In contrast to these methods, our
approach is purely learning based and may be used for seg-
menting other kinds of tubular structures such as streets. We
do not require seed points, nor pre-processing of frames. Our
algorithm is real-time and returns a probability as well as a
width for each section of the vessel. We show first results on
200 frames.

The background section describes marginal space learn-
ing which shapes our learning process, probabilistic boosting
trees, which are used in all levels of learning and lastly steer-
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able features. After defining the representation of the vessel
we describe the training of our model. A section of experi-
ments follows and a conclusion is given.

2. BACKGROUND

2.1. Marginal Space Learning

Many object detection applications face the problem of a
high dimensional parameter space. Marginal Space Learning
(MSL) first introduced by ([4]) uses the fact that the posterior
distribution of the correct parameters given the data lies in a
small region of the n-dimensional complete parameter space:
Rn C Q.

Let P(€2,|D) be the true posterior given the data ©. In-
stead of searching for R, directly in £2,,, MSL proposes to
start in one of its low dimensional marginal spaces {2; and
sequentially increase the dimensionality of the search space:

where dim(€,) — dim(Qx_1) is usually small. Assume we
learned the probability distribution over space €2 which re-
sults in the subspace II; with the most probable values. This
allows us to restrict the learning and testing of the next higher
dimensional marginal space to I x Xj,. Hence, orders of
magnitude fewer parameters have to be examined by restrict-
ing the final R, early during the learning process. This is
different from a normal cascade of strong classifiers in that it
performs simple operations on a subset of (2.

2.2. Probabilistic Boosting Tree

The Probabilistic Boosting Tree (PBT) introduced by ([5]) is
used as a classifier in each marginal space. A PBT is similar
to a decision tree but instead of using just one attribute at
each node, a strong AdaBoost classifier is trained to find the
probability of classes y = {+1, —1} using several weighted
weak classifiers h(t): H(x) = Zle ahy(z).

Based on H(z) and the resulting probabilities g(+1|x),
q(—1|z), each node recursively subdivides the samples into
a left (Sjer¢) and a right set (Syignt). Assume, we have a
sample (x;,y;):

if g(+1|zi) —1/2 > € 2)
then (x4, Yi, 1) — Sright
elseif g(—1jz;) —1/2> ¢
then (x;,¥i,1) — Siest
else

(@i, i, q(+1|2:)) — Srigne and (x4, i, ¢(—1]25)) — Siese

It then trains another strong classifier in both sets unless
the empirical distribution ¢(y) = >, wid;i(y; = y) di-
rectly defines the class or the maximum depth is reached.
During testing, the complete posterior p(y|z)is recursively

Fig. 2. Left: Example of a vessel represented as a list of
quadrilaterals () each consisting of two cross segments C.
Each cross-segment consists of two endpoints p. Cross seg-
ments are connected through the boundaries B of the quadri-
lateral. Right: Example of a quadrilateral between two cross
segments and the relative coordinate system used for sam-
pling of steerable features at the white circles.

calculated from the entire tree by adding the probabilities
Dieft|right (y|w) of its subtrees, weighted by the current clas-
sifier‘s posterior :

P(ylz) = q(+1|z:)pright (Y|7) + q(=1]xi)prese(y|z)  (3)

2.3. Steerable Features

Steerable features is the name of a novel framework ([6])
which has been developed for 3d object segmentation with
a given mean shape. It can capture the orientation, rotation
and scale of an object while retaining a high degree of effi-
ciency. The idea is to set up a small relative coordinate sys-
tem for each given object with the center of the object being
the origin. Then, few points are sampled from the area (or
volume) around the origin by a certain pattern. Possible sam-
ples could be gray values, gradient values, probability maps
that have been calculated before, a combination or transfor-
mation of those or even combined values of different sample
points. Given those sampled features, a posterior probability
can be computed for the parameters of a given object. Figure
2 shows an example coordinate system inside a vessel. For
more details, see section 4.

3. VESSEL REPRESENTATION IN MSL

In order to apply MSL effectively, we chose the following
representation for a vessel. A vessel V' is defined to be an or-
dered list of n quadrilaterals (each associated with a probabil-
ity): V.= (Q1, ..., Q). Each quadrilateral @; consists of a
pair of cross segments C: Q); = (C; 1, C; 2). Each cross seg-
ment C' consists of its two endpoints (i.e. pixels in the image
domain 7): C; ; = (pi j1,Di,j,2). Neighboring quadrilaterals
share the same cross segments, ie.: Cjo = Cip11 Vi :
1 < i < n. Vessel boundaries B; ; and B; > are locally de-
fined for each quadrilateral to be either a line with endpoints



Fig. 3. Examples of positive (green) and negative(red) train-
ing samples for {2, - edge detection (top left), {25 - cross seg-
ments (top right) and €23 - quadrilaterals (bottom)

Di1,1,Di,2,1 or a smooth polynomial function whose deriva-
tives are defined by the gradient at these endpoints. For the
sake of simplicity, we will consider only the case of lines here.
Figure 1 shows an example of such a vessel.

In this representation each level ¢ (i.e. points, segments,
quadrilaterals) corresponds to a learned classifier in space §2;
in the segmentation algorithm.

4. TRAINING MSL-CLASSIFIERS

In this section, we describe the method to segment a vessel
into the representation given by section 3.

