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Abstract—The analysis of a feature space that exhibits multiscale patterns often
requires kernel estimation techniques with locally adaptive bandwidths, such as the
variable-bandwidth mean shift. Proper selection of the kernel bandwidth is,
however, a critical step for superior space analysis and partitioning. This paper
presents a mean shift-based approach for local bandwidth selection in the
multimodal, multivariate case. Our method is based on a fundamental property of
normal distributions regarding the bias of the normalized density gradient. We
demonstrate that, within the large sample approximation, the local covariance is
estimated by the matrix that maximizes the magnitude of the normalized mean shift
vector. Using this property, we develop a reliable algorithm which takes into account
the stability of local bandwidth estimates across scales. The validity of our
theoretical results is proven in various space partitioning experiments involving the
variable-bandwidth mean shift.

Index Terms—Variable-bandwidth mean shift, bandwidth selection, multiscale

analysis, Jensen-Shannon divergence, feature space.

�

1 INTRODUCTION

THE objective of variable-bandwidth kernel estimation is to improve
the performance of kernel estimators by adapting the kernel
bandwidth to the local data statistics. It can be shown that the
estimation bias of sample point density estimators [11] decreases in
comparison to the fixed-bandwidth estimators, while the covariance
remains the same. Only recently, these estimators have been used in
computer vision applications, such as histogram construction from
color invariants [9]. We have introduced the variable-bandwidth
mean shift as an adaptive estimator of the density’s normalized
gradient and applied it for mode detection in complex feature spaces
[5]. Although theoretically promising, variable-bandwidth methods
rely heavily on the selection of local bandwidth. In the case when the
bandwidth is not properly selected, the performance is suboptimal
and often worse than that of fixed-bandwidth methods.

Data-driven bandwidth1 selection for multivariate data is a
complex problem, largely unanswered by the current techniques [28,
p. 109], [11]. Depending on the prior knowledge on input data, we
distinguish two classes of problems. If the data statistics is
homogeneous, then one global bandwidth suffices for the analysis. If
the data statistics are, however, changing across the feature space,
local bandwidths should be computed. Unfortunately, most of the
tasks encountered in autonomous vision reduce to the latter class of
problems, i.e., the input is represented by multdimensional features,
whose properties (scales) are variable in space and might change in
time. Examples of such tasks are background modeling, tracking, or
segmentation.

One can identify two general approaches to bandwidth selection:
statistical analysis-based and task-oriented methods. Statistical meth-
ods compute the global bandwidth by balancing between the bias
and variance of the density estimate obtained with that bandwidth,
over the entire space. Asymptotic approximations are used to
express the quality of the density estimate. A reliable method for

univariate data is the plug-in rule [24], shown superior to least-
squares cross-validation and biased cross-validation [14], [21], [26,
p. 46]. The global bandwidth, however, is not effective when data
exhibits multiscale patterns. In addition, for the multivariate case
the optimal bandwidth formula [25, p. 85], [28, p. 99] is of little
practical use since it depends on the Laplacian of the unknown
density being estimated. The most often used method for local
bandwidth adaptation follows Arbamson’s rule, which takes the
bandwidth proportional to the inverse of the square root of a first
approximation of the local density [1]. The proportionality constant
is an important choice of the method [26, p. 46].

Task-oriented methods for bandwidth selection typically rely on
the stability of feature space partitioning. The bandwidth is taken as
the center of the largest operating range over which the same number
of partitions are obtained for the given data [8, p. 541]. This strategy is
also implemented within the framework of scale-space theory [17].
Nevertheless, it assumes that the space is homogeneous, i.e., all the
partitions should have roughly the same scale, which is not always
true. In a related class of techniques, the best bandwidth maximizes
an objective function, which expresses the quality of space partition-
ing and is called index of cluster validity. The objective function
compares inter- versus intra-cluster variability [13], [15], or evaluates
the isolation and connectivity of the delineated clusters [22]. See [20],
for an evaluation of a large set of such indices.

