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Image-based Co-Registration of Angiography
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Abstract—In image-guided cardiac interventions, X-ray imaging
and intravascular ultrasound (IVUS) imaging are two often used
modalities. Interventional X-ray images, including angiography
and fluoroscopy, are used to assess the lumen of the coronary
arteries and to monitor devices in real time. IVUS provides
rich intravascular information, such as vessel wall composition,
plaque, and stent expansions, but lacks spatial orientations. Since
the two imaging modalities are complementary to each other, it
is highly desirable to co-register the two modalities to provide a
comprehensive picture of the coronaries for interventional cardi-
ologists. In this paper, we present a solution for co-registering 2-D
angiography and IVUS through image-based device tracking. The
presented framework includes learning-based vessel detection
and device detections, model-based tracking, and geodesic dis-
tance-based registration. The system first interactively detects the
coronary branch under investigation in a reference angiography
image. During the pullback of the IVUS transducers, the system
acquires both ECG-triggered fluoroscopy and IVUS images,
and automatically tracks the position of the medical devices in
fluoroscopy. The localization of tracked IVUS transducers and
guiding catheter tips is used to associate an IVUS imaging plane
to a corresponding location on the vessel branch under investi-
gation. The presented image-based solution can be conveniently
integrated into existing cardiology workflow. The system is vali-
dated with a set of clinical cases, and achieves good accuracy and
robustness.

Index Terms—Angiography, image registration, object detec-
tion, object tracking, ultrasonic imaging.

I. INTRODUCTION

I NTERVENTIONAL cardiologists rely on medical images
to perform minimally invasive procedures. X-ray angiog-

raphy is the standard imaging modality for the assessment of
coronary artery disease. Thereby, a radio-opaque contrast agent
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is injected into the circulation system. The propagation of the
contrast agent, which is driven by blood flow, is documented
under X-ray radiation. These images are the basis to identify
stenoses within diseased vessels that restrict blood flow. X-ray
imaging provides the spatial and structural information of the
coronary arteries at good temporal resolution. However, as an-
giography is a lumenographic method, changes in the vessel
wall cannot be detected. Intravascular ultrasound (IVUS) is an
invasive imaging modality used during coronary catheteriza-
tion to complement the information provided by angiography.
In particular, IVUS delivers insights beyond the angiographic
vessel lumen. It can be utilized to support the assessment of
plaque burden and stent deployment, as well as for assessing
the underlying significance of ambiguous coronary lesions [7],
[8]. However, IVUS lacks spatial orientation and makes it dif-
ficult to fully understand the spatial structure of vessels. It is
therefore desirable to combine angiography and IVUS to pro-
vide a comprehensive picture of coronaries for interventional
cardiologists [2], [11]. In current practice, the relationship be-
tween angiographic and IVUS images is left to the experience
of the physician using anatomical landmarks such as branches
or lumen narrowing. However, early stage diseases or long dif-
fused lesions make it even more challenging to mentally estab-
lish a correspondence as no evident anatomical landmarks can
be used.
The co-registration of angiography and IVUS or other in-

travascular imaging modalities has been studied in [2], [5], [9],
[10], [13], [14], [18]–[20]. In the work ofWahle et al. [18], [19],
IVUS images are located along a 3-D vessel branch that is re-
constructed from biplanar angiography, and the orientation of
IVUS images is further optimized. However, since the afore-
mentioned methods are unable to identify reliable landmarks
to fuse angiography and IVUS, they use the motorized pull-
back and assume a constant moving speed of the IVUS trans-
ducer along the vessel. This assumption does not always hold in
clinical practice, as the IVUS transducer is sometimes slowed
down in stenosed areas. The assumption also limits the usage
of manual pullback. An alternative solution is to use manual
labeling to identify corresponding landmarks in both angiog-
raphy and IVUS images, as these preliminary systems [2], [13].
In [13], manually labeled landmarks are used as a baseline to
co-register IVUS images to a 3-D reconstructed vessel from two
contrasted angiographic images. In [5], [10], IVUS and CTA
are co-registered through angiography. However, manual land-
mark annotations are still used in these methods. Manual la-
beling is labor intensive, and sometimes good quality landmarks
such as stent and major vessel branches are difficult to identify
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Fig. 1. A 2-D image-based solution for the co-registration of angiography and IVUS. (a) Angiography provides vessel structure information. The cross indi-
cate a registered IVUS imaging plane. (b) Fluoroscopic image acquired during the pullback. The circle represents the automatically tracked IVUS transducer.
(c), (d) Cross-sectional and longitudinal views of IVUS images. The lines in the longitudinal views indicate the IVUS slice corresponding to the position on the
vessel in (a).

