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Abstract. In this paper, we propose a so-called AutoGate algorithm
for fast and automatic Doppler gate localization in B-mode echocardio-
graphy. The algorithm has two components: 1) cardiac standard view
classification and 2) gate location inference. For cardiac view classifica-
tion, we incorporate the probabilistic boosting network (PBN) principle
to local-structure-dependent object classification, which speeds up the
processing time as it breaks down the computational dependency on the
number of classes. The gate location is computed using a data-driven
shape inference approach. Online clinical evaluation was performed by
integrating the algorithm to a real machine. Experiment results show
that the proposed algorithm performs very comparable to expert man-
ual gate placement. To the best of our knowledge, this is the first to
provide a feasible solution to automate the Doppler gate placement in
real time environment.

1 Introduction

The Doppler echocardiograhy is widely used to assess cardiovascular function-
alities such as valvular regurgitation and stenosis. It is captured by a Doppler
ultrasound transducer that employs the Doppler effect to determine whether
structures (usually blood) are moving towards or away from the ultrasound
probe, and its relative velocity [1]. To acquire a Doppler echocardiogram, a
sonographer needs to manually locate a so-called Doppler gate on the top of
a B-mode echocardiogram where the velocity and direction of blood are to be
sampled by the Doppler transducer.

In this paper, we propose a fast and robust algorithm for automatic Doppler
gate localization, which is called (AutoGate) afterward. AutoGate employs
data-driven machine learning techniques customized for medical image analysis
tasks such as left ventricle (LV) detection in noisy echo images using binary
classification, multi-class classification, shape inference etc. The benefit of au-
tomatic placement of the Doppler gate can be summarized into two aspects:

? This author currently works for U-Systems Inc.



reducing the duration of imaging work flow and increasing the consistency of
gate localization.

The proposed AutoGate algorithm has two main components: (i) fast car-
diac view classifier and (ii) gate location inference model. To automate the gate
localization, we should first identify the cardiac view of the B-mode because each
standard cardiac view shows different valves where a gate is located to capture
the Doppler signal. Once the view is determined using the view classifier, Au-
toGate invokes the inference model to estimate the final gate location. We base
the inference model on the database-guided segmentation approach proposed in
[2]. It is is trained to build a function which computes the LV shape and the gate
location using an image patch. Actually, we simultaneously infer the LV shape
and the gate location using the shape inference algorithm [2].

There are some previous works to directly deal with automatic view classifi-
cation of echocardiogram [3][4][5][6][7]. We propose a fast cardiac view classifica-
tion algorithm based on the Local Structure Dependent Classification approach
(called fLoDeC) by adopting the basic algorithm of CardiacVC proposed in [3]
and Probabilistic Boosting Network (PBN) framework proposed in [8]. Due to
the use of PBN, fLoDeC is more scalable than CardiacVC. In other words, the
computation time is affected less for fLoDeC than for CardiacVC as the number
of object classes increases.

We performed experiments for four cardiac standard views: apical four cham-
ber (A4C) view, apical two chamber (A2C) view, apical three chamber (A3C)
view, and apical five chamber (A5C) view. A gate is located on mitral valve
(MV), tricuspid valve (TV), or aortic valve (AV) depending on the view type.

2 Object Detection and Classification

In this section we propose a generic algorithm of fast object detection and clas-
sification called fLoDeC. The basic framework of this algorithm is to anchor
a relatively stable (rigid) local structure of each object class. We use the LV
as the local structure. A global structure is then extracted based on the an-
chored local structure and further classified using multi-class classifiers. fLoDeC
uses the same idea of local-structure-dependent detection and classification from
CardiacCV [3], but it incorporates the PBN principle [8] to achieve further speed-
up. The diagram in Fig. 1 illustrates how fLoDeC is constructed using the PBN
framework.

Based on the diagram in Fig. 1-(a), the fLoDeC algorithm is summarized as
follows. Each local structure detector (LSDi), where i ∈ [1, C], is independently
applied to an echocardiogram. The LSDi provides positive candidates of the
local structure of the ith object class. The training data for the global structure
classifiers are constructed based on these positive candidates by applying LSDi

to not only the images of the ith object class but also those of the other classes.
Therefore, the global structure training data set is local-structure-dependent,
based on which we learn a multiclass global structure classifier (MGSCi). The
final classification result is computed by integrating the classification results
provided by { MGSC1 , ..., MGSCC}.



Fig. 1. Multiple object detection and classification using local structure dependent
classification approach. LSD: Local Structure Detector, LSC: Local Structure classi-
fier, MGSC: Multi-class Global Structure Classifier.

To anchor the local structures, all the LSD ’s should exhaustively search the
image to detect their own local structures. The search space for LV is of five
dimensions: (x, y) location, width, height and angle, represented as (x, y, w, h, θ).
This is the most time consuming part of fLoDeC because each local structure
detector should be applied in the five dimensional search space independently.
The computation time linearly depends on the number of object classes.

