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Abstract. Cardiac magnetic resonance imaging (MRI) has advanced to
become a powerful diagnostic tool in clinical practice. Robust and fast
cardiac modeling is important for structural and functional analysis of
the heart. Cardiac anchors provide strong cues to extract morphological
and functional features for diagnosis and disease monitoring. We present
a fully automatic method and system that is able to detect these cues.
The proposed approach explores expert knowledge embedded in a large
annotated database. Exemplar cues in our experiments include left ven-
tricle (LV) base plane and LV apex from long-axis images, and right
ventricle (RV) insertion points from short-axis images. We evaluate the
proposed approach on 8304 long-axis images from 188 patients and 891
short-axis images from 338 patients that are acquired from different ven-
dors. In addition, another evaluation is conducted on an independent
7140 images from 87 patient studies. Experimental results show promise
of the proposed approach.

1 Introduction

In cardiology, precise information on both the dimensions and functions of the
heart chambers is essential in clinical applications for diagnosis, prognostic, and
therapeutic decisions. The precision on the measures extracted from MR images
has been demonstrated and makes MR imagery a standard for left ventricle (LV)
analysis [1]. Although cardiac MR imaging technologies have rapidly advanced [2,
3], due to considerable amount of available data, analysis of cardiac images for
quantification is time consuming and error-prone for human operators.

Typical cardiac MR studies contain both long-axis and short-axis slices. Long
axis slices are not only used as scout images for acquisition planning, but also are
complementary to the short axis stack [4]. Long axis slices capture heart cham-
ber shape information and can also be used to correct mis-registration of the
short axis stack. Anchoring is helpful for accurate and efficient cardiac model-
ing, such as initialization of deformable model based approaches [5], accelerating
acquisition time by facilitating fully automatic planning of cardiac MR exami-
nations, and accurate assessment of mass and volume [6], where demarcation of
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the base is important [7]. For example, anchoring the base plane and the apex
in long-axis images facilitates and accelerates the LV segmentation of the short
stack. Anchoring RV insertion (intersection between RV outer boundary and the
LV epicardium) helps analyze LV functions according to AHA myocardial seg-
mentation models [8]. Each anchoring component can be of different geometric
representations, e.g., a line segment for the base plane and a point for the apex.

We propose a unified approach to detecting anchoring components. Anchor-
ing components are converted into parameterized bounding box representations,
which fit into an object detection framework. Such representation embeds not
only individual anchoring components but also their context, which contains
rich information to distinguish the anchoring components from its background
and other anatomical structures. We apply a learning-based method to train
detectors on expert annotations in order to handle complex appearance and
heterogeneous characteristics of anatomical features in medical images, as the
complex prior knowledge is implicitly encoded. Learning based object detection
approaches have been demonstrated successful in many applications [9, 10].

The proposed approach provides a large flexibility to be applied to a wide
range of anatomical structures. We apply our framework to detect LV base mitral
valve plane and LV apex in long-axis images, and RV insertions and RV lateral
(a point where the RV outer boundary changes directions significantly within the
image) in short-axis images, as shown in Fig. 1. Our approach is fully automated.

Fig. 1. Examples of cardiac images and associated anchoring components of interest.

2 Methodology

We propose a unified framework to anchor the anatomy of interest. We convert
detection of different types of anchoring components, such as base plane (a line)
and apex (a point) for LV in each long-axis image, into the same object de-
tection framework by designing a contextual representation for each anchoring
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component. Each anchoring component is represented by a bounding box as an
object with 5 parameters (2 translations, 1 orientation, and 2 scales), as shown
in Fig. 2. A probabilistic learning approach [11] is applied to solve a two-class
classification task, i.e., object vs. background. In order to reduce computational
cost of searching through a large 5-dimensional parameter space, we adopt the
marginal space search strategy proposed in [12].

Fig. 2. Context construction and conversion from anchoring components to objects
represented by a parameterized bounding box. Base plane (pink) and apex (yellow)
are shown in a long-axis image (a). RV insertion (cyan) and RV lateral (yellow) are
illustrated in a short-axis image (b). Notice that each bounding box is parameterized
by its positions, orientation (green axis as local x-axis in (a), and red edge indicat-
ing orientation in (b)), and scales. By adjusting these parameters, a different context
around the anchor component is selected.

2.1 Context learning

A 2D object (bounding box) parameter set consists of five degrees of freedom.
Exhaustively searching in this 5-dimensional space is prohibitive for online appli-
cations. Therefore, we adopt the marginal space search strategy, where we design
a series of detectors that estimate plane parameters at a number of sequential
stages in the order of complexity, i.e., translation, orientation, and scale, as
the parameter degrees of freedom increase [12]. Different stages utilize different
image features. Multiple hypotheses are maintained between algorithm stages,
which quickly removes false hypotheses at the earlier stages while propagating
the right hypotheses to the final stage. Only one hypothesis is consolidated as
the final detection result.