Fig. 2. Challenges for device tracking in fluoroscopy. (a) Low image quality and cluttered background. (b) Overlapping with other surgical structures. (c) Arbitrary
projection angle.

or even unavailable. Such limitations make the manual labeling
methods not suitable for the usage in clinical practice. In [3], the
IVUS transducers are tracked in 2-D, and reconstructed in 3-D
space with a prior information of pullback speed. However, the
method ignores breathing and cardiac motions in cardiac inter-
ventions, and is only validated on synthetic and phantom data.
To handle such challenges in a real-world clinical scenario,

we present a novel solution for the co-registration of angiog-
raphy and IVUS images. The solution is briefly illustrated in
Fig. 1. Our solution is image-based, and does not require ad-
ditional hardware such as electromagnetic sensors [12]. Com-
pared to the approaches cited above, the presented method is
purely based on 2-D without requiring a 3-D vessel reconstruc-
tion from the biplane angiography, or from sequences acquired
from different angulations. The additional interaction required
by the cardiologist for the 3-D reconstruction may be a barrier
in the regular use in clinical routine, especially in sites of high
volumes. Our approach requires just two clicks for the initial-
ization and works independently of the chosen angulation. In
addition, it does not assume a constant pullback speed and it is
automated in tracking and co-registration.We develop a method
to automatically detect and track the movement of IVUS trans-
ducers in 2-D fluoroscopy in real time and then map a trans-

ducer imaging plane to a corresponding position in a reference
angiography image. The 2-D image-based solution simplifies
the clinical workflow compared to the approaches introduced
above and meets the requirement of clinicians’ daily operations.
Finally, the method outlined in this paper is not specific to par-
ticular X-Ray or IVUS systems.
Accurate and robust tracking of devices in X-ray images

faces great technical challenges. The devices undergo cardiac
and breathing motions during interventions. Even with ECG
triggering, the breathing motion can be large. X-ray images,
especially fluoroscopy, usually have a low signal-to-noise
ratio and the appearance of devices can be blurry. There are
also artifacts and other surgical devices in X-ray images.
Some examples are shown in Fig. 2 to illustrate the chal-
lenges that image-based solutions face. Considering all the
challenges, conventional tracking methods based on inten-
sity appearance [24] or edge-based energy [4] will encounter
problems. This paper presents a computational framework
that includes learning-based detection and model-based proba-
bilistic tracking. The learning-based detection identifies devices
present in X-ray images. Although only guiding catheter tips
and IVUS transducers are used in the final co-registration, the
method also detects a guiding catheter body and a guidewire
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Fig. 3. Co-registration system workflow.

to help subsequent tracking of guiding catheter tips and IVUS
transducers. The detection results are then used in the proba-
bilistic model-based tracking to achieve the robust tracking of
the IVUS transducer movement inside vessel. The presented
framework does not assume a constant IVUS pullback speed in
2-D. Quantitative evaluation on a set of clinical cases acquired
in several hospitals shows that the framework is robust for
tracking and accurate for the co-registration of IVUS and
angiography images. We believe that the presented co-regis-
tration framework can provide a useful tool for many clinical
applications, such as advanced vessel quantitative analysis
across different imaging modalities.
The rest of the paper is structured as follows. The overall

system workflow is outlined in Section II.We present the initial-
ization step in Section III, the learning-based device detection in
Section IV, the model-based tracking framework in Section V,
and the co-registration based on tracking in Section VI. The
quantitative evaluation results are given in Section VII. We con-
clude the paper with discussions in Section VIII.

II. SYSTEM WORKFLOW

The system workflow includes three stages: the “angiogram”
stage, the “pullback” stage, and the “mapping” stage. The pur-
pose of the angiogram stage is to image the contrast-enhanced
coronary arteries, and to identify the vessel branch where the
IVUS imaging will take place. In the pullback stage, an IVUS
transducer is pulled inside the vessel to obtain a sequence of
intravascular images. Meanwhile, ECG-triggered fluoroscopic
images are acquired to track the movement of the IVUS trans-
ducer. Finally, in the mapping stage, the angiography and IVUS
images are co-registered based on tracking and the temporal
synchronization between the two imaging modalities. The
workflow is summarized in Fig. 3.

A. Angiogram Stage

In the angiogram stage, contrast agent is injected to visualize
the vessel branch under investigation. A frame at the end-dias-
tole (ED) phase is selected as the “angiogram reference frame.”
In the angiogram reference frame, the vessel branch where the
IVUS imaging will be performed should be enhanced by the
injected contrast agent. Fig. 4(a) shows a selected angiogram
reference frame in the angiogram stage. An interactive method

[6], [22] is applied to detect the vessel branch. Our method
further automatically extends the detected vessel toward the
guiding catheter to provide more information for the subsequent
tracking. Details about the vessel detection algorithm are pro-
vided in Section III. The detected branch will be used as the
reference path for the co-registration of angiography and IVUS
images, and it will also be used in the initialization of device
tracking.

