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Abstract

we propose a fully automatic system for cardiac view
classi�cation of echocardiogram. Given an echo study
video sequence, the system outputs a view label among the
pre-de�ned standard views. The system is built based on
a machine learning approach that extracts knowledge from
an annotated database. It characterizes three features: 1)
integrating local and global evidence, 2) utilizing view spe-
ci�c knowledge, and 3) employing a multi-class Logit-boost
algorithm. In our prototype system, we classify four stan-
dard cardiac views: apical four chamber and apical two
chamber, parasternal long axis and parasternal short axis
(at mid cavity). We achieve a classi�cation accuracy over
96% both of training and test data sets and the system runs
in a second in the environment of Pentium 4 PC with 3.4GHz
CPU and 1.5G RAM.

1. Introduction
There is a growing need to automate the process of car-

diac ultrasound image analysis that involves many tasks
such as cardiac view classi�cation, wall motion analysis,
measurement computation, automatic placement of Doppler
gate over the valves, etc. Among all these tasks, cardiac
view classi�cation is the �rst step to achieve automation of
the other tasks.

For example, for wall motion analysis [16], we require
the cardiac view knowledge to regularize the motion
analysis. For automatic placement of Doppler gate, we
also need to know the cardiac view beforehand because
each view shows different valves. For instance, api-
cal four chamber view shows tricuspid valve and mitral
valve and apical two chamber view shows only mitral valve.

There are several challenges in building an automatic
system for cardiac view classi�cation.

• Within-view variation. The image appearance in
echocardiogram belonging to the same cardiac view
characterizes signi�cant variations, making it dif�cult

to achieve high view classi�cation accuracy. The vari-
ations arise from speckle noise inherent to ultrasound
imaging modality, patient individuality, instrument dif-
ference, sonographer dependency, etc.

• Between-view variation. Apart from severe within-
view appearance variations, how to characterize the
between-view variation is another challenge too. Ide-
ally, the global view template should provide max-
imum information about the characteristic chamber
structure belonging to the view in a consistent fashion
while discriminating different views. Designing global
view templates is very crucial.

• Structure localization. To reduce the variation of the
global view template, we confront the challenge of lo-
calizing the chambers (such as ventricles and atria) as
their positions are unknown. This is an object detec-
tion/recognition problem which is an active research
question in the computer vision literature. To robustly
localize the individual chamber, we utilize information
at a local scale.

We propose a fully automatic system for cardiac view
classi�cation (CardiacVC) of echocardiogram. This sys-
tem employs a machine learning approach which extracts
knowledge from annotated databases.

It possesses the following features:

1. Integration of local and global structure. It integrates
evidence from both local and global scales. It utilizes
local information to anchor the representative chamber
such as left ventricle (LV) which is present in all four
views. In the CardiacVC system, four LV detectors are
used to extract local information because the system
deals with four views. The global information is used
when designing the global templates. This approach
reduces within-view variation by aligning the global
heart structure.

2. LV Detector Dependent global view classi�cation. We
design view-speci�c global templates to accommodate
view characteristics based on aligning the represen-
tative chamber into canonical positions. Therefore,
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for a given LV detector associated with a particular
view, we use it to bootstrap examples from training se-
quences belonging to all of the four views and based on
those examples to learn a multi-class classi�er. There-
fore, for each view, we have learned a LV detector
dependent(LV-DD) multi-class classi�er.

3. Information fusion. Given that each view has an LV
detector and a multi-class classi�er and hence pro-
duces its own result, there is a need to combines these
results into one �nal output through intelligent infor-
mation fusion.

Currently, we are focusing on four standard cardiac
views: apical four chamber (A4C) and apical two cham-
ber (A2C), parasternal short axis(SAX) at mid cavity and
parasternal long axis (LAX), but the proposed approach is
scalable to handle more than four views. Figure 1 illustrates
the four cardiac views.

(a) (b) (c) (d)
Figure 1. illustrations of heart structure and example images. (a)
A4C, (b) A2C, (c) SAX, and (d) LAX views.

2. Previous Works
To the best of our knowledge, four papers [1, 15, 11, 3]

have been published so far to directly deal with automatic
view classi�cation of echocardiogram.

