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Abstract

Catheter tracking has become more and more important
in recent interventional applications. It provides real time
navigation for the physicians and can be used to control
a motion compensated fluoro overlay reference image for
other means of guidance, e.g. involving a 3D anatomical
model. Tracking the coronary sinus (CS) catheter is ef-
fective to compensate respiratory and cardiac motion for
3D overlay navigation to assist positioning the ablation
catheter in Atrial Fibrillation (Afib) treatments. During in-
terventions, the CS catheter performs rapid motion and non-
rigid deformation due to the beating heart and respiration.
In this paper, we model the CS catheter as a set of elec-
trodes. Novelly designed hypotheses generated by a num-
ber of learning-based detectors are fused. Robust hypothe-
sis matching through a Bayesian framework is then used to
select the best hypothesis for each frame. As a result, our
tracking method achieves very high robustness against chal-
lenging scenarios such as low SNR, occlusion, foreshorten-
ing, non-rigid deformation, as well as the catheter moving
in and out of ROI. Quantitative evaluation has been con-
ducted on a database of 13221 frames from 1073 sequences.
Our approach obtains 0.50mm median error and 0.76mm
mean error. 97.8% of evaluated data have errors less than
2.00mm. The speed of our tracking algorithm reaches 5
frames-per-second on most data sets. Our approach is not
limited to the catheters inside the CS but can be extended to
track other types of catheters, such as ablation catheters or
circumferential mapping catheters.

1. Introduction

Atrial Fibrillation (Afib) is a rapid, highly irregular heart-
beat caused by abnormalities in the electrical signals gen-
erated by the atria of the heart. It is the most common

Figure 1. Examples of CS catheters in 2D X-ray fluoroscopy.
Catheters demonstrate various appearance and shapes in different
contexts. Cyan and red arrows point at the catheter tip and the most
proximal electrode (PCS) and in between are other electrodes.

cardiac arrhythmia and involves the two upper chambers
(atria) of the heart. Surgical and catheter-based Afib ther-
apies have become common procedures in many major hos-
pitals throughout the world today [4]. One popular treat-
ment is catheter ablation, which modifies the electrical path-
ways of the heart. To carry out the operation, catheters
are inserted and guided to the heart. The entire operation
is monitored with real-time fluoroscopic images. The inte-
gration of static tomographic volume renderings into three-
dimensional catheter tracking systems has introduced an in-
creased need for mapping accuracy during Afib procedures.
Current technologies may concentrate on gating catheter po-
sitions to a fixed point in time within the cardiac cycle with-
out explicitly taking into account respiration. Clearly, a
static positional reference provides only intermediate accu-
racy in association with ECG gating. For left atrium proce-
dures, a method is known from the literature where a motion-
compensated overlay controlled by the most proximal elec-
trode of the CS catheter (PCS) reference was found to be
superior to the static reference [8]. Figure 1 shows some
examples of CS catheters in 2D X-ray fluoroscopy.

Our goal in this paper is to develop a robust and fast al-
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gorithm to track CS catheters to provide accurate real-time
information for motion compensation. The task has vari-
ous challenging characteristics: 1) rapid motion due to car-
diac and breathing motion; 2) non-uniform appearance and
electrode number; 3) motion variations including catheter
foreshortening due to 2D projection, occlusion and non-
rigid deformation; 4) diverse background factors including
low signal-to-noise ratio (SNR), nearby catheter-like struc-
tures and cluttered scenes. State-of-the-art tracking meth-
ods [10, 1, 7, 2] may succeed in overcoming some of these
challenges, however, our proposed approach is capable to
handle these challenges consistently to achieve high perfor-
mance in tracking CS catheters in continuous 2D X-ray flu-
oroscopy. Our approach is different from recent work on CS
catheter tracking [9] in four aspects: 1) our approach lever-
ages learning-based detectors instead of filter-based blob de-
tectors; 2) our method does not make any assumption of the
electrode number and catheter shape; 3) we propose a novel
tracking hypothesis generation and evaluation framework;
4) our approach has been extensively evaluated on 1073 se-
quences while the method in [9] was evaluated on a smaller
dataset. Our paper is also different from [14] in terms of
problems, proposed methods and contribution. In [14], a
wire structure is tracked as a spline curve, which tries to de-
form current wire to fit the next frame. Our method detects
catheter electrodes and tips to efficiently generate tracking
hypotheses. A comparison is possible but it would not be
fair since the targeted problems are different.