B. Pullback Stage

In the pullback stage, an IVUS transducer is pulled back from
the distal end of the target vessel branch toward the proximal
end. During the pullback, both the ECG-triggered fluoroscopic
and IVUS images are acquired with the time synchronized be-
tween the two modalities. Examples of fluoroscopy and IVUS
images are shown in Fig. 4(b) and (c). The fluoroscopy image
acquisition is triggered by ECG at the ED cardiac phase to mini-
mize the cardiac motion between frames and to reduce radiation
dose. Due to the existence of breathing motion, an additional
point other than the IVUS transducer is needed as the refer-
ence point to compensate for the breathing motion. The guiding
catheter tip is selected as the reference point, as it is the most
stable and distinguishable point that can be found in the fluo-
roscopy images. In the pullback stage, the method automatically
tracks the movements of IVUS transducers and guiding catheter
tips in fluoroscopy.

C. Mapping Stage

In the mapping stage, the geodesic distances (i.e., the distance
along the wire) between IVUS transducers and guiding catheter
tips are estimated. The geodesic distances are used to map each
IVUS transducer during pullback, therefore registering the cor-
responding IVUS imaging plane to a point along the segmented
vessel branch. Finally the IVUS images are co-registered to
the segmented vessel by matching the acquisition time (“time
stamps”) of corresponding IVUS images and ECG-triggered
fluoroscopy images.

III. INITIALIZATION IN ANGIOGRAM

At the angiogram stage, the vessel branch where the IVUS
pullback occurs is identified by a semi-automatic and interac-
tive detection method. Based on our previous work [6], [22],
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Fig. 4. Image acquisition in the workflow. (a) Angiogram image is selected as the reference frame because of its ECG phase and contrast enhancement. (b) Frame
of fluoroscopy acquired in the pullback stage. (c) IVUS image that is acquired at the same time as (b) in the pullback stage.

Fig. 5. Two guiding catheter centerline segment candidates and the four pos-
sible spline curve connections between them.

the interactive detection method applies learning-based detec-
tion and graph-based optimization, to detect a vessel branch.
The previous methods [6], [22] are developed mainly to de-
tect guidewires, which are thinner than vessels. Our method
down-sized the angiography images to allow the detection of
vessel branches.
The interactive detection method requires at least two clicks.

The first user click is to specify the proximal end of the vessel,
so it is placed at the tip of the guiding catheter into which the
IVUS catheter is inserted. A second user click is placed at the
distal end of the vessel. The two user clicks should cover the
path of IVUS catheter pullback. After obtaining the user inputs
and vessel segment detection results, the detector then finds an
optimal path, which can best fit the vessel between the source
and destination points that are specified by the first two user
clicks. In case the vessel detection with two initial points is not
satisfactory, additional user clicks can be provided to constrain
the algorithm and to obtain refined detection results. The user
interaction continues until a satisfactory result is obtained. As
shown in [22], more than 82% of points along curves are cor-
rectly located with only two clicks. With more clicks, the error
decreases quickly. The median error is about 1.0 pixel with five
clicks. Fig. 6 shows an interactive detection result.
After the vessel branch is initialized, the guiding catheter’s

centerline is automatically detected in the angiogram reference
frame. It serves as an additional anchor for subsequent trans-
ducer tracking initialization. The guiding catheter detection
starts from the proximal point of the vessel, denoted as ,
and stops at an image boundary or collimator boundary. A ma-
chine learning-based technique is applied to identify possible

Fig. 6. An example of interactive detection in the angiogram stage. The solid
white curve shows detected vessels, and the dotted curve shows detected guiding
catheter bodies.

guiding catheter centerline segment candidates. They are rep-
resented as triples where , , and are the position,
orientation and scale of a segment candidate, respectively. A
discriminative model, in our case a probabilistic boosting-tree
(PBT) [15] using 2-D Haar-like features [16] on rotated input
images is used. Segment candidate detection is carried out on a
multi-resolution pyramid to get candidates of different scales.
Let be an undirected weighted graph, where is

a set of total vertices and is a set of edges. The weights of
edges are defined by a function . The vertices include
subsets of vertices and , as

(1)

There can be four connections defining a spline curve
between two centerline segment candidates and :