This paper presents a new and effective approach to local
bandwidth selection for multimodal and multivariate data. The
method estimates for each data point the covariance matrix which
is the most stable across scales. The analysis is unsupervised and the
only assumption is that the range of scales at which structures
appear in the data is known. In almost all vision scenarios, this
information is available from prior geometric, camera, or dynami-
cal constraints. The selected bandwidth matrices are employed in
the variable-bandwidth mean shift for adaptive mode detection
and feature space partitioning, as shown in Fig. 1.

The paper is organized as follows: A more general form of the
variable-bandwidth mean shift, including fully parameterized
bandwidth matrices, is introduced in Section 2. Section 3 presents
the theoretical criterion for bandwidth selection based on the
normalized mean shift vector. Section 4 details the proposed
algorithm and shows bandwidth selection experiments. In
Section 5, we apply the variable-bandwidth mean shift to partition
feature spaces. Discussions are presented in Section 6.

2 VARIABLE-BANDWIDTH MEAN SHIFT

Let xi, i ¼ 1 . . .n be a set of d-dimensional points in the space Rd and
assume that a symmetric positive definite d� d bandwidth matrix
Hi is defined for each data point xi. The matrix Hi quantifies the
uncertainty associated with xi [12]. The sample point density
estimator with d-variate normal kernel, computed at the point x is
given by

f̂fvðxÞ ¼
1

nð2�Þd=2
Xn
i¼1

1

j Hi j1=2
exp � 1

2
D2 x;xi;Hið Þ

� �
; ð1Þ

where

D2 x;xi;Hið Þ � ðx� xiÞ>H�1i ðx� xiÞ ð2Þ

is the Mahalanobis distance from x to xi. Let Hh be the data-
weighted harmonic mean of the bandwidth matrices computed at x

H�1h ðxÞ ¼
Xn
i¼1
wiðxÞH�1i ; ð3Þ

where the weights

wiðxÞ ¼
1

jHij1=2 exp �
1
2D

2 x;xi;Hið Þ
� �

Pn
i¼1

1
jHij1=2 exp �

1
2D

2 x;xi;Hið Þ
� � ð4Þ
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1. The terms bandwidth and scale will be considered equivalent in this
paper. Bandwidth will be preferred when used in conjunction with a kernel,
while scale will be employed to underline the idea of size.
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satisfy
Pn
i¼1 wiðxÞ ¼ 1. An estimator of the gradient of the true

density is the gradient of f̂fv

r̂rfvðxÞ � rf̂fvðxÞ

¼ 1

nð2�Þd=2
Xn
i¼1

H�1i ðxi � xÞ
j Hi j1=2

exp � 1
2
D2 x;xi;Hið Þ

� �
:
ð5Þ

By multiplying (5) to the left with HhðxÞ and using (1), it results that

HhðxÞr̂rfvðxÞ ¼ f̂fvðxÞmvðxÞ; ð6Þ

where

mvðxÞ � HhðxÞ
Xn
i¼1
wiðxÞH�1i xi � x ð7Þ

is the variable-bandwidth mean shift vector. From (6), we also have

mvðxÞ ¼ HhðxÞ
r̂rfvðxÞ
f̂fv

; ð8Þ

which shows that the variable-bandwidth mean shift vector is an

adaptive estimator of the normalized gradient of the underlying

density.
If the bandwidth matrices Hi are all equal to a fixed matrix H,

called analysis bandwidth, the sample point estimator (1) reduces to

the simple multivariate density estimator with normal kernel

f̂fðxÞ ¼ 1

n j 2�H j1=2
Xn
i¼1

exp � 1
2
D2 x;xi;Hð Þ

� �
: ð9Þ

Equation (8) becomes

mðxÞ ¼ H
r̂rfðxÞ
f̂fðxÞ

; ð10Þ

where

mðxÞ �
Pn
i¼1 xiexp � 1

2D
2 x;xi;Hð Þ

� �
Pn
i¼1 exp � 1

2D
2 x;xi;Hð Þ

� � � x ð11Þ

is the fixed-bandwidth mean shift vector.
A mode seeking algorithm can be derived by iteratively

computing the fixed- or variable-bandwidth mean shift vector [4],

[5]. The partition of the feature space is obtained by grouping

together all the data points that converged to the same mode.