Learning-based methods have demonstrated their strong
capabilities to effectively explore object content and context
in numerous applications such as segmentation, detection
and tracking [13, 12, 3, 14]. In our work, discriminative
models are learned based on appearance and contextual fea-
tures of CS catheter tip and electrodes. Our approach auto-
matically builds the catheter model by analyzing the catheter
shape and electrode number from user initialization. In each
frame, we first perform catheter tip and electrode detection,
and then apply proposed novel schemes to generate tracking
hypotheses that are further evaluated by a Bayesian frame-
work. A block diagram of our proposed approach is shown
in Figure 2.

2. Learning-based Hypothesis Fusion

In this paper, we represent the CS catheter as an ordered
set of electrodes starting from the tip. Only the most prox-
imal electrode (PCS) is important for motion compensation
[8]. However, by tracking the whole catheter the proposed
approach is capable of fusing more information and obtain-
ing more reliable tracking than by just tracking the PCS.

The non-rigid nature of the CS catheter means that its
motion has to be represented in a high dimensional space.
Tracking the CS catheter means finding in each frame the
location of each electrode. An exhaustive search of the de-

Figure 2. A block diagram of our proposed approach.

formation parameters is not only computationally expensive
but also prone to producing false positive matches on other
catheters or catheter-like structures present in the image.
Even bounding the search range relative to the CS position
from the previous frame still leads to a large search space for
tracking CS catheters. Furthermore, if the CS position from
the previous frame is not accurate, drifting can happen.

To tackle the problem, we propose a novel approach that
uses a low dimensional representation that approximates the
CS catheter shape with a small error. Then a number of
shape hypotheses are generated for finding the CS in the
current frame, each shape implicitly containing the template
deformation. The hypotheses are then evaluated by informa-
tion fusion in a Bayesian framework.

The clinical requirements are that the CS catheter is man-
ually initialized by the user in the first frame by marking
the electrodes, in the order from the tip to the PCS. The in-
put positions are then refined by local search using trained
electrode and tip detectors. In the proposed approach, dur-
ing the model building stage the tracking strategy is selected
based on catheter shape and the number of electrodes, with a
simpler strategy for shorter catheters with fewer electrodes.
The catheter template is then initialized based on the catheter
shape and appearance. Tracking at each frame consists of a
number of steps: automatical collimator estimation by a bor-
der detector, learning-based tip and electrode detection, hy-
pothesis generation including model-based and part-based
schemes, hypothesis evaluation in a Bayesian formula, non-
rigid model deformation and online template update. These
steps are described in more detail in the following sections.

Notations are as follow. Z is to denote image observa-
tion, D for image intensity data, C for a catheter electrode
set. Subscript t denotes t-th frame. Assume that there are K
electrodes, {ei, i = 1, ...,K} on the catheter and e1 and eK

represent the tip and the PCS. We model an electrode as an
oriented point as ei = [pi, θi] where pi = [xi, yi] is the 2D
electrode center and θi is electrode orientation which is de-
fined as the catheter curve tangent pointing to the tip. Other
catheter body points can be interpolated from the electrode
points as C(b) = {b = (γx(ω), γy(ω)), 1 ≤ ω ≤ K} and
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Data: Initial catheter electrode positions:
C0 = {e10, ..., eK0 }

Result: Tracking strategy for the target catheter
if K ≤ B1 then

use a one segment approximation;
end
if B1 < K ≤ B2 then

Find the point with maximal curvature in C0 and
approximate C0 with two segments C1

0 and C2
0

joined at the maximum curvature point;
end
if K > B2 then

Find two points with maximal curvature in C0 and
approximate C0 with 3 segments C1

0 , C2
0 and C3

0 .
end
Algorithm 1: Catheter-specific tracking strategy.