To break down the above linear computational dependency on the number of
classes, the fLoDeC algorithm tackles the problem by replacing the local struc-
ture detection part, inside the dashed box in Fig. 1-(a), with the PBN structure
shown in Fig. 1-(b). In this framework, we train one multi-class local struc-
ture classifier (MC LSC ), and configure it to multiple levels in a hierarchical
structure, MC LSC1 , ..., MC LSCn . To classify a local structure, it should be
supplied from MC LSC1 to MC LSCn sequentially. Each local detector, LSDi ,
is also re-configured as a hierarchical structure by decomposing it into multi-
ple levels of weak detectors in the same manner of MC LSC . The decomposed
MC LSC1 , ..., MC LSCn and LSD1i , ..., LSDni are grouped in a graph struc-
ture shown in Fig. 1-(b). The essence of this approach can be summarized into
two aspects: 1) apply only the few selected local structure detectors based on
the MC LSC, and 2) the graph structure further enables the negative exclusion
as soon as possible from early layers.

The final view classification result, ĉ, given a candidate image I, can be
computed via the MAP rule:

ĉ = arg min
i∈[1,C]

{P (ci|I) =
C∑

j=1

PMGSC(ci|j, I)PLSD(j|I)}, (1)



where PMGSC(ci|j, I) is the posterior probability of being class ci from MGSCj

and PLSD(j|I) is the prior probability from LSDj .

2.1 Cardiac View Classification of Four Apical Views

We will discuss about how the cardiac view classifier in AutoGate is imple-
mented using fLoDeC presented in Sec. 2. We focus on the echocardiograms of
four apical views, namely A4C, A2C, A3C and A5C.

To construct fLoDeC to deal with the four views, we train one LV classifier
(MC LSC), four LV detectors, LSDA4C , LSDA2C , LSDA3C and LSDA5C , as
local structure detectors, and four global view classifiers, MGSCA4C , MGSCA2C ,
MGSCA3C and MGSCA5C . Each local structure detector is trained based on
Probabilistic Boosting Tree (PBT) [9] which treats this detection problem as a
two-class classification problem (positive class versus negative class). The LV-
classifier and the four cardiac view classifiers are trained using the multi-class
logit boosting based image classification approach [3][10]. The weak classifiers in
(MC LSC) and LSD ’s are divided into several parts to form the PBN framework
shown in Fig. 1-(b).

3 Automatic Gate Localization Based on Learning-based
Approach

Once the view is determined, we need to find the best location of the Doppler
gate. It is, however, a hard problem because the gate is usually located on the
path of blood flow which is an open space. To tackle this, we utilize anatomy
structure such as LV and valves around the gate location to infer the target gate
location. The LV shape and its corresponding gate locations are annotated by
experts using points (17 points for LV and one point for each gate) as shown in
2. In this figure, the yellow dots represent an LV shape and the red circles with
a dot represent gate locations. In A4C view, two gate locations are computed:
one for mitral valve and the other for tricuspid valve. Only one Doppler gate of
mitral valve is computed in A2C view. Two gate locations, one for mitral valve
and aortic valve, are annotated in A3C view and A5C view.

With these annotations, the gate locations, even though it is ambiguous itself,
can be inferred using the other heart anatomy structure such as LV, aortic valve
annulus, tricuspid valve annulus, and so on.

We employ the database-guided segmentation algorithm proposed in [2] to
infer LV shape and gate location simultaneously. The algorithm is summarized
as follows. Each training image is represented using a very high dimensional
numerical feature vector, and its shape (including both the LV shape and gate
locations) is represented as a set of landmark points. The training data are
clustered into several clusters in the shape space. The algorithm selects a small
number of useful features based on boosting framework by maximizing the Fisher
separation criterion of the clusters.

If the view is determined as ĉ, the LV image patch computed by LSDĉ is
used as an input for the shape inference model to locate the Doppler gate. The
LV shape and the image appearance around the LV collaboratively contribute
to the final gate locations.



(a) A4C (b) A2C (c) A3C A5C

Fig. 2. Annotation of LV shape (yellow dots) and gate location (red circle with yellow
dot inside.

4 Performance Evaluation
4.1 Offline Clinical Evaluation
For offline evaluation, we collected training data and test data separately. Auto-
Gate was built using the training data and compute the classification accuracy
and gate localization using both data sets. Table 1 shows two confusion matrix
of the classification accuracy for training and test data which are very diverse
in terms of not only image quality but also hear conditions. The average clas-
sification accuracy of training data is over 96%, and that of test data is close
to 95%. As shown in Table 1, most of the classification error comes from the
misclassification of A5C to A4C. It is because some A5C views have very small
aorta structure which makes it very similar to A4C view.