Ebadollahi et al.[3] suggested a part-based representa-
tion approach to recognizing the cardiac view. This method
�rst detects heart chambers in cardiac echo images using
the cavity detection algorithm proposed in [2]. Each view is
represented by the constellation of the detected heart cham-
bers, which is coded as Markov Random Fields (MRF) [8].
Finally, the energy vectors computed by matching a test im-
age to the models are fed into Support Vector Machine to
determine the �nal classi�cation view. This method, how-
ever, does not guarantee good performance when cavities
are falsely detected and/or missed which might frequently
happen in noisy or zoomed-up echocardiogram.

In [15], Zhou et al. proposed a novel algorithm to tackle
cardiac view classi�cation using multi-class object detec-
tion approach. Unlike the other conventional approaches
for multiple object detection that trains multiple binary clas-
si�ers (detectors), only one multi-class object detector is

learned using the LogitBoosting algorithm [4] by including
not only the positives corresponding to the cardiac views
but also the background negatives. However, this method
possibly yields contradicting detection results in an image.
It needs a sophisticated method to handle the contradicting
detection results to guarantee the high classi�cation accu-
racy.

Otey et al.[11] proposed a two-level hierarchical classi-
�cation approach combined with a simple dimensionality
deduction approach. At the top level, it classi�es an input
sequence into either apical class or paresternal class, and
then it further classi�es the sequence into one of the four
�nal views at the second level. They showed that this ap-
proach achieved 92.7% classi�cation accuracy in testing.

Aschkenasy et al. [1] proposed a multiscale elastic reg-
istration algorithm [6] based on a continuous model of both
images and deformation maps. In this algorithm, multi-
scale template images are constructed to represent the views
in a spline domain using a third-order direct B-spline trans-
form �lter [13]. Both deformation energy and similarity
between the warped image and its template image are used
to classify the input image. This algorithm achieved 90%
classi�cation accuracy for training samples and 82.2% ac-
curacy using the �leave-one-out� strategy. This method,
however, needs proper templates to cover all the variations
of the views. It is also sensitive to appearance variations
introduced by translation, scale and rotation.

3. Algorithm Overview
The algorithm �ow of the CardiacVC system is illus-

trated in Figure 2. It can be divided into two parts: (a) off-
line model training and (b) system integration for on-line
CardiacVC.

The part of of�ine model training consists of three mod-
ules: (i) collecting training data and annotation, (ii) training
LV detectors, and (iii) training multi-class view classi�ers.
We collect training samples of the four views and annotate
LV endocardium using a contour.

We train an LV detector for each view class (four LV de-
tectors in total). To train the LV detectors, we employ the
object detection approach proposed in [12], which incorpo-
rates the Haar-wavelet type local features [10] and boost-
ing learning technique. This method has been proven to be
very ef�cient for object detection in real-time environment
[14, 15, 5, 12, 7].

The system has four LV-DD global view classi�ers. Each
LV-DD global view classi�er is trained using the training
data collected by applying the according LV detector to all
the training data, not only for the corresponding view but
also the other views. For the LV-DD view classi�ers, we
also use the same Haar-wavelet type local features, but em-
ploy the multi-class LogitBoost (MLBoost) algorithm pro-
posed in [4, 15].



(a) (b)
Figure 2. (a) The algorithm �ow of the model training. (b) The algorithm �ow of the on-line CardiacVC system.

The online CardiacVC system is roughly divided into
three processes: (i) view-speci�c LV scanning (exhaustive
searching), (ii) LV-DD global view classi�cation, and (iii)
fusion of classi�cation outputs. To be speci�c, given an in-
put cardiac video sequence, we �rst detect LV candidates
by applying the LV detectors: one LV candidate per LV
detector. Using the detected LV structures, we construct
corresponding global templates and feed them into corre-
sponding LV-DD multi-class view classi�ers. We arrive at
the �nal classi�cation by combining the multiple classi�ca-
tion results from the view classi�ers.

4. Train Individual Components
4.1. Global view template

In this section, we will discus about the template design
for LV-DD global view classi�ers. The template should be
designed to represent each view correctly and to minimize
the intra-shape difference.

