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Distribution Free Decomposition of Multivariate Data

Abstract

We present a practical approach to nonparametric cluster analysis of large data sets. The

number of clusters and the cluster centers are automatically derived by mode seeking with the

mean shift procedure on a reduced set of points randomly selected from the data. The cluster

boundaries are delineated using a k-nearest neighbor technique. The proposed algorithm is

stable and e�cient, a 10000 point data set being decomposed in only a few seconds. Complex

clustering examples and applications are discussed, and convergence of the gradient ascent

mean shift procedure is demonstrated for arbitrary distribution and cardinality of the data.

Keywords: Nonparametric cluster analysis, mode seeking, gradient density estimation,

mean shift procedure, convergence, range searching.
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1 Introduction

In image understanding the feature spaces derived from real data most often have a complex

structure and a priori information to guide the analysis may not be available. The signi�cant

features whose recovery is necessary for the solution of a task, correspond to clusters in this

space. The number of clusters, their shape and rules of assignment have to be discerned

solely from the given data.

The feature space can be regarded as a sample drawn from an unknown probability distri-

bution. Representing this distribution with a parametric model (e.g., Gaussian mixture) will

introduce severe artifacts since then the shape of the delineated clusters is prede�ned. Non-

parametric cluster analysis, on the other hand, uses the modes of the underlying probability

density to de�ne the cluster centers and the valleys in the density to de�ne the boundaries

separating the clusters.

To estimate the probability density several nonparametric techniques are available: multi-

variate histogram, the nearest neighbor method, kernel estimation, [8, 16, 18, 19]. For higher

dimensional feature spaces, multivariate histograms are less useful due to their exponentially

growing number of bins with the space dimension, as well as due to the artifacts introduced

by the quantization. The nearest neighbor method is prone to local noise (which makes

di�cult the accurate detection of the modes), and the obtained estimate is not a proba-

bility density since it integrates to in�nity [18, p.96]. For low to medium data sizes kernel

estimation is a good practical choice; it is simple, and for kernels obeying mild conditions

the estimate is asymptotically unbiased, consistent in a mean-square sense, and uniformly

consistent in probability.
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Kernel estimation based clustering essentially relies on two techniques. In the �rst tech-

nique the underlying density is estimated and a hierarchical data structure is derived, based

on which the data is decomposed. An example is the graph theoretical approach [8, p.539].

In the second technique density gradient estimation [7] is used, the modes being detected

with the hill climbing mean shift procedure [3].

Both the density and the density gradient estimation require the search for the data

points falling in the neighborhood delineated by the employed kernel. This task is called

multidimensional range searching [17, p.373]. However, unlike the nearest neighbor search

which can be performed in logarithmic time [6, 12], the performance of the multidimensional

range searching is di�cult to predict for a particular data set [17, p.385]. Therefore, for

applications involving large data sets (e.g., multispectral image segmentation [4], image

restoration, speech and image coding), both the kernel estimation and density gradient

estimation become computationally expensive, their complexity being proportional to the

square of the number of data points. The attempt to reduce computations by subsampling

the data leads to inaccuracy, most notably in the tails [14].

As a solution to the problem described above, this paper presents a practical algorithm

for unsupervised nonparametric clustering of large data sets. The algorithm is based on

the mean shift procedure, being simple, e�cient, and easy to implement. In Section 2 the

principles behind the kernel density and the density gradient estimation are reviewed, and

the speci�c clustering techniques are discussed in Section 3. The convergence of the mean

shift procedure is proved in Section 4. The proposed algorithm is presented in Section 5,

with experimental results shown in Section 6.
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2 Density and Density Gradient Estimation

Let fXigi=1:::n be an arbitrary set of n points in the d-dimensional Euclidean space Rd.