γx(ω), γy(ω) are cubic spline functions and ω ∈ [i − 1, i]
indicates that b is interpolated between two control points
(electrodes) ei−1 and ei.

2.1. Automatic Selection of Catheter Shape Repre-
sentation and Tracking Strategy

As consecutive electrodes are not too distant from each
other, the number of electrodes is a good indicator of the
model complexity required to approximate the CS catheter.
Thus, depending on the number of electrodes, the catheter
model is approximated using one, two or three segments,
each being a polynomial curve as illustrated in Figure 3.
The model representation also drives the tracking strategy,
involving tracking one, two or three segments. Algorithm
1 sketches the catheter-specific tracking strategy, in which
B1 = 8, B2 = 14. In our database, a CS catheter can con-
tain up to 20 electrodes.

The catheter segments are approximated as polynomials
of degree at most three relative to a system of coordinates
centered in the middle of a line segment that connects two
given points on the curve, as illustrated in Figure 3.

Figure 3. The catheter segment is approximated as a degree two or
three polynomial passing through two detected electrodes ei, ei+1,
with given tangents at one or both of the two electrodes.

From the initial shape representation in the first frame,
the tracking template is obtained and a system of coordinates
that is relative to the shape representation. In this system, a
point P1 near the curve has coordinates ( l(e1P2)

l(C0)
, ‖P1−P2‖),

where P2 is the closest point on the curve to P1 and l(e1P2)
is the length of the curve from the tip to P2.

2.2. Detection of Collimator, Catheter Tip and Elec-
trodes

Detection of the collimator is useful for bounding the esti-
mation of catheter motion and location. In our approach, the
collimator position on each side is detected using a trained
border detector based on Haar features. In real-time fluo-
roscopy, the collimator can be obtained directly from the
imaging device.

Accurate detection of catheter electrodes not only pro-
vides robust estimation of the catheter position but also helps
prune the search space for catheter tracking. Moreover, it is
useful for predicting when the catheter moves out of or back
into the view.

The CS tip and electrodes are detected as oriented points
(x, y, θ), parameterized by their position (x, y) and orienta-
tion θ. For fast detection, we use Marginal Space Learning
[16] to first detect just the tip and electrode positions (x, y)
and then at promising positions search for all orientations θ.
Tip and electrode positions (x, y) are detected using trained
binary classifiers. The classifiers use about 100,000 Haar
features in a centered window of size 69 × 69. Each clas-
sifier is a Probabilistic Boosting Tree (PBT) [12] and can
output a probability P (e = (x, y)|D). The catheter tip is
different from the other electrodes in term of context and
appearance and it can be detected more reliably. An exam-
ple of catheter electrode position detection is illustrated in
Figure 4. The detected electrode and candidate positions are
then augmented with a set of discrete orientations and fed
to a trained oriented point detector, and the same applies for
the detected tip positions. The oriented point detectors use a
richer feature pool including steerable feature responses and
image intensity differences relative to the query position and
orientation.

The set of detected electrodes and tips at each frame is
fed to a non-maximal suppression (NMS) stage that cleans
up clustered detections. In each frame, at most I elec-
trodes and F tips are kept as the detection results, denoted as
HE

t = {h1t , ..., hIt } and HT
t respectively. Any detection at

distance at least 250 pixel from the initial CS catheter loca-
tion are removed. This relies on the observation that during
the ablation procedure, the CS catheter has only a limited
range of motion due to breathing and the heartbeat.

2.3. Hypothesis Generation

Tracking hypotheses are generated as candidate shapes in
the current frame. Given consolidated tip and electrode de-
tection points, we propose two novel schemes to generate
catheter tracking hypotheses. For long catheters, these hy-
potheses are generated for each catheter segment and con-
strained to be coherent.