We design the global template based on the LV struc-
ture because it is relatively stable in echocardiogram. Since
the LV cavity is the anchoring chamber used in our system,
our template design is based on aligning the LV endocardial
wall to the canonical location.

Figure 3 shows the three templates for global view clas-
si�cation used in the current CardiacVC system. As shown
in Figure 3, A2C and A4C share the same template. The LV

box in Figure 3 is a tight bounding box of the LV endocar-
dial contour. Empirical evidence shows that it is not sensi-
tive how to design each template as long as it contains all
the structures of the heart as the heart structures are roughly
spatially aligned.

In the training phase, we assume the knowledge of the
LV endocardium, either manually traced for training of LV
detectors or automatically inferred for global view classi-
�ers as shown later. In the online system, the LV location is
automatically computed.

Figure 3. Template layout for the global view classi�cation. From
left to right: A4C/A2C, SAX, and LAX.

4.2. Multi-class Boosting
We employed the multi-class LogitBoost (MLBoost) al-

gorithm proposed by Friedman et al. [4] and the feature
selection approach proposed in [14] to build a global view
classi�er. MLBoost is a generalized version of two-class
LogitBoost, which is another interpretation of Ada-boosting



using the forward additive logistic regression. The Logit-
Boost algorithm uses quasi-Newton steps [9] to �t an addi-
tive symmetric logistic model that maximizes the multino-
mial likelihood. In each iteration, it �nds a fj(s) to satisfy
Eq. (1) by using quasi-Newton step, and inserts it to the
target function

El(F + f) ≥ El(F ), (1)

where F and f stand for the target functions and a new func-
tion to be found at the current iteration, and El(·) denotes
the expected log-likelihood. The MLBoost algorithm has
the interpretation that it increases the classi�cation accuracy
for training data by adding a new function.

The output of the MLBoost algorithm is a set of response
functions Fj(x), one for each class.

Fj(x) =
∑
m

fjm(x). (2)

The posterior probability of x being the jth view is given
by

p(j|x) =
exp(Fj(x))∑J
i=1 exp(Fi(x))

(3)

These response functions Fj(x) share the same so-called
weaker learners (or weak classi�ers) that are weighted dif-
ferently for different views. The weak learners are se-
lected and their coef�cients are learned incrementally dur-
ing boosting. We associate each weak learner with a lo-
cal image �lter by assuming fjm(x) is a piecewise constant
function of the �lter response. We use the same local gra-
dient features (Haar wavelet style), and the same feature se-
lection approach used in training of LV detectors. Hence,
boosting operates as a feature selection oracle.

Figure 4 presents the MLBoost algorithm. We are given
N training images from J classes (Nj training data points
for the jth class). The training data set is denoted as
{(Ii, yi)}N

i=1, where Ii represents ith training image, and
is yi a J-dimensional class indicator vector of Ii. Suppose
that we generate M �lters. Let us de�ne a matrix XN×M

whose ith row contains the M �lter response collected from
the image Ii. Since each �lter is considered as a weak clas-
si�er (WC), the main goal of the training is to construct a
classi�er by selecting good �lters among the huge �lter pool
for classi�cation.

As mentioned earlier, for each LV detector, we learn
a multi-class classi�er. We denote the four classi�ers by
p(j|x; k); k ∈ {a4c, a2c, sax, lax}.

4.3. LV Detector-Dependent View Classi�er
As discussed earlier, we trained four LV detectors, one

per each view. Using each LV detector, we collect a full set

LogitBoost (J classes)
1. Start with weights wij = 1/N , i = 1, 2, . . . , N , j =

1, 2, . . . , J , Fj(x) = 0, and pj(x) = 1/J ∀j.
2. Repeat for m = 1, 2, ..., M :

• Repeat for j = 1, 2, . . . , J :
� Compute working responses and weights in the

jth class

zij =
y∗ij − pj(xi)

pj(xi)(1− pj(xi))
; (4)

wij = pj(xi)(1− pj(xi)). (5)
� (∆) Fit the function fmj(x) by a weighted least-

squares regression of zij to xi with weights wij .
• Set fmj(x) ← J−1

J
(fmj(x)− 1

J

PJ
k=1 fmk(x)), and

Fj(x) ← Fj(x) + fmj(x).
• Update pj(x) ∝ exp(Fj(x)).