, (see Fig. 5). For any edge
let denote the associated spline curve and let

be its curve length. Let be the set of edges adjacent to
, , , without . Among

the nearest neighboring segments in terms of the length of the
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Fig. 7. Haar feature sets used for device detection and tracking.

connecting spline curve we allow a maximum of
adjacent edges approaching a segment candidate from the
negative or positive side. This yields the set of edges

(2)

For each , we define the edge weights
where is the image intensity and

is a sequence of discretized pixel positions covered
by the curve. By using Dijkstra’s algorithm the tree of shortest
paths spanning from can be computed. It serves to gen-
erate path candidates connecting with points on the image
or collimator boundary. Among them, during path selection,
the shortest one in terms of the accumulated edge weights is
selected to be the final detection result, as the dotted curves in
Fig. 6.

IV. LEARNING-BASED DEVICE DETECTION IN FLUOROSCOPY

In the pullback stage, our method automatically detects the
IVUS transducer and the guiding catheter tip in fluoroscopic
images. For the purpose of robust tracking, detections of other
devices, such as guidewire and guiding catheter body, are also
needed in an integrated model-based tracking method (see
Section V). We present a unified method to train different types
of device detectors from a set of offline collected training data.
The training data includes both object samples (positive) and
nonobject samples (negative), to learn the decision boundary
that separates different classes. The probabilistic boosting tree
(PBT) [15] is used to train the learning-based detectors. Here,
we denote the probabilistic outputs from PBT as ,
where is the observed image, and is the object state (i.e., if
an image patch belongs to the positive or negative class.) The
classifiers are built on the Haar features [17] and our extensions.
The detectors are constructed in a hierarchical way to detect
object position, orientation, and scale sequentially.

A. Features for 2-D Device Detection

Haar features have been widely used in many types of object
detection due to its computational efficiency. We use the orig-
inal Haar features [17], and further extend conventional Haar
features specifically for medical device detections. The Haar
feature configurations are shown in Fig. 7.
The feature Sets 1, 2, 3, 8, 9 have been originally used for

face detection in [16]. The feature values are the quantitative
results of image intensity operations. In each feature configu-
ration, the Haar feature value is the pixel intensity inside the
gray boxes minus the pixel intensity outside the boxes. During
the Haar feature computation, the image intensity is normalized
by subtracting the mean and dividing by the standard devia-
tion of a local window so that features are invariant to linear
transformations of image intensity. The image intensity summa-
tion and standard deviation can be efficiently computed with the
use of integral images [17]. The feature template size is varied
and is automatically selected in the feature selection during the
training stage. The configuration of Haar features is further ex-
tended in the feature Sets 4, 5, 6, 7, 10, 11, 12, 13, 14. The mo-
tivation behind the feature configurations is that these features
are able to represent the geometries of medical devices such as
corners (e.g., Sets 4–7) and tips (e.g., Sets 10–13).

B. Device Detection

Medical devices can appear at different orientations in flu-
oroscopy images. In this method, images are rotated, and then
features are computed in each rotation angle for device detection
at the corresponding orientation. The image rotation has been
sped up with the use of multi-core CPUs. Furthermore, since
usually the region-of-interests-based (ROI-based) operation is
used in tracking, only a part of an image needs to be rotated,
therefore further improving the speed.
The medical device can appear at different sizes in fluoro-

scopic images. The size in pixels of the devices in fluoroscopic
images is affected by the X-ray detector resolution, the dis-
tance between a medical device and an imaging plane, and
the imaging angle. To detect devices of different sizes, the
Haar features are resized by scaling their corresponding corner
coordinates.



WANG et al.: IMAGE-BASED CO-REGISTRATION OF ANGIOGRAPHY AND INTRAVASCULAR ULTRASOUND IMAGES 2243

Fig. 8. Hierarchical detector structure.

The detectors are constructed in a hierarchical way, as shown
in Fig. 8. In the hierarchy, object states are detected from coarse
to fine to reduce the burden of learning a complete set of ob-
ject states altogether. A position detector is trained as the first
layer in the hierarchy to locate the position of objects, regardless
of their orientations and scales. An orientation detector is then
trained at images rotated at different angles to detect devices at
arbitrary orientations. Lastly, a scale detector is trained to search
across different scales by varying the size of Haar features.
Four types of detectors are trained. They are denoted as

, , , and , for the IVUS
transducer, the guiding catheter body, the guiding catheter tip,
and the wire body, respectively. Please note that the guiding
catheter body and wire detectors aim at the detection of seg-
ments, not the whole structure. Some detection results are
shown in Fig. 9. Due to image artifacts and low visibility
of devices, there are false detections. To make the tracking
robust to detection errors, a tracking framework that integrates
multiple detections is introduced in Section V.