The multivariate kernel density estimate obtained with kernel K(x) and window radius h,

computed in the point x is de�ned as [18, p.76]

f̂(x) =
1

nhd

nX
i=1

K

 
x�Xi

h

!
: (1)

The kernel K(x) is a scalar function which must satisfy the following conditions [7]

sup
x2Rd

jK(x)j <1;

Z
Rd

jK(x)jdx <1; lim
kxk!1

kxkK(x) = 0;

Z
Rd

K(x)dx = 1; (2)

where k � k is the Euclidean norm. For optimum performance, the window radius h has

to be a function of the sample size n. Asymptotic unbiasedness, mean-square consistency,

and uniform consistency in probability of the density estimate are assured if the following

conditions are satis�ed, respectively

lim
n!1

h(n) = 0; lim
n!1

nhd(n) =1; lim
n!1

nh2d(n) =1: (3)

The optimum kernel yielding minimum mean integrated square error (MISE) is the Epanech-

nikov kernel

KE(x) =

8>>><
>>>:

1

2
c�1d (d+ 2)(1� xTx) if xTx < 1

0 otherwise

(4)

where cd is the volume of the unit d-dimensional sphere [18, p.76]. Uniform and Gaus-

sian kernels are also frequently used. Note that a fast computation of (1) requires a fast
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multidimensional range searching around x.

The use of a di�erentiable kernel allows to de�ne the estimate of the density gradient as

the gradient of the kernel density estimate (1)

r̂f(x) � rf̂(x) =
1

nhd

nX
i=1

rK

 
x�Xi

h

!
: (5)

Conditions on the kernel K(x) and the window radius h to guarantee asymptotic unbiased-

ness, mean-square consistency, and uniform consistency are derived in [7].

For the Epanechnikov kernel (4) the density gradient estimate (5) becomes

r̂f(x) =
1

n(hdcd)

d+ 2

h2

X
Xi2Sh(x)

[Xi � x] =
nx

n(hdcd)

d+ 2

h2

0
@ 1

nx

X
Xi2Sh(x)

[Xi � x]

1
A (6)

where the region Sh(x) is a hypersphere of radius h having the volume hdcd, centered on x,

and containing nx data points. The last term in (6)

Mh(x) �
1

n
x

X
Xi2Sh(x)

[Xi � x] =
1

n
x

X
Xi2Sh(x)

Xi � x (7)

is called the sample mean shift. Using a kernel di�erent from the Epanechnikov kernel results

in a weighted mean computation in (7). Note again that e�cient mean shift computation

requires e�cient range searching.

The quantity nx
n(hdcd)

is the kernel density estimate f̂(x) computed with the hypersphere

Sh(x) (the uniform kernel), and thus we can write (6) as

r̂f(x) = f̂(x)
d+ 2

h2
Mh(x); (8)
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which yields

Mh(x) =
h2

d+ 2

r̂f(x)

f̂(x)
: (9)

The expression (9) was �rst derived in [7] and shows that an estimate of the normalized

gradient can be obtained by computing the sample mean shift in a uniform kernel centered

on x. The mean shift vector has the direction of the gradient density estimate at x when

this estimate is obtained with the Epanechnikov kernel. Therefore, the Epanechnikov kernel

is also called the shadow of the uniform kernel [3].

Since the mean shift vector always points towards the direction of the maximum increase

in the density, it can de�ne a path leading to a local density maximum, i.e., to a mode of

the density. The normalized gradient in (9) introduces a desirable adaptive behavior: the

mean shift step is large for low density regions corresponding to valleys, and decreases as x

approaches a mode.

3 Distribution Free Clustering

Associated with the two estimates (the density and its gradient), there are two basic algo-

rithms of nonparametric clustering. For a given window radius h, both algorithms automat-

ically detect the number of existing clusters and their corresponding boundaries.

Using the density estimate (1) a hierarchical structure of the data can be obtained as

follows. For each point Xi search its neighborhood for a parent Xj, for which the quantity

h
f̂(Xj)� f̂(Xi)

i
� kXj �Xik

�1 is positive and maximum, i.e., Xj is the steepest uphill from

Xi. If the above quantity is negative for all Xj in the neighborhood, Xi is declared to be

a root node of the tree structure. Root nodes are assumed to be close to a mode of the
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underlying distribution. Clustering is performed in a natural way by following the branches

of the structure. The algorithm, called graph theoretical clustering, is described in detail

in [8, p.538]. The hierarchical structure can also be obtained through iterative thresholding

[10] or through splitting [9] of the density estimate.