3. Output the classi�er arg maxj Fj(x).
Figure 4. The multi-class LogitBoost algorithm [4].

of training data for a global view classi�er. Each LV detec-
tor is applied to not only its corresponding view but also the
other views to anchor the LV structure. The LV detector an-
chors true LV structure for the correct view, and it provides
false positives for the other views. It is because of the sim-
ilarity of LV structures along the views or the weakness of
the LV detectors. We train the LV detectors not to selective
because we are not able to obtain global evidence if the LV
detector detects no LV structure.

We collected training images for the global view classi-
�er by cropping according to the pre-de�ned template lay-
outs shown in Figure 3. The images in each column just
below the box of Global Template Constructor in Figure
2-(a) are the training images collected by applying each LV
detector. Using these training images, we build four LV-DD
global view classi�ers using MLBoost algorithm. Let us
denote the classi�ers as MLBa4c, MLBa2c, MLBsax and
MLBlax. MLBa4c implies global view classi�ers trained
using the training data set provided by A4C LV detector and
the others follow the same rule.

4.4. LV-DD Approach Vs. LV-DI Approach
The question might be raised why the system needs

four view classi�ers instead of one canonical view classi-
�er which can be trained using the training data collected
only applying each LV detector to its own view data (the
diagonal of 4× 4 image matrix in Figure 2-(a)).

If a trained LV detector always detects LV for its view
and detects no LV for the other views, the view classi�ca-
tion problem can be solved very easily. We can only de-
pend on the LV detectors without the global view classi-



(a) Input image (b) A2C LV detector (c) SAX LV detector (d) LAX LV detector

Figure 5. The red box represents an LV candidate provided by each LV detector, and the green box represents global template for view
classi�cation. A4C LV detector fails to detect LV candidate

�ers. However, in reality, the trained LV detectors possibly
yields false positives for the other views. If an LV detector
is trained to decrease the false positives for the other views,
it possibly increases the missed detection ratio for the cor-
rect view which is more malicious than the false positives.
The false positives in the other views are inevitable in real
situations.

Let us discuss further about the LV-DD view classi�-
cation approach and the LV detector independent (LV-DI)
view classi�cation approach. Supposed that all the four
LV detectors provide LV candidates given an input echo se-
quence and four global templates are constructed based on
them. The one LV-DI approach may yield a good classi�ca-
tion results only for a global template corresponding to the
correct view. This approach, however, may provid random
classi�cation results for the other global templates because
the pattern of the templates were not used in classi�er train-
ing.

Therefore, the LV-DI approach possibly yields one good
solution and three random solutions. By combining one true
classi�cation result and the three random classi�cation re-
sults, it is hard to anticipate a good �nal classi�cation re-
sult. This observation inspired us to propose LV-DD view
classi�cation approach. In this method, we learn four global
view classi�ers by considering the false positives from other
views.

Figure 5 provides an example of LAX view to support
the reason why the LV-DI approach is not robust enough.
In this example, A4C LV detector fails to detect LV can-
didate while the other LV detectors provide their own best
LV candidates which are shown from Figure 5-(b) to Figure
5-(d). The inner box represents a detected LV and the outer
box represents the window to crop an image according to
Figure3 to feed into a global view classi�er.

Table 1 shows the comparison of the probabilities of
global view classi�cation produced by LV-DI approach and
LV-DD approach using the three test images, Ia2c, Isax and
Ilax, provided by the three LV detectors. Ia4c is not used be-
cause A4C LV detector detects no LV structure in the video
sequence.

The probabilities of Ia4c are set to be zeros. As shown
in Table 1, both methods yield very good results for Ilax by
classifying it to LAX by almost 100% accuracy. However,
the LV-DI approach yields wrong result for Ia2c and Isax

by classifying it to SAX by 100% and 73% of probabili-
ties respectively. The proposed LV-DD approach, however,
classi�es it correctly by 100% accuracy. The test sequence
is �nally classi�ed as SAX using the LV-DD view classi�-
cation approach as shown in the last row of Table 1.