V. MODEL-BASED DEVICE TRACKING

In this section, we first introduce a Bayesian framework for
device tracking, the fusion of measurements of multiple devices
in an integrated model, and then an efficient implementation of
the tracking framework.

A. A Bayesian Tracking Framework

In the pullback stage, the fluoroscopic images are acquired
by ECG triggering so that all fluoroscopy images are approxi-
mately at the same heart phase, and the devices undergo only
breathing motion. The breathing motion needs to be com-
pensated for through tracking in order to register the IVUS
transducer to the angiogram reference frame. In this work, the
breathing motion is approximated by a rigid motion. We found
this to be sufficient in tracking devices including both IVUS
transducers and guiding catheter tips. The breathing motion
at the th frame is denoted as , where
, , and are the 2-D translation and rotation parame-

ters. The motion tracking is expressed as the inference of the
motion parameters from the fluoroscopic sequences acquired
at the pullback stage. We formalize the parameter inference
in a sequential Bayesian inference framework. The posterior
probability is given by

(3)

where is an observed fluoroscopic sequence at time . The
tracking result is the motion parameter corresponding to the
maximal posterior probability, i.e., .

In (3), is the motion prior probability. We model
the motion prior probability as where

is a Gaussian model with a zero mean and the co-
variance matrix . The Gaussian prior model is used to im-
pose a generic motion smoothness constraint, and is applicable
to 2-D motions under a variety of projections. The model pa-
rameter is a covariance matrix, which is defined as a diagonal
matrix, . To allow for a large motion
between successive fluoroscopic frames, the two parameters
and are empirically set as 60 pixels for translation and 4 de-
grees for rotation, respectively.
Another component in (3), the likelihood model ,

measures the likelihood of motion parameters. In our method,
the measurement model is a fusion of measurements of multiple
devices. More details are provided in Section V-B.

B. Integrated Model and Fusion of Individual Device
Measurements

Due to the low image quality of fluoroscopy and cluttered
backgrounds, independently tracking each device is prone to
detection errors. To achieve robust and accurate tracking, we
combine all devices into an “integrated IVUS model.” The
integrated model to be tracked is initialized from the angiogram
phase. As shown in Fig. 10, the integrated model includes four
parts: the guiding catheter body, the guiding catheter tip, the
wire, and the IVUS transducer. The vessel centerline initialized
during the angiogram stage is used to approximate the shape of
the wire. The guiding catheter body and tip are also initialized
from the angiogram stage. The IVUS transducer is initialized
from the detection at the first frame in fluoroscopy. During
tracking, the model is propagated from a previous frame and is
updated from the motion parameter estimation. The benefit of
tracking the integrated model as a whole, instead of tracking
individual devices, is that it is robust to false detections and
missing detections of individual devices, and can handle some
challenging situations where individual tracking would fail,
such as poor visibility, occlusion, and large motions.
We denote the integrated model as , in which each com-

ponent is represented by a curve (e.g., a guiding catheter
body or a wire) or a point (e.g., guiding catheter tip or an
IVUS transducer), as shown in Fig. 10. By defining the in-
tegrated model, we can rewrite the likelihood in the form of
the curve representation, as . Based
on the integrated IVUS model, the measurement model is a
combination of measurements of individual components. For
simplicity, we assume that the measurement of individual
component is independent of each other given the curve (i.e.,

where denotes a component in
the integrated model.) Therefore, we can further decompose
the measurement model as

(4)

The component measurements are from the four
detectors, i.e., , , and .
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Fig. 9. Learning-based detection examples (see Section VII about the data acquisition). (a) Circles represent detected IVUS transducers. (b) Circles represent
detected guiding catheter tips. Multiple detection results that are close to each other are clustered into a single detection result. The points and lines inside the
circles represent the orientations of detected guiding catheter tips. (c) Detected wire segment candidate. (d) Detected guiding catheter body segment candidates.

Fig. 10. Model-based tracking. (a) Detection results at an angiogram reference frame will be used in the subsequent model-based tracking. (b), (c) Integrated
model, composed of point and curve elements, is initialized from interactive detection, and tracked through fluoroscopy.

Fig. 11. Measurement fusion in the integrated IVUS model. Dotted curves il-
lustrate the region where each individual measurement is integrated.

defines the weight of an individual component in the
model and denotes the confidence of individual measurements,
as shown in Fig. 11.