Theoretically, the partition quality in the variable-bandwidth case is

better, however, it depends on the selected bandwidth matrices Hi.

The next sections are devoted to the proper computation of these

matrices.

3 BANDWIDTH SELECTION THEOREM

This section exploits a fundamental property of the normalized
gradient of normal distributions, whose estimate is proportionally
downward biased [27]. The direct consequence of this property is
that, within the large sample approximation, the estimation bias
can be canceled, allowing the estimation of the true local
covariance of the underlying distribution.

Our assumption is that, in the neighborhood of location x, the
data is a distributed multivariate normal with unknown mean �� and
covariance matrix��. The direct estimation of�� is generally difficult
since, to locally fit a normal one needs a priori knowledge of the
neighborhood size in which the fitting parameters are to be
estimated. If the estimation is performed for several neighborhood
sizes, a scale invariant measure of the goodness of fit is needed. The
following theorem, however, presents an elegant solution to the
problem. It is valid when the number of available samples is large.

Theorem 1. Assume that the true distribution f is Nð��;��Þ and the

fixed-bandwidth mean shift is computed with a normal kernel KH.

The bandwidth normalized norm of the mean shift vector is maximized

when the analysis bandwidth H is equal to ��.

Proof. Since the true distribution f is normal with covariance
matrix ��, it follows that the mean of f̂fðxÞ, E

�
f̂fðxÞ

�
�

�ðx; ��þHÞ is also a normal surface with covariance ��þH

[27]. Likewise, since the gradient is a linear operator, we have
E
�
rf̂fðxÞ

�
¼ r�ðx; ��þHÞ. When the large sample approxima-

tion is valid, the variances of the means are relatively small. By
employing (10), this implies that

plim mðxÞ ¼ H
E rf̂fðxÞ
h i
E f̂fðxÞ
h i ¼ H

r�ðx; ��þHÞ
�ðx; ��þHÞ

¼ �Hð��þHÞ�1ðx� ��Þ;

ð12Þ

where plim denotes the probability limit with H held constant.
The norm of the bandwidth normalized mean shift is given by

mðx;HÞ � H�1=2plim mðxÞ
�� �� ¼ H1=2ð��þHÞ�1ðx� ��Þ

�� ��: ð13Þ
It is shown in Appendix A thatmðx;HÞ is maximized iff H ¼ ��.tu
Theorem 1 leads to an interesting scale selection criterion: The

underlying distribution has the local covariance equal to the analysis
bandwidth that maximizes the magnitude of the normalized mean
shift vector. The main idea of this property is underlined in Fig. 2 for a
unidimensional case. Given the input data drawn fromNð12; 4Þ, we
computed the magnitude of the normalized mean shift for different
locations and using different bandwidths. Each curve in Fig. 2b
represents the results for one location. Since the locations were
chosen on both sides of the mean, the curves appear in pairs. The
upper curves are for the points located far from the mean. Observe
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Fig. 1. Feature space analysis with variable-bandwidth. For the initial step, the fixed-bandwidth mean shift procedure [5] is applied with different analysis scales and, at
each scale, each data point is classified into a local mode. The trajectory points and mean shift vectors are then used to fit a normal surface to the density surrounding
each mode. For each data point, the most stable covariance matrix across scales is then selected using a specialized version of the Jensen-Shannon divergence. Finally,
the covariance matrices are used in the variable-bandwidth mean shift.



that each curve is maximum when the analysis bandwith is h0 ¼ 4,
indicating, according to the Theorem 1, that the standard deviation of
the input data is equal to 4.