One set of hypotheses is generated by parametrically ma-
nipulating the catheter model-based on detected tip and elec-
trode point candidates and the assumption that at least one
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Figure 4. Automatic CS catheter electrode detection. (a) Input im-
age; four yellow arrows point to electrodes. (b) Automatically de-
tected electrode positions (red points). (c) 5 NMS electrode points
(red circles) used for model-based hypothesis generation.

electrode detection from HE
t is correct. The scheme works

as follows:

• Input: catheter model C0 = e10, ..., e
K
0 ;

• Generate seed hypotheses by translating ej to each de-
tected electrode position hit and obtain a translation
vector by which we translate C0 to get a seed hypothe-
sis Qi

j . In total we obtain (K · I) seed hypotheses.

• For each Qi
j , we consider new location of hit as the

transformation center and apply a set of affine trans-
formation to generate tracking hypotheses as:

L̄s
o = A · Ls

o, A =

[
C d
0T 1

]
(1)

where Ls
o represents catheter model coordinates and o indi-

cates the order (o = 0 represents the order from the tip to the
PCS and o = 1 for reverse) and s is the segment index.

This strategy is efficient in generating effective tracking
hypotheses. However, it may miss some hypotheses due to
catheter motion and shape deformation. Therefore, we add
another set of hypotheses that is generated directly from de-
tected oriented tip and electrode points as follows:

• A set of rigid transformation hypotheses that assume
that one of electrodes is detected with correct orienta-
tion. Thus the hypotheses are obtained by rotating and
translating Ls

o to match one of its electrodes and its ori-
entation to the detected oriented electrode.

• Another set of non-rigid transformation hypotheses that
assumes that the tip and one of the electrodes are cor-
rectly detected and either the tip or the electrode has
reliable orientation. In this case all pairs of tip and
electrode detections are considered if they are at dis-
tance within a range relative to Ls

o. For each such pair,
two polynomial curves of degree two and one of degree
three are constructed as illustrated in Figure 3. The con-
dition that the curve passes through the two given points
imposes two constraints on the polynomial, while each
tangent imposes another constraint. Thus, if only one

tangent orientation is known, a degree two polynomial
is completely determined, while if both tangents are
known, a degree three polynomial can be computed.
Curves that differ too much from C0 are removed from
the set of hypotheses.

In sum we obtain a pool of tracking hypotheses, and fu-
sion of two hypothesis generation schemes leads to a near-
complete and effective hypothesis pool. Our experiments
show that I = 15, F = 10 are sufficient for tracking all
kinds of CS catheters as seen in our database.

2.4. Learning-based Hypothesis Evaluation

An effective tracking hypothesis evaluation method is
necessary to determine the exact position and shape of the
CS catheter. Using our notations the object function of the
classic mean shift tracking algorithm (MS) [5] at t-th frame
is defined as:

Ĉt = arg min
Ct

d(Ct, C0)

= arg min
Ct

√
1− ρ[Ct, C0] (2)

where ρ[Ct, C0] is the Bhattacharyya coefficient. MS shows
that the most probable location of the target in the current
frame is obtained by minimizing the above distance, which
is equivalent to maximizing ρ[Ct, C0] .

In some cases, however, the tracking problem cannot
be directly formulated as a maximizing-the-Bhattacharyya-
coefficient problem. Main reasons include feature repre-
sentation and problem formulation. Here we introduce a
Bayesian framework to evaluate catheter tracking hypothe-
ses. Recent tracking advancements [6, 14, 15] have shown
the power of information fusion. The overall goal for eval-
uating a tracking hypothesis is to maximize the posterior
probability:

Ĉt = arg max
Ct

P (Ct|Z0...t) (3)

where Z0...t is image observation from 0 to t-th frame. By
assuming a Markovian representation of the catheter motion
the above formula can be expanded as:

Ĉt = arg max
Ct

P (Ct|Z0...t)

= arg max
Ct

P (Zt|Ct)P (Ct|Ct−1)P (Ct−1|Z0...t−1)

(4)

The above formula essentially combines two parts: the
likelihood term, P (Zt|Ct), which is computed as combina-
tion of detection probability and template matching score
and the prediction term, P (Ct|Ct−1), which captures the
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Figure 5. An example of electrode probability map.

motion smoothness. To maximize tracking robustness, the
likelihood term P (Zt|Ct) is estimated by combining tip and
electrode detection and catheter body template matching as
follows:

P (Zt|Ct) = (1− λ) · P (E∗
t |Ct) + λ · P (T s

o |Ct) (5)

where E∗
t is estimated probability measure about electrodes

and tips at t-th frame that assists estimation of Ct and λ is
defined as:

λ =
1

1 + e−f(T s
o ,D(Ct))

, f(T s
o , D(Ct)) =

cov(T s
o , D(Ct))

σ(T s
o ) · σ(D(Ct))

,

(6)
where cov(T s

o , D(Ct)) is the intensity cross-correlation be-
tween the catheter model template and the image band ex-
panded by Ct. σ(T s

o ) and σ(D(Ct)) are the intensity vari-
ance. The detection term P (E∗

t |Ct) is defined in terms of a
part model as:

P (E∗
t |Ct) = ν1P (E∗

t |e1t ) + νKP (E∗
t |eKt )

+
1− ν1 − νK
K − 2

K−1∑
i=2

P (E∗
t |eit), (7)

where P (E∗
t |e1t ) defines the detection probability at the tip,

P (E∗
t |eKt ) defines the probability at the PCS and P (E∗

t |eit)
represents the probability at each other electrode. ν1 = 0.3
and νK = 0.2 in our experiments. The similar part-based
model has shown effectiveness in [14]. Figure 5 shows an
example of electrode probability map.

The prediction term P (Ct|Ct−1) in Equation (4) is mod-
eled as a zero-mean Gaussian distributionN(0, σC) with σC
learned from the training data.

2.5. Non-Rigid Tracking & Online Template Update

The shape of the CS catheter may deform non-rigidly due
to the impact of cardiac motion, respiratory motion, and/or
projection angulation. In order to handle non-rigid defor-
mation, the algorithm may divide the catheter model into
multiple segments based on the number of electrodes and
the shape (Algorithm 1). Let {e10, e20, ..., eK0 } represent the

electrodes initialized at frame 0 by the user, the algorithm
divides the electrodes into 3 segments if K > 14 and 2 seg-
ments if K > 8. In cases of 2 segments, let ξ(ei) repre-
sent the curvature of the catheter at electrode i, the algo-
rithm finds ej = arg maxi ξ(e

i) as the joint point and cut
the electrode set into two segments (sets), {e10, e20, .., e

j
0} and

{ej0, e
j+1
0 , ..., eK0 }. The algorithm then performs tracking on

the first segment by the aforementioned tracking approach.
After the first segment has been tracked, the location of ej is
served as the transformation center to generate the hypothe-
ses for the second segment. Therefore, the dimension of
search space for the second segment is much lower and the
search is faster. Using a joint electrode ej in both segments
also guarantees one integrated catheter model as output. To
deal with the case when detection misses all the electrodes
in the first segment, we perform another tracking from the
opposite direction by tracking the second segment first fol-
lowed by tracking the first segment. The results of these
two directions are then evaluated by the overall score, which
combines each segment’s score as:

P (Zt|Ct) =

2∑
s=1

εs · P (Zt|Cs) (8)

where P (Zt|Cs) is computed by Equation (5) and εs is com-
puted as the ratio of the segment length to the sum of all seg-
ment lengths. s is the segment index. For 3 segment cases,
after the first joint ej1 is found, the same curvature analy-
sis is applied to the longer segment to find another joint ej2.
Then tracking is performed the same way (bi-directional) as
the 2 segment cases.

Since the model-based hypotheses are generated in a dis-
crete space, small errors may be present even for the best
candidate. In order to refine the results, after the best hypoth-
esis is found, we adopt the Powell’s method [11] to search
for the maximum in the parameter space.

Foreground and background structures in fluoroscopy are
constantly changing and moving. In order to cope with it
dynamically, the catheter model is updated online by:

T s
o,t = (1− ϕw) · T s

o,t−1 + ϕw ·D(Ct), if P (Zt|Ct) > ϕt,
(9)

where T s
o,t represents the model template in frame t. D(Ct)

is the model obtained at frame t based on the output Ct.
ϕw = 0.1 and ϕt = 0.4 are set in our algorithm. The impact
of online updating the model is evaluated in Table 2.