C. Efficient Model Tracking

Exhaustively searching the motion parameters to maximize
the posterior probability is computationally expen-
sive, especially when the breathing motion is large. For effi-
cient tracking, we use a kernel-based multi-resolution tracking
method, which has been developed originally for the guidewire

tracking [21] and needle tracking [23]. In the multi-resolution
tracking, measurements can be computed by a kernel-based esti-
mation from a set of samples. For learning-basedmeasurements,
the samples are those points classified as a type of devices in the
integrated IVUSmodel. The kernel-based measurement estima-
tion is represented as

(5)

where is a Gaussian kernel with
a bandwidth . For more details of the hierarchical model
tracking, please refer to [21], [23].
The kernel-based measurement estimation can obtain

smooth measurements in a neighborhood, and also allow for
multi-resolution searching during tracking. An example of
multi-resolution searching of translation is shown in Fig. 12.
The tracking is performed with decreasing search intervals

. The corresponding bandwidth in (5) varies
accordingly, denoted as at the th resolution. At coarse
resolution, we use larger kernel bandwidths to avoid missing
tracking due to larger searching intervals; and at fine resolution,
we use smaller kernel bandwidths to obtain finer tracking
results. The Gaussian bandwidths are set as the searching inter-
vals, i.e., , to adapt the multi-resolution
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Fig. 12. Multi-resolution tracking with incrementally decreasing searching in-
tervals and kernel bandwidths. The tracking starts from an initial position, and
ends at the position close to the true shape. The dotted curves represent interme-
diate tracking results at different resolutions. is the translation vector inferred
from the th level. is the integrated model updated after the translation
from the th level in the hierarchical tracking.

tracking. The same strategy is applied to the joint search of
translation and rotation. To avoid local optima during tracking,
multiple candidates are saved at each resolution and are prop-
agated to the next resolution. The current tracking method
runs at 2.0 frames per second in a computer with a Core 2
Duo 2.66-GHz CPU. In a typical case where the image size is
512 512, the image rotation takes about 200 ms, the device
detection takes about 150 ms, and the tracking takes about
150 ms. Since the fluoroscopy is acquired by ECG triggering
(approximately at the rate of 1 frame per second,) our method
is fast enough for online in vivo clinical procedures.

VI. CO-REGISTRATION

In the mapping stage, once IVUS transducers and guiding
catheter tips are tracked, angiography and IVUS images are
co-registered. The mapping stage includes two steps: the
spatial mapping, which is to map each tracked transducer in
fluoroscopy to a location on the vessel branch in the angiogram
reference frame, and the temporal mapping, which is to map a
location in the angiography reference frame to an IVUS slice
based on the temporal synchronization between the two image
modalities. In the spatial mapping step, a geodesic distance

is inferred from the corresponding Euclidean distance
between a tracked guiding catheter tip and a tracked

IVUS catheter at the time . The relationship
is computed from the vessel shape defined in the angiogram
reference frame. Fig. 13 shows an example of obtaining

from a vessel shape. For some vessel
shapes, the function may not be a single-valued func-
tion, which means that for each computed Euclidean distance,
there could be multiple corresponding geodesic distances. To
resolve the ambiguity, a smoothness constraint is imposed on
the geodesic distance. The geodesic distance should change
smoothly between successive frames. If there are multiple
geodesic distances that correspond to an Euclidean distance
at time , the th geodesic distance candidate is denoted as

Fig. 13. Inferring the geodesic distance from Euclidean distance and vessel
shape. (a) Geodesic and Euclidean distances can be computed for each point
at the vessel. (b) Relationship between geodesic and Euclidean distance is es-
tablished for each vessel shape, and is used to infer geodesic distances from
Euclidean distances in tracking.

. Its weight is voted from all the candidates in a
neighborhood,

(6)

where and are the parameters in Gaussian kernels to smooth
votes from the neighborhood. From all possible candidates in
each frame, the geodesic distance with the maximal weight is

selected, i.e., , where .

Based on the computed geodesic distance, a pullback model
is fitted to estimate the motion of IVUS transducers in a vessel
branch. The model fitting serves two purposes: first, we notice
that the motion based on geodesic distances without smoothing
is noisy, as shown in Fig. 14. Such noise is due to breathing
motions, imperfect ECG triggering, possible vessel foreshort-
ening in 2-D images, and/or possible catheter movements in-
side vessel. A smooth model fitted on estimated geodesic dis-
tances can help reduce the impact of such factors on the registra-
tion; second, the model fitting can identify false detections and
tracking errors as outliers of the fitted model. Such errors can
then be removed from motion estimations. The outlier identifi-
cation and model fitting is iterated, therefore improving the reg-
istration accuracy. To handle nonconstant movement of IVUS
pullback, we fit a cubic spline to model the geodesic distance
during pullback. Assuming that
is a spline model defined on the anchor points , the
model is to minimize the fitting cost