Since the theorem is valid in the neighborhood of each mode, a
more global solution (least squares) can be obtained by using
multiple measurements represented by the mean shift trajectories of
all data points converging to the same mode. Note also that the input
data might be multimodal with asymmetric structures, while
neighboring structures might contaminate each other. In this case,
the normality assumption of Theorem 1 is not valid and the result
will depend on the analysis bandwidth H. To solve this problem, we
propose a procedure which selects the most stable bandwidth across
scales. These ideas are discussed in the next section.

4 ALGORITHM FOR BANDWIDTH SELECTION

We derive in the sequel a least-squares solution for covariance
matrix estimation and show how to choose the most stable result
across scales. Then, the bandwidth selection algorithm is summar-
ized and experiments are presented.

4.1 Least-Squares Solution

Let us denote by xi, i ¼ 1 . . .nu all the data points associated with
the u� th mode and by yi, i ¼ 1 . . . tu the location of all trajectory
points associated with the same mode. The partition is obtained
using the mean shift procedure with analysis bandwidth H.
Assume that ð��;��Þ are the mean and covariance of the underlying
structure.

We note that the mean and covariance of the points xi, i ¼
1 . . .nu are not reliable estimates of ð��;��Þ. The reason is that the
data partitioning is nonparametric, based on the peaks and valleys
of the density probability function of the entire data set. As a
result, the set xi, i ¼ 1 . . .nu is an incomplete sample from the local
underlying distribution. It can be asymmetric (depending on the
neighboring structures) and it might not contain the tail. Hence,
the sample mean and variance differ from ð��;��Þ.

The solution is to fit a normal surface to the density values
computed in the trajectory points associated with the mode. The
fitting problem is easily solved by using the mean shift vector. For
each trajectory point yi, we apply (12) to obtain

mðyiÞ ¼ �Hð��þHÞ�1ðyi � ��Þ; ð14Þ

where ð��;��Þ are the mean and covariance of the true distribution. By
fixing the mean �� as the the local peak in the density surface (see
Fig. 3), we can derive a least-squares solution for the covariance
matrix. If H ¼ h2I and �� ¼ �2I, the least-squares solution for �2 is

�2 ¼ h2
Ptu
i¼1 m>i ð��� yiÞPtu

i¼1 kmik2
� 1

" #
: ð15Þ

If H ¼ diag h21 . . .h
2
d

� �
and �� ¼ diag �21 . . .�

2
d

� �
, then

�2v ¼ h2v
Ptu
i¼1m

>
ivð�v � yivÞPtu
i¼1m

2
iv

� 1
" #

; ð16Þ

where the subindex v ¼ 1 . . . d denotes the vth component of a

vector.
Although a fully parameterized covariance matrix can be

computed using (14), this is not necessarily advantageous [28,

p. 107] and, for dimensions d > 2, the number of parameters

introduced are too large to make reliable decisions. We will therefore

use in the sequel only (15) and (16).

4.2 Multiscale Analysis

When the underlying data distribution is normal, the analysis

bandwidth H does not influence the computation of ð��;��Þ. When

the underlying structure deviates from normality, H affects the

estimation. Therefore, in the final step of the algorithm, we test the

stability of ð��;��Þ against the variation of the analysis bandwidth.

The simplest test is to take H ¼ h2I and vary h on a logarithmic scale

with constant step.
Let H1 ¼ h21I; . . . ;Hb ¼ h2bI be a set of analysis bandwidths

generated as above. The range of these bandwidths is assumed

known a priori. Denote by ð��1;��1Þ; . . . ; ð��b;��bÞ the corresponding

set of estimates and by p1 . . . pb the associated normal distributions.

The stability test for distribution pj involves the computation of the

overall dissimilarity between pj and its neighbors across scale

pj�w . . . pj�1; pjþ1 . . . pjþw. The simplest choice is w ¼ 1.
The dissimilarity is measured using a specialized version of the

Jensen-Shannon divergence, which is defined for the d-variate

normal distributions pj, j ¼ 1 . . . r as

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 2, FEBRUARY 2003 3

Fig. 2. Local mean shift-based scale selection. (a) Input data. Nð12; 4Þ, n ¼ 2; 000. (b) Each curve represents the magnitude of the normalized mean shift computed at
one location, but with different analysis bandwidths. The maxima of the curves correctly indicate that the standard deviation of the input data is equal to 4.