3. Experiments

3.1. Data and Annotation

1073 fluoroscopic sequences, containing 13221 frames
collected from Electrophysiology (EP) Afib procedures are
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Figure 6. Illustration of our CS catheter dataset: (a) Catheter shapes
after aligning to the PCS; (b) Distribution of the tips (red) and the
PCSs (blue).

used as our database for evaluation. The original image res-
olutions are either 1024 × 1024 or 1440 × 1440 with pixel
spacing 0.154, 0.1725 or 0.183 mm/pixel. The electrode and
tip detectors are trained from 5103 frames annotated man-
ually. To illustrate the variability of our tracking target, we
illustrate the CS catheter shapes and spatial distribution of
the catheter tips and PCSs in Figure 6.

3.2. Catheter Tip and Electrode Detection

In the first experiment, we evaluate the trained catheter
tip and the electrode detectors. Our tip and electrode detec-
tors are evaluated on 1507 frames. For catheter electrode
and tip detection, the top 50 electrode candidates and the
top 10 tip candidates are extracted at each frame. Detec-
tion rate is measured by ( number of ground truth electrodes
(tips) that are detected ) / (total number of ground truth elec-
trodes (tips)). A candidate which is away from the ground
truth location by 3mm is regarded as a false detection. The
results are summarized in Table 1. Since the model-based
hypotheses are generated in the way that only if none of the
electrodes on the catheter is detected, the algorithm could
possibly miss the ground truth hypothesis, the probability of
missing the ground truth in the proposed framework is sig-
nificantly low.

Detection rate False detection #/frame
Electrode 0.94 23.64

Tip 0.97 1.14
Table 1. Detection rate and false positive number (per frame) for
electrode and tip detection.

3.3. Tracking

For all 1073 sequences in our database, we have anno-
tated all the electrodes (from the catheter tip to the PCS)
in the first frame and 3337 randomly selected frames. Dur-
ing evaluation, the annotation in the first frame is regarded
as user initialization to the algorithm. The algorithm then
tracks the catheter as a set of electrodes in the remain-
ing frames. Tracking errors are then evaluated only on the

Figure 7. Statistics of errors (mm) on the evaluation set for the
ARO method: (a) The likelihood (Eq.(5)) versus frame errors and
each bar shows max/min likelihood values; (b) Sequence errors
(mean and error bar) versus log(sequence length).

frames with ground truth annotation. Let the electrodes an-
notated at i-th frame be {a1i , a2i , ..., aKi }, the tracking error
for i-th frame is defined as:

1

K

K∑
k=1

||aki − eki ||L2 , (10)

where {e1i , e2i , ..., eKi } are the tracked electrodes by the al-
gorithm.

The tracking error is summarized in Table 2. We report
frame errors in millimeter (mm). All frame errors are sorted
in ascending order and Table 2 reports the errors at mean,
median, percentile 85 (p85), 90 (p90), 95 (p95) and 98 (p98).
Although tracking catheters in real fluoroscopic sequences is
a non-trivial task, our algorithm turns out to be very robust
against different challenging scenarios and has an error less
than 2mm in 97.8% of the total evaluated frames (c.f. the
last row in Table 2).

While the major novelty and the tracking power of the
proposed tracking algorithm comes from the robust and ef-
ficient hypothesis generation and fusion, we illustrate and
compare the impact of other important components in Table
2 as well. DON is the method by setting λ = 0 in Eq. (5),
which essentially only considers the detection term; ADD is
the method using Eq. (5) with no input refinement or online
template update; ADR is ADD with input refinement; and
ARO is ADR with online template update. ARO is the fi-
nal complete version of our algorithm. During comparison,
the number of detected electrode candidates per frame is set
as 15 and all other settings are exactly the same. We have
tried other options of fusing detection probability and tem-
plate matching score, such as multiplication of the two terms
in Eq. (5). The effectiveness of Eq. (5) is validated through
our batch evaluation over 1000+ sequences.