Table 2 shows the distance of the gate location between AutoGate and
expert’s annotation. As shown in the table,AutoGate localizes the gate location
very comparable to experts.

Training Data (%) Test Data (%)

A4C A2C A3C A5C A4C A2C A3C A5C

A4C(408) 97.5 0.2 0.5 1.7 A4C(23) 100.0 0.0 0.0 0.0

A2C(296) 0.3 99.7 0.0 0.0 A2C(24) 0.0 96.0 4.0 0.0

A3C(410) 1.0 3.7 94.6 0.7 A3C(25) 0.0 8.0 96.4 0

A5C(200) 8.0 0.0 0.0 92.0 A5C(24) 13.0 0.0 4.0 83.0

Table 1. Confusion matrix of view classification results. The numbers in a parenthesis
represents the number of training/test data

Fig. 3 shows the valve localization results by applying the offline version of
the AutoGate algorithm to dicom videos. The small two horizontal lines within
the pan box indicate the gate location. In this figure, ED and ES stand for End
of Diastole and End of Systole, respectively. The view classification result is
illustrated using blue bars along with probabilities of being A4C, A2C, A3C and
A5C (from left to right) below each picture.

4.2 Online Clinical Evaluation
For online evaluation, we integrated the online version of AutoGate algorithm
into a real ACUSON sequoiaTM ultrasound machine, and computed the actual



Mitral Valve Tricuspid Valve Aortic Valve
Mean (mm) Std (mm) Mean (mm) Std (mm) Mean (mm) Std (mm)

A4C 4.2 2.5 3.4 2.5 - -

A2C 5.9 2.4 - - - -

A3C 3.5 2.2 - - 3.4 2.3

A5C 3.6 3.6 - - 2.4 2.4
Table 2. Gate localization error between AutoGate and an expert for test data. ”-”
indicates ”Not Applicable”.

(a) A4C, MV, ED (b) A4C, MV, ES (a) A4C, TV, ED (b) A4C, TV, ES

(a) A2C, MV, ED (b) A2C, MV, ES (a) A2C, MV, ED (b) A2C, MV, ES

(a) A3C, MV, ED (b) A3C, MV, ES (a) A3C, AV, ED (b) A4C, AV, ES

(a) A5C, MV, ED (b) A5C, MV, ES (a) A5C, AV, ED (b) A5C, AV, ES

Fig. 3. Valve localization results in offline environment. MV and TV represent Mitral
Valve and Tricuspid Valve, repectively. ED and ES stand for End diastole and End
Systole, respectively.



Doppler measurements from the Doppler signal captured after locating the gate
using AutoGate. This measurements are compared with those computed after
manually placing the gate by experts. The whole AutoGate algorithm runs
within one second on the ultrasound machine.

Fig. 4 illustrates two scatter plots of MV peak velocity measures. In this
Figure, the left scatter plot shows peak velocities computed by placing a gate
using AutoGate (x-axis) and mean peak velocities computed after placing a
gate twice by a expert (y-axis). The right scatter plot shows intra-user variability.
As shown in the scatter plots, the correlation coefficient between AutoGate
versus the expert is 0.951 which is very comparable with intra-expert variability,
0.966. It is also reported by the evaluator that the gate placement by AutoGate
was appropriate 100% of the time. Minor adjustments were done 30% of the time
but with no significant effect on spectral Doppler strip.

(a) AutoGate vs. Experts (b) Inter-Users

Fig. 4. Correlation coefficient of MV inflow peak velocity

Fig. 5 shows Doppler echocardiogram of Left Ventricular Outflow Tract
(LVOT) by AutoGate in (a) and by expert in (b), and that of Mitral valve
inflow by AutoGate in (c) and by expert in (d). They look strikingly similar.

(a) (b) (c) (d)

Fig. 5. Spectral Doppler signal captured after placing Doppler gate by AutoGate or
an expert. (a) LVOT signal from AutoGate, (b) LVOT signal from Expert, (c) MV
Inflow signal by AutoGate, (d) Mitral Valve Inflow signal by Expert



5 Conclusion

We proposed a fast algorithm of automatic Doppler gate localization, Auto-
Gate, in B-mode echocardiogram. To improve the scalability, we developed
a faster version of local-structure-dependent classification algorithm fLoDeC,
which breaks down the linear dependency on the number of object classes, by
employing the Probabilistic Boosting Network (PBN) principle. fLoDeC an-
chors the LV structure and classifies the cardiac view faster than CardiacAC[3],
which is the most time consuming part of AutoGate algorithm. The final gate
location is computed by utilizing the explicit heart anatomy structure such as
Left Ventricle (LV) and valve planes.

In term of performance, AutoGate performs very comparable to the manual
gate localization by expert, and is expected to reduce the duration of imaging
work flow for spectral Doppler analysis. To the best of our knowledge, this is
the first attempt to provide a feasible solution to automate the gate placement
in real time environment.
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