We use a probabilistic boosting tree [11] for each detector to achieve a dis-
criminative task between the object and background. The classifier is a tree-
based structure with which the posterior probabilities of the presence of the
object of interest are calculated from given image data. Therefore, each detector
not only provides a binary decision for a given sample, but also a confidence
value associated with the decision. The nodes in the tree are constructed by a
combination of simple classifiers using boosting techniques [11].
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Each detector selects a set of discriminative features that are used to distin-
guish the object from background from a large pool of features. For the classifiers
at the translation stage, we choose Haar wavelet-like features [9], which are ef-
ficiently calculated using integral image-based techniques. For the classifiers at
the orientation and scale stages, steerable features [12] are applied, because their
computation does not require image rotation and re-scaling, which are compu-
tationally expensive, especially when the hypothesis search space is large.

2.2 Context modeling in long-axis slices

For each long-axis image, two anchoring components are targets of interest, the
base plane and the apex. We associate a two-dimensional bounding box with each
contextual object around the anchoring component. Each bounding box is speci-
fied by a five-parameter set θ, containing two positions < x, y >, one orientation
< φ >, and two scales < sx, sy >. Although only positions are mostly in use, ori-
entation and scales are useful in encoding proper and consistent context learned
during offline training process, where a set of contextual models/classifiers are
obtained.

We collect a set of cardiac long-axis images and annotate the anchoring
components to learn contextual models. Based on this annotated training set,
we build a contextual model for each target object. For long-axis images, a joint
contextual model [13] for the pair of <apex, base plane> is also constructed as
shown by the cyan box in Fig. 2, which is used for inter-anchoring validation.
Let < xa, ya >, < xb1, yb1 >, and < xb2, yb2 > denote the positions of the apex,
and two basal annulus points, respectively. The contextual parameter set for the
base plane is: positions {(xb1 +xb2)/2, (yb1 + yb2)/2}; orientation {orthogonal to
the line segment connecting the two basal annulus points, and pointing toward
the apex side}; and scales {sb, sb}, where sb =

√
(yb2 − yb1)2 + (xb2 − xb1)2 ∗ α,

where α is a factor that can be used to adjust the contextual range set to 2.4
in our experiments. Selection of α is a tradeoff between rich context and noise.
For the apex, the context parameters are constructed as: positions {xa, ya};
orientation {arctan((ya−(yb1+yb2)/2)/(xa−(xb1+xb2)/2))}; and scales {sa, sa},
where sa =

√
((yb2 − yb1)2 + (xb2 − xb1)2) ∗ α.

2.3 Context modeling in short-axis slices

For each short-axis image, two anchoring components are targets of interest, the
RV insertion and the RV lateral. For RV insertion, the anterior and posterior
anchors are identified through the following context modeling. Let < xan, yan >,
< xpo, ypo >, and < xLa, yLa > denote the positions of the RV insertion an-
terior, RV insertion posterior, and RV lateral, respectively. The contextual pa-
rameter set for RV insertion is: positions {(xan + xpo)/2, (yan + ypo)/2}; ori-
entation {orthogonal to the line segment connecting RV insertion anterior and
RV insertion posterior, and pointing toward the LV}; and scales {sins, sins},
where sins =

√
(xan − xpo)2 + (yan − ypo)2 ∗ β. β is set to 1.5 in our experi-

ments. For RV lateral, in order to utilize its RV context, we constructed the
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context parameters as: positions {(xLa + xpo)/2, (yLa + ypo)/2}; orientation
{orthogonal to the line segment connecting RV Lateral and RV insertion pos-
terior, and pointing toward RV insertion anterior side}; and scales {sLa, sLa},
where sLa =

√
((xLa − xpo)2 + (yLa − ypo)2) ∗ γ. γ is set to 2.4 in our experi-

ments.

3 Experiments

We collected 490 long-axis sequences from 188 patients, whose ages ranged from
11 to 72 years old. In total, 8304 images were used to construct our long-axis
image database. Long-axis image can contain different chamber views, namely, 4-
chamber, 3-chamber, and 2-chamber views. For each image, the base plane (two
annulus anchors) and the apex of the LV were manually annotated by experts
and used as ground truth for evaluation. Our short-axis database contains 891
images from 756 sequences of 338 patients, which were provided by two different
vendors, each providing 296 and 42 patient studies, respectively. For short-axis
images, the ground truth positions of the two RV insertion anchors and the RV
lateral anchor were annotated for evaluation purposes.