Fig. 3. Fitting a normal surface to the density values computed in the trajectory
points. Observe that, even for asymmetric regions, the mean �� of the normal
surface should be taken equal to the mode of the density.



JSðp1 . . . prÞ ¼
1

2
log

1
r

Pr
j¼1 ��j

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQr
j¼1 ��j
�� ��r

q

þ 1
2

Xr
j¼1

��j � ��
� �> Xr

j¼1
��j

 !�1
��j � ��
� � ð17Þ

with �� ¼ 1
r

Pr
j¼1 ��j. This formula is derived in Appendix B. Observe

that, for r ¼ 2, the specialized Jensen-Shannon divergence reduces to
the well-known Bhattacharyya distance [8, p. 99].

4.3 Bandwidth Selection Summary

The proposed algorithm solves the bandwidth selection problem
in two stages. The first stage is defined at the partition level and
determines a mean and covariance matrix for each mode detected
through multiscale analysis. The second stage is defined at the
data level and selects for each data point the most stable mean
and covariance across the analysis scale. The algorithm is
presented below.

Bandwidth Matrix Selection
Given n data points xi, i ¼ 1 . . .n and a set of analysis matrices
H1 ¼ h21I; . . . ;Hb ¼ h2bI constructed on a logarithmic scale:
A. Evaluate the bandwidth at the partition level. For each Hj,
j ¼ 1 . . . b

1. Partition the data using the mean shift procedure.
2. Compute ð��ju;��juÞ for each mode u of the partition using

the location of the mode for the mean and (15) or (16) for the
covariance.

3. Associate to each data point xi the mean and covariance of
its mode.

B. Evaluate the bandwidth at the data level. For each data point xi
1. Based on the set of estimates ð��1;��1Þ . . . ð��b;��bÞ, define the

normal distributions p1 . . . pb.
2. Select the most stable pair ð��;��Þ by minimizing the Jensen-

Shannon divergence between neighboring distributions
across scales. �� represents the selected bandwidth for xi.

The complexity of the algorithm is b times larger than the

complexity of data partitioning using mean shift analysis with one

scale. Direct implementation of mean shift analysis with one scale

has a complexity of Oðn2Þ, where n is the number of data points.

However, by selecting a set of q representative data points using

irregular tessellation of the space and only computing trajectories of

those points, the complexity of mean shift analysis can be decreased

to OðqnÞ, with q� n [3].

4.4 Sample Size

While the large sample approximation is not critical for (12), the

sparse data needs attention. The local sample size should be

sufficiently large for inference. The approach we take is based on

the Effective Sample Size [10] which computes the kernel weighted

count of the number of points in each window

ESSðx;HÞ ¼
Pn
i¼1KHðx� xiÞ
KHð0� 0Þ ¼

Pn
i¼1 exp � 1

2D
2 x;xi;Hð Þ

� �
exp � 1

2D
2 0; 0;Hð Þ

� � : ð18Þ

Using the binomial rule of thumb, we cancel the inference when

ESSðx;HÞ < 5.

4.5 Bandwidth Selection Examples

A first example for a bimodal data set generated with equal

probability from Nð4; 0:5Þ and Nð7; 1Þ is presented in Fig. 4. The

standard deviation for each distribution (measured before amalga-

mating the data) is 0:53 and 0:92. Our algorithm resulted in 0:58 and

0:93, respectively. We used eight analysis bandwidths in the range

of 0:3-1:42with a ratio of 1:25 between two consecutive bandwidths.

For all the experiments presented henceforth, we will use the same

ratio of 1:25 between two consecutive bandwidths. The specialized

Jensen-Shannon divergence was computed with r ¼ 3 (three con-

secutive bandwidths). No other additional information was used.