4.1. 2 - Learning Enhanced Edge Detection

The first level finds possible vessel edges by a simple gradi-
ent based method that is enhanced by a trained PBT classifier.
For the classifier a sample is a pixel p(z,y) with a direction
(9y, —9z), i.e. the gradient direction rotated counterclock-
wise by 90 degrees. This way, the corresponding Haar Fea-
tures ([7]) of each sample are aligned and have a darker area
(the vessel with contrast) on their right side. Through Haar
Features more complex characteristics of vessel edges such as
small side vessels may also be incorporated into the learning
process. Samples are positive, if they have close proximity
to the annotated vessel border and a large gradient. Figure 3
shows examples of training samples for all three levels.

During detection, the result is a mask M of the image with
probabilities entries:

M,y = Peer(Z(y,,) = edge|Haar, ) 4

4.2. Qs - Cross Segments

Cross segments are defined in a similar way in ([8]), as a line
that is perpendicular to the medial axis of the vessel, i.e. bi-
secting it. Based on M, the second level determines the width
of the vessel by finding a suitable edge pixel in the opposite
gradient direction for each candidate location a where M, is
high. A cross-segment sample is created if:

Fb[|la = bl| < Winax A 3t[g(t) = b]] 5)

where ¢ is the vector function in affine space, which starts at
a and points in the opposite direction of the gradient. Wyax
is the maximum width a vessel could have.

For a cross segment to be a positive sample for the training
of the PBT classifier, both of its endpoints have to be close to
the annotated vessel edge and the induced line through them
has to be close to perpendicular to the medial axis of the ves-
sel. All other segments are negative samples.

During detection, the result is a set of cross segments that
bisect the vessel and their probabilities:{(C, Po, (C))}, yaxcs
with maxC being the maximum number of cross segments per
frame.

4.3. Q3 - Quadrilaterals

The goal of this level is to find pairs of cross segments that, if
connected as a quadrilateral, capture an area of the vessel. It
is important that the connecting lines are as close as possible
to the real edge. See figure 2 for an example with annotation.

In order to give a probability for a quadrilateral, steerable
features are sampled around its center, as seen in figure 2.
Possible features include: image data such as gradient, gray
value; or results of previous levels, such as the probability
map of €2 or the probabilities of the two cross segments from
9, which form the quadrilateral. The PBT classifier will pick
the best features.

Positive and negative samples are created as follows: A
sample pool is created by finding the closest 20 cross seg-
ments on the right and left side for all the segments of the
previously learned level. The remaining quadrilaterals are
sorted into positive and negative samples for PBT training:
A quadrilateral Q); is a positive sample, if Vp € B; 1 |J Bi 2

3d € {a(z4)|0(z,y) € annotated boundary} : |[p—d||s < 2

(6)
The probability of a quadrilateral shows how likely two cross
segments are connected for the final vessel.

4.4. Fourth Level: Dynamic Programming

Based on the outcomes of previous steps, we create a graph
G = (V, E), where the vertices are cross-segments. Cross-
segments are connected through an edge, if they are likely
to form a quadrilateral. The cost associated with each edge
is calculated based on the quadrilateral’s probability: ¢ =



log(%). Finding the main vessel then corresponds to find-
ing the lowest cost path inside this graph. We use dynamic

programming for solving this task.

5. EXPERIMENTS

Instead of segmenting the entire vessel tree, the goal of the
following experiments is to segment only the vessel which
surrounds the guide wire. This is useful during coronary an-
giography, when the surgeon has already identified the vessel
which is blocked and needs to memorize its appearance, while
the contrast agent is flowing through.

Training was performed with 134 frames from 7 se-
quences and testing with 64 frames from 5 different se-
quences. For evaluation purposes we compare the area under
the quadrilaterals with that of the annotation, both counted
in pixels. The detection rate in the test set is 90.1% and the
false alarm rate is 23.5%. The high false alarm rate and the
relatively low detection rate are both caused by dominant
side vessels as shown in figure 4. Since the dynamic pro-
gramming selects the path with the lowest cost, it follows the
longer side vessels and hence misses the vessel that surrounds
the guide wire. This problem will be solved in future versions
by incorporating time coherency with guide wire detection
of previous frames. The running time is around 2 seconds

Fig. 4. Left: Correct segmentation of a vessel that surrounds
the guide wire. Right: Instead of segmenting the vessel which
surrounds the guide wire a dominant side vessel is segmented.
The result is a large false alarm.

per frame. Figure 1 shows final results from two different
sequences. Figure 5 demonstrates that our method general-
izes well, since we have not used fluoroscopic images of such
low quality during training, but the vessel is still correctly
segmented.

6. CONCLUSION

In this paper, we presented a hierarchical learning based ves-
sel segmentation method that is highly driven by data and gen-
eralizes well to lower quality X-ray images. We introduced a
new representation of a vessel consisting of three marginal

Fig. 5. Results in low-radiation X-ray images (test set). Left:
Original image, Right: Segmentation of main vessel.

spaces: border points, vessel width and vessel pieces (quadri-
laterals), each having an associated classifier. Our experimen-
tal results are preliminary but promising: they demonstrate
that the vessel model is capable of segmenting vessels with
high precision, even in low quality images. Further additions
such as time coherency are needed to ensure that only the
main vessel is segmented. Another extension would be to
incorporate a bifurcation detector and use it to segment all
branches of a vessel tree which start at a bifurcation and end
at a tip.
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