We applied our context learning algorithm to detect the objects of ‘base
plane’, ‘apex’, ‘RV insertion’, and ‘RV lateral’ on respective long-axis and short-
axis images for anchoring purposes. The long-axis and short-axis images can be
distinguished using orientation information captured during acquisition. With
each object detected, corresponding anchors are inferred based on reverse ob-
ject/context modeling process, i.e., calculating anchor positions from the de-
tected parameterized bounding box. We computed Euclidean distance between
the detected anchor position and its corresponding ground truth as the detection
error for each anchor. The average distance of all anchors in each image was used
as the metric to evaluate the overall system performance.

A 4-fold cross-validation scheme was applied for evaluation. The entire data-
base was randomly partitioned into four quarters. For each fold evaluation, three
quarters were combined for training and the remaining one quarter was used as
unseen data for testing. This procedure was repeated four times so that each
image was used once for testing. Performance is summarized based on all 4 folds
and provided in Table 1 and Figs. 4(a) and 4(b). Fig. 3 shows examples of the
detection results along with the calculated distance metrics to provide a visual
correlation between the distance and quality of detection. In addition to the
large parameter search space, cardiac MR images in a large population present
a large variation of appearance intensities along with the anatomy shape changes
across the heart beat cycle, leading to difficulties for accurate identification. The
significant performance difference between RV insertion and RV lateral is due
to lack of consistent definition of RV lateral. On the average, it took about 1.5
seconds to detect the base plane and the apex on a 400×400 long-axis image on
a duo core 2.8GHz CPU, and 0.5 seconds to detect RV insertion and RV lateral
anchors on a 256×256 short-axis image.
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Table 1. Average distance of all detected anchors from ground truth positions by a
4-fold cross validation. Distances are in unit of mm.

(a) Long-axis
Mean Std Median

Overall 4.9 7.0 3.8

Baseplane 5.1 6.8 3.7

Apex 4.5 6.7 3.3

(b) Short-axis
Mean Std Median

Overall 6.7 15.9 4.8

RV insertion 5.9 16.0 3.9

RV lateral 8.4 16.5 5.9

Fig. 3. Examples of anchoring results along with annotated ground truth (yellow).
The average detection distance is provided below each image. Our mean and median
distances are 5.5mm and 3.8mm, respectively.

In addition, we were able to conduct an independent evaluation on another
large expert validated database, which is collected as a mixture of multiple ven-
dors and called ONTARGET database. Patients with vascular disease at high
risk of cardiac events were imaged as part of the ONTARGET MRI substudy, de-
scribed in [14]. Standardized cardiac MRI exams were performed in six countries
around the world using Siemens, Philips and GE scanners. Either prospectively
or retrospectively gated steady state free precession (SSFP) CMR cines were ac-
quired in six equally spaced short axis (SA) locations from apex to base. Typical
imaging parameters were TR/TE/flip/FOV = 30ms/1.6ms/60◦/360mm, slice
thickness 6mm, image matrix 256×208. There were typically 25 temporal cine
frames per slice, depending on the heart rate. All cines were acquired during
breath-holding of 815 seconds duration. Most patients had coronary heart dis-
ease (87%), myocardial infarction (58%), and/or hypertension (61%). 23% were
female and 36% were Asian. The entire database contains 7140 long-axis images
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from 87 patient studies. Only base plane anchoring is evaluated. The experi-
mental results are presented in Table 2 and Fig. 4(c). A performance breakdown
based on the chamber views is reported in Fig. 4(c). For this evaluation, all
original 8304 images were used for training. Then the system was evaluated on
the independent 7104 images. Overall, the independent evaluation results are
consistent with the internal cross-validation results, both showing promise and
robustness of the proposed approach.

Table 2. Average distance of the detected two base plane anchors from ground truth
positions from the independent evaluation. Distances are in unit of mm.

Mean Std Median

Long-axis 5.2 7.8 3.9

Fig. 4. Percentile evaluation results of 4-fold cross-validation. Each curve shows the
percentage of cases whose distance of the automatic detection results from ground
truth is less than an error distance threshold. (a) Long-axis anchoring evaluation.
(b) Short-axis anchoring evaluation. (c) ONTARGET baseplane evaluation along with
performance breakdown based on the chamber views.

4 Conclusions

We have proposed a unified approach to explore contextual information and inte-
grated it with a learning-based object detection framework. We have developed
a fully automatic system for cardiac anchoring in both MR long-axis and short-
axis images. The principle of the proposed approach is generic. With concrete
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design, which is application-specific, the proposed approach is able to be applied
to a wide range of applications in addition to acquisition planning and cardiac
segmentation.
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