For the next example, the data is drawn with equal probability

fromNð8; 2Þ,Nð25; 4Þ,Nð50; 8Þ, andNð100; 16Þ. The data histogram

is shown in Fig. 5a, while our bandwidth selection is shown in Fig. 5b.

We used 12 analysis bandwidths in the range of 1:5-17:46.

Another example is shown in Fig. 6 for bivariate data. We run the

algorithm with six analysis bandwidths in the range 0:5-1:5. The

algorithm detected three classes of bandwidths: 0:96, 1:04, and 1:08.

In Fig. 6b, the bandwidth associated with each data point is indicated

by the bullet (smallest bullets for 0:96, largest bullets for 1:08). The

allocated bandwidths are very close to the true data scale, which is

equal to 1.

5 FEATURE SPACE PARTITIONING

This section presents results for feature space partitioning using

the variable-bandwidth mean shift with bandwidth selection. Only

the range of analysis scales is provided for each experiment.

5.1 Nonlinear Structures with Multiple Scales

For the data shown in Fig. 7a, the algorithm was run with six

analysis bandwidths in the range of 0:1-0:3. This time, we used

expression (16) to estimate a diagonal form for the covariance

matrix associated with each data point. The results are presented in

Fig. 7c for the scales associated with the coordinate x and Fig. 7d

for the scales associated with the coordinate y of each data point.
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Fig. 4. Bandwidth selection example. (a) Histogram of input data drawn with equal probability from two normals Nð4; 0:5Þ and Nð7; 1Þ with total n ¼ 200. (b) Bandwidth
selection for each data point using the proposed algorithm. For presentation, the data point index increases with location.



Observe that the elongated structure of the data is reflected in a

larger bandwidth for the coordinate x. Also, each graph contains

two distinct groups of scale values corresponding to the two scales

in the data. The spurious peaks represent points located on the
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Fig. 6. Bandwidth selection example. (a) Bivariate data drawn with equal probability from Nð½0; 1�; IÞ, Nð½2:5;�2�; IÞ, Nð½5; 1�; IÞ with total n ¼ 250. (b) Bandwidth selection
for each data point using the proposed algorithm. Three classes of bandwidth were detected. See text for details.

Fig. 7. Nonlinear data analysis. (a) Input containing structures at different scales (n ¼ 400). (b) Final decomposition obtained through variable-bandwidth mean shift.

Each structure is marked differently. (c) Scale selection for the x coordinate of each data point. (d) Scale selection for the y coordinate of each data point.

Fig. 5. Bandwidth selection example. (a) Histogram of input data drawn with equal probability from four normals Nð8; 2Þ, Nð25; 4Þ, Nð50; 8Þ, and Nð100; 16) with total
n ¼ 400. (b) Bandwidth selection for each data point using the proposed algorithm. For presentation, the data point index increases with location.



border between two structures. Note also that, for both coordinates,

the smaller scale is approximately half of the larger scale, similar to

the data characteristics.
Fig. 8 shows of the specialized Jensen-Shannon divergence for

points from the large structures (Fig. 8a) and small structures
(Fig. 8b). As one can observe, in the case of large structures, the
estimation is most stable (small divergence) for the analysis scales
from the middle. On the contrary, in the case of small structures, the
estimation is the most stable for the smallest analysis scale.

The last step involves the application of the variable-bandwidth
mean shift with the bandwidths shown in Fig. 7c and Fig. 7d. The
algorithm detected four modes and the resulting partitioning is
shown in Fig. 7b. Note that most of the algorithms using one analysis
bandwidth are prone to fail for this type of data. If the bandwidth is
large, the two small structures will be joined together. If the
bandwidth is small, each of the two large structures will be divided.