Due to our robust detection and tracking framework, even
the performance of DON is already very good in most of
the cases. However, improvement due to fusion of learning
and image content, automatic user input refinement, and on-
line template updates can still be observed from the rows of
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ADD, ADR, and ARO, respectively.
To investigate our hypothesis evaluation scheme, we de-

pict the relationship between the tracking errors and the like-
lihood obtained from Eq. (5). Figure 7 (a) shows that the
likelihood measure is a good indicator of the tracking error,
which demonstrates Eq. (5) as a robust measure for hypoth-
esis evaluation.

To evaluate whether the drifting problem exists in our
tracking algorithm, we depict the error versus the length of
the sequence on the dataset. Figure 7 (b) shows that the er-
rors stay in the same range regardless the length of a se-
quence. This result demonstrates that our algorithm has little
drifting problem during tracking.

In our last experiment, we try to find the optimal num-
ber of electrode candidates during tracking. If the number
of candidates is too small, it is possible that none of the
ground truth electrode is hit and the ground truth hypothesis
is missed in the hypothesis space we generated. On the other
hand, if the number of candidates is too large, it increase
unnecessary search in the hypothesis space and decreases
the tracking speed, it may also introduce more false detec-
tions and result in tracking errors. Table 3 compares perfor-
mance of extracting 3, 7, 11, 15, 20 electrode candidates per
frame. While median errors remain mostly the same which
implies that increasing detected electrode number does not
have much impact on small error data, mean errors are con-
sistently improved until 15 electrode candidates are used.
Therefore, the proposed algorithm uses 15 electrode candi-
dates per frame in its final version in order to balance be-
tween performance and speed. In Figure 8, we show several
single frame results of catheter tracking on challenging sce-
narios including the target catheter overlapping with other
catheters or structures in a cluttered background (A, C, H,
I), non-rigid deformation (B, C, E, G, J), foreshortening due
to 3D to 2D projection (B, F, G), the target catheter moves
out of the image ROI (I), and low SNR (D, H, J), etc. On
average, the proposed tracking algorithm reaches 5 frames
per second on a desktop machine with Intel Xeon CPU
(2.27GHz). If interested, an demo video with many results
can be found at https://sites.google.com/site/cvpr111013
/CatheterTracking CVPR2011.wmv.

It is worth mentioning that the proposed approach is
generic and is not limited to track the CS catheters. Although
the number and size may be different, electrodes are seen on
most catheters in an EP. The same algorithm can easily be

mean median p85 p90 p95 p98
DON 1.16 0.66 0.98 1.12 1.67 4.26
ADD 0.91 0.45 0.72 0.86 1.56 4.45
ADR 0.78 0.48 0.72 0.81 1.10 2.40
ARO 0.76 0.50 0.73 0.82 1.04 2.14

Table 2. CS catheter tracking performance. The last row shows the
best performance including all essential components.

mean median p85 p90 p95 p98
ARO3 1.95 0.48 0.77 0.90 1.94 10.30
ARO7 0.98 0.49 0.74 0.87 1.43 3.53

ARO11 0.96 0.48 0.74 0.85 1.38 3.72
ARO15 0.76 0.50 0.73 0.82 1.04 2.14
ARO20 0.96 0.48 0.74 0.87 1.38 3.97

Table 3. Evaluation of the impact of electrode candidate number to
the tracking performance. ARO3, ARO7, ARO11, ARO15, ARO20
uses top 3, 7, 11, 15, 20 electrode candidates per frame respectively.

generalized to track other catheters, such as circumferential
mapping catheters and ablation catheters. Figure 9 shows
results of three such examples. Furthermore, our tracking
and hypothesis generation scheme can be used to track other
types of targets as well by replacing the electrodes with the
landmarks on the target.

4. Conclusion and Future Work

Tracking catheters in the fluoroscopic data is a challeng-
ing task due to cardiac and respiratory motion. In addition,
the data often contain complex background, constant mo-
tion, variations and often suffer from low signal to noise ra-
tio (SNR) due to preferable low radiation in clinics. Our
paper focuses on a novel and robust technology to track
catheters, which area highly deformable wire structures. We
have proposed a robust learning-based hypothesis genera-
tion and information fusion framework to automatically de-
tect and track catheters in fluoroscopy. Its unique hypothesis
generation and fusion scheme differentiates our work from
existing approaches and makes our tracking algorithm effi-
cient and robust. Promising experimental results on a large
dataset (1073 sequence) have shown that 97.8% of evaluated
data have errors smaller than 2mm. Furthermore, our pro-
posed approach is generic and can be generalized to track
other kinds of catheters or to detect and track part-based ob-
jects in other types of data.