(7)

In (7), is the fitting error, the second and third term
are the first-order and the second-order smoothness constraints.
and are used to balance the two smoothness constraints. The

optimization of is obtained by a greedy search. At the begin-
ning, the anchor points are uniformly sampled from the original
data . During the greedy search, the anchor points are se-
quentially searched in a local range to minimize the cost func-
tion. The iteration continues until the cost function converges.
An example is shown in Fig. 14, where there are noises in the



2246 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 12, DECEMBER 2013

Fig. 14. Fitting the transducer movement with a spline. (a) Tracked transducer in a pullback frame and its spatial mapping in an angiogram reference frame.
(b) Geodesic distances estimated from the tracking results and from the fitting.

geodesic distance estimation, and the pullback speed is not con-
stant inside the vessel. The model fitting can remove the noise
and model the nonconstant movement of the transducers in the
2-D image plane.
For the purpose of time synchronization, the clocks of the

angiography and IVUS systems are manually adjusted. Inter-
ventional cardiologists simultaneously start the acquisition of
IVUS and ECG-triggered fluoroscopy. The acquisition times of
the ECG-triggered fluoroscopy frames and of the gated IVUS
images are stored as a frame time vector in the DICOM header
of the two sequences. A finer adjustment was achieved by man-
ually looking for the correspondence between the frame time
vectors of each respective modality. Finally, based on the esti-
mated geodesic distance, each tracked IVUS catheter is mapped
onto a point on the segmented vessel branch. The location is as-
sociated with an IVUS slice based on the time synchronization,
as explained above. By the spatial and temporal mapping, each
IVUS frame is “co-registered” to its corresponding position in
the reference angiography image.

VII. EXPERIMENTS

A. Data

The angiography and IVUS co-registration method and
system are evaluated on a set of clinical cases acquired from
several European hospitals. The acquisition follows the work-
flow described in Section II. The evaluation set includes 65
cases in total. Each acquired case includes an angiogram
sequence and an ECG-triggered fluoroscopic pullback se-
quence (Artis Zee, Siemens AG, Forchheim, Germany), and
corresponding IVUS images (Volcano Corp., San Diego, CA,
USA). Although in these experiments, the phased array IVUS
catheters are used, the developed method can be directly ap-
plied to other types of IVUS catheters, e.g., the mechanical
catheters. The X-ray image size is 512 512, and the physical
size of each pixel is between 0.2 and 0.3 mm. Each pullback
was acquired within a few minutes, usually containing 100 to
300 ECG-triggered fluoroscopy frames. The data set reflects a
variety of clinical scenes, including low signal-to-noise ratio,

IVUS pullback in different vessel branches and projection
angles, and the presence of other surgical devices in the field of
view. Some examples are shown in Fig. 15.

B. Quantitative Evaluations of Device Tracking

To establish ground truth for quantitative evaluation, weman-
ually annotated the positions of IVUS transducers and guiding
catheter tips in all the fluoroscopic frames as the ground truth.
The tracking accuracy in fluoroscopy is quantitatively measured
as the Euclidean distances between automatic tracking results
and corresponding manual annotations. The geodesic distance
error is also computed as the estimation of the co-registration
error. For this purpose, we compute the geodesic distances from
the manual annotations as the ground truth, and then compare
the ground truth with the geodesic distances computed from cor-
responding tracking results.
The quantitative validation of the system is performed with

two experimental settings: Experiment I and Experiment II. In
Experiment I, the detectors are trained with and applied to all the
cases. Our method is successful in 64 out of 65 cases, except for
one case where the IVUS transducer is occluded by the spine for
almost the whole time, thus achieving a 98.46% success rate. In
Experiment II, the training and testing sets are separated to test
how well our method generalizes to unseen data. We train the
detectors in 32 randomly selected cases, and validate the frame-
work in the remaining 32 cases that are excluded from training.
Some exemplar tracking results are shown in Fig. 15. Table I
summarizes the error statistics from the 64 cases. The millime-
ters errors are converted from pixel errors based on the physical
resolution of the imaging detector, therefore quantifying nor-
malized errors in a 2-D projection space. The tracking error of
IVUS transducers is small, with mean errors only around 0.35
mm for both experiments. The error at the guiding catheter tips
is slightly larger. The median error is 0.97 mm for Experiment
I, and 1.17 mm for Experiment II. The overall small differences
between the two experiments demonstrate the good generaliza-
tion capability of our tracking method. The mean geodesic er-
rors are below 1.20 mm and 1.50 mm from the two validation
experiments, respectively.
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Fig. 15. (a), (b) Tracking and co-registration results. In each frame, the left image shows tracking IVUS transducers and guiding catheter tips, and the right image
shows the corresponding mapped IVUS image plane (the red cross) along the vessel in the reference angiogram frame. (c) Tracked IVUS transducers and guiding
catheter tips in fluoroscopy in one case. (d) More tracking results in another two cases.