5. Online CardiacVC System

In the run time, we classify an input echocardiogram
video through three stages: 1) LV detection, 2) global view
classi�cation using four LV-DD multi-view classi�ers, and
3) �nal cardiac view classi�cation by integrating the classi-
�cation results.

In the �rst stage, we employed the learned LV detectors
(one LV detector per each view) to localize the LV candidate
region. We used only the ED frame (and its neighboring
frames if necessary) for classifying the query echo video.
As shown in Figure 2-(b), each LV detector is applied to the
test image by sliding a window on the ED frame from the
top-left corner to bottom-right corner by changing the loca-
tion, width, height and orientation. In Figure 2-(b), the blue
boxes represent the cropped images to be fed into the LV de-
tectors, and the red box represent the ground truth LV box.
The box that yields the maximum detector score is used to
construct the global template for global view classi�cation.
Therefore, we obtain four LV candidates, one per view, and
subsequently four global templates that are denoted as Ia4c,
Ia2c, Isax, and Ilax, respectively.

In the next stage, each LV-DD multi-class view classi�er
is applied to its corresponding cropped global template. Fi-
nally, given four classi�cation results, we use the following
fusion strategy to arrive at a �nal classi�cation result (eg,
the total probability law).



LV-DD view classi�cation LV-independent view classi�cation
p(k) p(a4c|Ik) p(a2c|Ik) p(sax|Ik) p(lax|Ik) p(a4c|Ik) p(a2c|Ik) p(sax|Ik) p(lax|Ik)

Ia4c 0 0 0 0 0 0 0 0 0
Ia2c 1/3 0 0 1 0 0 0 0 1
Isax 1/3 0 0 0.73 0.27 0 0 0 1
Ilax 1/3 0 0 0 1 0 0 0.01 0.99

p(k|I) 0 0 0.57 0.43 0 0 0.002 0.998
Table 1. Comparison of view classi�cation results between LV-DD approach and LV-independent approach

p(j|I) =
∑

k∈K,p(k)>0

p(j|Ik; k)p(k)

=
1
|k|

∑

k∈K,p(k)>0

p(j|Ik; k), (6)

where K = {a4c, a2c, sax, lax} and |k| is the number
k's to meet the condition of k ∈ K, p(k) > 0. Other fusion
strategy can be applied too. In the above, the prior probabil-
ity is assumed uniform. For instance, p(k) = 1/4 if all the
global templates, Ik's, exist, and p(k) = 1/3 if only three
of them exist as shown in Table 1. In practice, we can use
the prior information extracted from the LV appearance.

Once the view is classi�ed, we can determine the LV
location accordingly and calculate measurements about the
LV, such as the LV height. Such measurements provides
useful feedback to the sonographer for probe adjustment to-
ward better image quality.

6. Experiments
6.1. Cardiac View Classi�cation and LV Localiza-

tion
For the training purpose, we collected total 1080 video

sequences with the LV endocardium annotated by experts
(478 for A4C view, 310 for A2C view, 175 for SAX view,
and 117 for LAX view). An LV endocardium is represented
as an open contour with 17 landmarks for A4C, A2C and
PSAX, and represented as a closed contour with 18 land-
marks for SAX.

For test purpose, we collected 223 video sequences
which were not used in training (96 for A4C view, 61 for
A2C view, 28 for SAX view, and 38 for LAX view). The
test dataset contains diverse sequences including not only
the sequences which are similar to the typical view struc-
tures shown in Figure 1 but also some sequences which are
quite different from the typical structures.

Table 2 presents the confusion matrix of the view clas-
si�cation results both of the training data and the test data
computed using the proposed LV-DD global view classi�-
cation approach. On the average, we achieved 96.4% accu-
racy on the training dataset and 96.3% accuracy on the test
database, which are quite consistent.