5.2 Color Clustering

We tested the new algorithm for the task of color clustering in the
three-dimensional L�u�v� space. The selected examples contain

large and elongated clusters in the vicinity of small clusters, a
difficult scenario for fixed-bandwidth analysis. A first test image is
shown in Fig. 9a. The sky, ocean, and the waves generate compact
and small clusters, while the texture from the land generates a
large cluster (Fig. 9b). Using six analysis bandwidths in the range
of 3-9, our algorithm correctly obtained the four clusters shown in
Fig. 9d which corresponds to the segmentation from Fig. 9c.

The same analysis bandwidths have been employed for proces-
sing the color data coming from the test image shown in Fig. 10a.
Observe again, the presence of a large cluster in the vicinity of small
clusters (Fig. 10b). The algorithm identified three clusters (Fig. 10d)
which are associated to the main structures in the image, as can be
seen in the corresponding segmented image (Fig. 10c).

6 DISCUSSION

It is useful to contrast the proposed algorithm against some

classical alternatives. The EM algorithm [23] also assumes a

mixture of normal structures and finds iteratively the maximum-

likelihood estimates of the a priori probabilities, means, and
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Fig. 8. Jensen-Shannon divergence for data from Fig. 7. (a) Points from large structures. (b) Points from small structures.

Fig. 9. Color clustering experiment 1. (a) Original image, 500� 333 pixels. (b) L�u�v� color space containing 166,500 points. (c) Segmented image in pseudogray levels.
(d) Obtained clusters. The position of each cluster is shifted to show the delineation.



covariances. However, the EM needs the specification of the

number of clusters, needs a good initialization, and does not deal

with non-normal structures. In addition, its convergence is difficult

when the number of clusters is large, determining the increase of

the number of parameters. See [7] for a discussion and changes of

the EM to overcome some of these limitations.

Our algorithm is not affected by the number of clusters since it

does not employ a global criterion that should be optimized. We

only require the a priori knowledge of a range of viable scales, which

is a very practical criterion. In almost all situations, the user has this

knowledge. In addition, the normality assumption is only for

bandwidth selection, while the overall algorithm maintains the

ability of analyzing complex, non-normal structures. The only

limitation of our method comes with the dimensionality of the data.

It is known that nonparameteric techniques are not reliable in high-

dimensional spaces.

Let us also contrast the proposed algorithm with methods based

on multiscale analysis. From this point of view and according to our

knowledge, this is the first method which tests the stability of the

second order statistics derived from the data. Up to now, the stability

testing was limited to the first order statistics such as the mean, the

mode, or direction vectors (see, for example, [2]). By checking the

stability of the covariance matrix through the specialized Jensen-

Shannon divergence, we increase the amount of information

involved in the test. Finally, the method can be improved by

replacing the least-square estimation with a robust method. This

work mostly presented the theory related to the new algorithm. The

algorithm is useful for scenarios involving multiscale patterns, such

as feature space partitioning in tracking, background modeling, and

segmentation. An interesting subject of future research is to analyze

the relation between the proposed method and scale selection

techniques for image features [19].

APPENDIX A

THE MAGNITUDE OF THE BANDWIDTH NORMALIZED

MEAN SHIFT VECTOR mðx;HÞ IS MAXIMIZED

WHEN H ¼ ��

Recall that the magnitude of the bandwidth normalized mean shift

vector is given by

mðx;HÞ ¼ H1=2ð��þHÞ�1ðx� ��Þ
�� ��: ðA:19Þ

We assume that H and �� are symmetric, positive definite matrices,

and the magnitude of x� �� is strictly positive. We will show that

mðx; ��Þ2 �mðx;HÞ2 � 0 ðA:20Þ

with equality iff H ¼ ��.
The left side of (A.20) becomes

mðx; ��Þ2 �mðx;HÞ2

¼ 1

4
���1=2ðx� ��Þ
�� ��2�4 H1=2ð��þHÞ�1ðx� ��Þ

�� ��2h i
¼ 1

4
ðx� ��Þ> ���1 � 4ð��þHÞ�1Hð��þHÞ�1

h i
ðx� ��Þ

¼ 1

4
ðx� ��Þ>ð��þHÞ�1ðH���1 � IÞ2��ð��þHÞ�1ðx� ��Þ;

ðA:21Þ

where I is the d� d identity matrix. Within the conditions stated,

all the matrices in the last term of (A.21) are positive definite,

excepting ðH���1 � IÞ2 which is equal to 0 iff H ¼ ��.