C. Evaluation of Co-Registration With Clinical Ground Truth

Besides evaluating the tracking accuracy, the accuracy is
evaluated by comparing the correspondences on the co-regis-
tered angiography and IVUS images. For clinical evaluation, a
prototype as shown in Fig. 16 was developed. This prototype
simultaneously shows the reference angiography image, the

IVUS frames and the longitudinal IVUS representation (across
the IVUS stack of cross-sections). The position associated with
the current IVUS frame is shown by a cross in the reference
angiogram and by a line in the IVUS longitudinal display.
The reviewing cardiologist first identified a salient landmark
such as a bifurcation or a stent termination in the IVUS
frames and reported the time corresponding to this frame.
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TABLE I
QUANTITATIVE EVALUATION OF THE CO-REGISTRATION SYSTEM

Fig. 16. Frame of co-registered angiography and IVUS images. The left top
image shows the registered IVUS image plane on the angiography (i.e., the cross
in the upper image). The left bottom image shows the co-registered IVUS image
at the cross-sectional view. The right image is the corresponding IVUS images
at a longitudinal view.

The cross was then moved to the corresponding landmark in
the reference angiography image and the time reported. The
co-registration accuracy was calculated as the magnitude of the
difference between the two reported times multiplied by the
pullback speed. In the clinical evaluation, more factors, such
as imperfect time synchronization between angiography and
IVUS of the prototype system, affect the final co-registration
accuracy.
From all the cases, clinicians identify 60 cases that are suit-

able for evaluation. The cases where there are no clear land-
marks, or image quality is not good enough are excluded from
the clinical evaluation. One to three landmarks are manually
identified for each case. There are totally 99 landmarks. The
comparison between the clinical ground truth and the automatic
co-registration is summarized in Table II, where the mean, me-
dian, as well as different percentiles are presented. The exper-
iment setting is as the Experiment I in Section VII-B. The re-
sults show that although all the affecting factors are taken into
account, the mean co-registration error is still small, i.e., only
about 1.15 mm. About 90% of the landmarks have less than 2.1
mm co-registration error. The results are obtained from the data
acquired from multiple hospitals, and also include all the error
sources that can be introduced in a practical setting.

TABLE II
COMPARE THE CO-REGISTRATION WITH CLINICAL GROUND TRUTH

D. Considerations on Radiation Exposure

The reference angiogram can be selected from any already
acquired contrasted sequence used for diagnostic purposes and
does not require additional radiation exposure. The average
number of frames acquired by ECG-triggered fluoroscopy
during the 60 pullbacks of the clinical evaluation was 149.
It corresponds to 10 seconds of additional fluoroscopy time,
assuming an acquisition of 15 frames per second. It is thus very
low compared to the overall dose exposure of an intervention.

VIII. CONCLUSION

We report a solution to provide automatic and robust tracking
and registration of angiography and IVUS images. The exper-
iments demonstrate its effectiveness in co-registering the two
imaging modalities. We hope that this work will establish a
useful reference for further research in this exciting field. For ex-
ample, the co-registration between angiography and IVUS can
be a pivotal tool in assessing implanted bioresorbable scaffolds
as they are barely visible in angiography.
The presented method is applicable to other intravascular

imaging modalities that have been enabled by new technical
developments in the recent years. As an example, optical
coherence tomography (OCT) has gained much attention,
especially due to its high spatial resolution. Other modalities
such as near-infrared spectroscopic (NIRS) imaging, intravas-
cular magnetic spectroscopy, intravascular magnetic resonance
imaging, Raman spectroscopy, intravascular photoacoustic
imaging, near infrared fluorescence imaging, and time resolved
fluorescence spectroscopic imaging have contributed to in-
crease knowledge of coronary atherosclerosis in a research
setting. The integration of intravascular imaging with other
invasive or noninvasive modalities has shown to give a more
detailed understanding of coronary artery pathology [1].
The method developed in this paper has the potential to

be adapted to other IVUS catheters (e.g., mechanical or other
vendor) within a reasonable amount of efforts. For that purpose,
a part of training, as described in Sections IV and V, would
need to be repeated with fluoroscopic images of these specific
catheters. While the tracking and detection of catheters from
other modalities is conceivable after some adaptations, the
co-registration workflow may need to be adapted for modalities
such as OCT due to a significantly higher speed of the pullback.
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