Training Data A4C A2C SAX LAX
A4C(478) 97.9% 1.7% 0.4% 0%
A2C(310) 3.9% 95.2% 0.6% 0.3%
SAX(175) 0.6% 1.1% 97.7% 0.6%
LAX(117) 0 % 2.6% 2.6% 94.9%
Test Data A4C A2C SAX LAX
A4C(96) 97.9% 2.1% 0% 0%
A2C(61) 3.3% 93.5% 1.6% 1.6%
SAX(28) 3.6% 0% 96.4% 0%
LAX(38) 0% 0% 2.6% 97.4%

Table 2. The confusion matrix of view classi�cation results com-
puted using the proposed LV-DD approach

Table 3 shows the classi�cation results of the test dataset
using the LV-DI approach. This table shows that the LV-
DI approach yields relatively good classi�cation results for
A4C and A2C sequences, but very poor results for SAX and
LAX. It can be interpreted as follows. The LV structure of
A4C and A2C are similar to each other and these two views
share the same global template prototype for view classi-
�cation. Therefore, we can assume that the classi�cation
results using A2C LV detector and A4C LV detector are
relatively correct but the classi�cation results using SAX
LV detector and LAX LV detector might be random. When
we compute the �nal classi�cation by integrating the four
classi�cation results, the two correct classi�cation results
can dominate the other random classi�cation results. How-
ever, SAX view and LAX view can have only one correct
classi�cation result and three random classi�cation results.
It might yield more classi�cation errors compared to A4C
view and A2C view. Refer to Table 1 to see one of the exam-
ples where a PLAX view is misclassi�ed to PSAX because
of this reason.

Test data A4C A2C SAX LAX
A4C(96) 93.8% 3.1% 3.1% 0.0%
A2C(61) 1.6% 93.4% 3.4% 1.6%
SAX(28) 3.6% 3.6% 89.2% 3.6%
LAX(38) 10.5% 0.0% 39.5% 50.0%

Table 3. The confusion matrix of view classi�er results computed
using LV-DI approach for test data.



Figure 6 shows view classi�cation results along with LV
localization for some of the selected test samples. The red
box represents the LV location computed by the correspond-
ing LV detector. The view classi�cation results are over-
laid on bottom-left corner of the images. There are four
bars to represent the probabilities of A4C, A2C, PSAX and
PLAX from left to right, and the actual probabilities are
represented using blue bars. The longer blue bar, the higher
probability. As shown in the experiment results, the pro-
posed CardiacVC performs consistently well regardless of
noise, LV diversity and missing heart structure. It also runs
approximately 1 second using Pentium 4 PC with 3.4 GHz
CPU and 1.5G RAM.

7. Conclusion
In this paper, we proposed an automatic system for car-

diac view classi�cation of echocardiogram. This system is
built based on the data-driven machine learning techniques
along with two key approaches. The �rst is to incorporate
the local information (LV structure) and global information
(global view by anchoring the LV structure). To obtain the
local information of LV structure, we built an LV detec-
tor per each view by treating it as a binary classi�cation
problem. The second is to employ the view-speci�c knowl-
edge for global view classi�cation to properly incorporate
the local information to global information. In other words,
rather than training one LV-independent global view classi-
�er, we built four LV-DD global view classi�ers, MLBa4c,
MLBa2c, MLBsax and MLBlax.

As shown in the experimental results, the proposed Car-
diacVC system performs very well for the four standard
views, A4C, A2C, SAX and LAX even though some of the
test data are very challenging because of the noise and miss-
ing parts. It achieves a classi�cation accuracy over 96%
both of training and test data sets and the system runs in a
second using a Pentium 4 PC. Even though the current pro-
totype system deals with only four views but it can be easily
generalized to classify more views.

Future direction of the CardiacVC system is to handle
not only the prede�ned views but also the negative class,
aka, non of the prede�ned views. The current CardiacVC
system always classi�es an input cardiac sequence to one of
prede�ned views even though the sequence is not from the
views. One of the possible solutions is to use the method
proposed in [15], which trains classi�ers by including neg-
ative class along with the prede�ned classes. However, in-
cluding the negative class makes the problem more compli-
cated because the space of the class is in�nite.
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(a) A4C test samples

(b) A2C test samples
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Figure 6. Selected view classi�cation results along with LV localization for test data