APPENDIX B

OVERALL DISSIMILARITY OF A SET OF MULTIVARIATE

NORMAL DISTRIBUTIONS

One of the few measures of the overall difference of more than two

distributions is the generalized Jensen-Shannon divergence [18].
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Fig. 10. Color clustering experiment 2. (a) Original image, 500� 333 pixels. (b) L�u�v� color space containing 166,500 points. (c) Segmented image in pseudogray levels.
(d) Obtained clusters. The position of each cluster is shifted to show the delineation.



Given r probability distributions pj, j ¼ 1 . . . r, their Jensen-
Shannon divergence is defined as

JSðp1 . . . prÞ ¼ H
1

r

Xr
j¼1
pj

 !
� 1
r

Xr
j¼1
HðpjÞ; ðB:22Þ

where

HðpðxÞÞ ¼ �
Z
pðxÞ log pðxÞdx ðB:23Þ

is the entropy of pðxÞ. This divergence is positive and equal to zero

iff all pj are equal. Using (B.23) in (B.22), we obtain

JSðp1 . . . prÞ ¼
1

r

Xr
j¼1

Z
pjðxÞ log

pjðxÞ
qðxÞ dx width qðxÞ ¼ 1

r

Xr
j¼1
pj:

ðB:24Þ

For the d-variate normal case, the distributions pj are defined by

pjðxÞ ¼
1

j2���ij1=2
exp � 1

2
ðx� ��iÞ

>���1i ðx� ��iÞ
� �

: ðB:25Þ

A specialized version of the Jensen-Shannon divergence can be

obtained by taking qðxÞ as the most likely normal source for the

homogeneous model 1r
Pr
j¼1 pj, having the mean �� ¼ 1

r

Pr
j¼1 ��j and

covariance �� ¼ 1
r

Pr
j¼1 ��j [6]. The new measure is equivalent to a

goodness-of-fit test between the empirical distributions pj, j ¼
1 . . . r and the homogeneous model 1

r

Pr
j¼1 pj.

To derive a closed form expression, we use (B.25) and the

identity x>���1x ¼ tr ���1xx> to obtain [16, p.189]

log
piðxÞ
qðxÞ ¼

1

2
log
j��j
j��ij

� 1
2
tr ���1i x� ��ið Þ x� ��ið Þ>þ 1

2
tr ���1 x� ��ð Þ x� ��ð Þ>

ðB:26Þ

for i ¼ 1 . . . r, where tr denotes the trace of a matrix. Performing

the integration yieldsZ
piðxÞ log

piðxÞ
qðxÞ dx

¼ 1

2
log
j��j
j��ij
þ 1
2
tr ��i��

�1 � d
2
þ 1
2
tr ���1 ��i � ��ð Þ ��i � ��ð Þ>:

ðB:27Þ

Summing (B.27), for i ¼ 1 . . . r and substituting �� ¼ 1
r

Pr
j¼1 ��j, we

have

JSðp1 . . . prÞ

¼ 1

2
log

1
r

Pr
j¼1 ��j

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQr
j¼1 ��j
�� ��r

q þ 1

2r
tr
Xr
j¼1

��j

 !
1

r

Xr
j¼1

��j

 !�1
� r
2

þ 1

2r
tr

1

r

Xr
j¼1

��j

 !�1Xr
j¼1

��j � ��
� �

��j � ��
� �>

¼ 1

2
log

1
r

Pr
j¼1 ��j

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQr
j¼1 ��j
�� ��r

q þ 1
2

Xr
j¼1

��j � ��
� �> Xr

j¼1
��j

 !�1
��j � ��
� �

;

ðB:28Þ

where �� ¼ 1
r

Pr
j¼1 ��j.
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