A 3D position estimation is possible during a bi-plane
acquisition. However, the paper focuses on the tracking
technology for 2D scenes. Note that bi-plane acquisition or
other approaches are not always available in hospitals so 2D
image-based tracking of catheters is still necessary in many
clinical settings. Our future work includes automation of
user initialization. For example, the user only needs to click
the catheter tip and all other electrodes are located automat-
ically.
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Figure 8. Results of tracking catheters in 10 different sequences. Cyan, yellow, and red circles indicate the catheter tip, intermediate
electrodes, and PCSs, respectively.

Figure 9. Results of our approach successfully tracking other
catheters: circumferential mapping catheters in (a) and (b) and an
ablation catheter in (c).

References
[1] S. Avidan. Ensemble tracking. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2007. 1098
[2] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online

multiple instance learning. In CVPR, 2009. 1098
[3] A. Barbu, V. Athitsos, B. Georgescu, S. Boehm, P. Durlak, and D. Co-

maniciu. Hierarchical learning of curves application to guidewire lo-
calization in fluoroscopy. In CVPR, 2007. 1098

[4] H. Calkins and et al. HRS/EHRA/ECAS expert consensus statement
on catheter and surgical ablation of atrial fibrillation: recommenda-
tions for personnel, policy, procedures and follow-up. a report of the
heart rhythm society (HRS) task force on catheter and surgical abla-
tion of atrial fibrillation. Heart Rhythm, 4, 2007. 1097

[5] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-
rigid objects using mean shift. In CVPR, 2000. 1100

[6] D. Comaniciu, X. Zhou, and S. Krishnan. Robust realtime tracking of
myocardial border: An information fusion approach. IEEE Transac-
tions on Medical Imaging, 2008. 1100

[7] H. Grabner and H. Bischof. On-line boosting and vision. In CVPR,
2006. 1098

[8] H. U. Klemm and et al. Catheter motion during atrial ablation due to
the beating heart and respiration: Impact on accuracy and spatial ref-
erencing in three-dimensional mapping. Heart Rhythm, 2007. 1097,
1098

[9] Y. Ma, A. P. King, N. Gogin, C. A. Rinaldi, J. Gill, R. Razavi, and
K. S. Rhode. Real-time respiratory motion correction for cardiac elec-
trophysiology procedures using image-based coronary sinus catheter
tracking. In International Conference on Medical Image Computing
and Computer Assisted Intervention, 2010. 1098

[10] J. Pilet, V. Lepetit, and P. Fua. Real-time non-rigid surface detection.
In CVPR, 2005. 1098

[11] M. Powell. An efficient method for finding the minimum of a func-
tion of several variables without calculating derivatives. Computer
Journal, 1964. 1101

[12] Z. Tu. Probabilistic boosting-tree: Learning discriminative models
for classification, recognition, and clustering. In ICCV, 2005. 1098,
1099

[13] P. Viola and M. J. Jones. Robust real-time face detection. Interna-
tional Journal of Computer Vision, 2004. 1098

[14] P. Wang, T. Chen, Y. Zhu, W. Zhang, S. K. Zhou, and D. Comaniciu.
Robust guidewire tracking in fluoroscopy. In CVPR, 2009. 1098,
1100, 1101

[15] Y. Wang, B. Georgescu, D. Comaniciu, and H. Houle. Learning-based
3D myocardial motion flow estimation using high frame rate volumet-
ric ultrasound data. In IEEE International Symposium on Biomedical
Imaging, 2010. 1100

[16] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comani-
ciu. Four-chamber heart modeling and automatic segmentation for
3-D cardiac CT volumes using marginal space learning and steerable
features. IEEE Transactions on Medical Imaging, 2008. 1099

1104