The second algorithm uses the density gradient estimate to de�ne an iterative, hill climbing

technique which detects the modes and the valleys in the underlying distribution. The mean

shift procedure is an adaptive steepest ascent technique that computes the mean shift vector

(7) for each data point, translates the kernel by that amount, and repeats the computations

till a mode is reached. Generalizations of the mean shift procedure and applications to

clustering are discussed in [3]. A variant of the mean shift, called the maximum entropy

clustering is presented in [15] and face tracking based on mean shift is described in [2].

However, clustering through applying the mean shift procedure to each data point cannot

be satisfactory in practical applications since the convergence over the low density regions

is poor, while high density regions can present plateaus without a clear local maximum.

When the data set is large (over 10000 points) the most important drawback of the two

algorithms discussed above is their computational complexity. They require the density

or density gradient estimation at each data point which has a complexity of O(n2) for a

set of n data points. The complexity problem is induced by the lack of e�ciency of the

multidimensional range searching. The performance of the d-dimensional trees used in range

searching is rather di�cult to predict for random data [17, p.385].

In the Section 5 we present a probabilistic mean shift type algorithm which takes in account

the di�culties mentioned so far, and whose complexity is O(mn), with m� n.

8



4 Mean Shift Convergence

In this section we prove that the mean shift procedure applied to discrete data is guaranteed

to converge. Let fYkgk=1;2::: denote the sequence of successive locations of the mean shift

procedure. By de�nition we have for each k=1,2. . .

Yk+1 =
1

nk

X
Xi2Sh(Yk)

Xi; (10)

where Y1 is the center of the initial window and nk is the number of points falling in the

window Sh(Yk) centered on Yk.

The convergence of the mean shift has been justi�ed as a consequence of relation (9),

(see [3]). However, while it is true that the mean shift vector Mh(x) has the direction of

the gradient density estimate at x, it is not apparent that the density estimate at locations

fYkgk=1;2::: is a monotonic increasing sequence. Moving in the direction of the gradient

guarantees hill climbing only for in�nitesimal steps. The following theorem, however, asserts

the convergence.

Theorem 1 Let f̂E =
n
f̂k(Yk; KE)

o
k=1;2:::

be the sequence of density estimates obtained

using Epanechnikov kernel and computed in the points fYkgk=1;2::: de�ned by the successive

locations of the mean shift procedure with uniform kernel. The sequence is convergent.

Proof Since the data set fXigi=1:::n has �nite cardinality n, the sequence f̂E is bounded.

It is shown in Appendix that f̂E is strictly monotonic increasing, that is, if Yk 6= Yk+1 then

f̂E(k) < f̂E(k+1), for all k = 1; 2 : : :. Being bounded and strictly monotonic increasing, the

sequence f̂E is convergent. Note that if Yk = Yk+1 then Yk is the limit of f̂E, i.e., Yk is

the �xed point of the mean shift procedure.
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5 Clustering Algorithm

The steps of the algorithm are described below.

1. De�ne a random tessellation of the space with m � n spheres Sh(x). To reduce the

computational load, a set of m points X1 : : :Xm called the sample set is randomly selected

from the data. Two constraints are imposed on the points retained in the sample set.

The distance between any two neighbors should not be smaller than h, the radius of the

sphere Sh(x), and the sample points should not lie in sparsely populated regions. The latter

condition is required to avoid low density clusters. A region is sparsely populated whenever

the number of points inside the sphere is below a threshold T1. The distance and density

constraints automatically determine the size m of the sample set. The spheres centered on

the sample set cover most of the data points. When the processing time is not critical, the

distance constraint can be relaxed, thus increasing the tessellation resolution.

2. Apply the mean shift procedure to the sample set. A set containing m cluster center

candidates is de�ned by the points of convergence of the m mean shift procedures. Note

the decrease in computational complexity which is now O(mn), with m � n, and that the

computation of the mean shift vectors is based almost on the entire data set. Therefore, the

quality of the density gradient estimate is not diminished by the use of sampling.

3. Perturb the cluster center candidates and reapply the mean shift procedure. Since a

local plateau can prematurely stop the iterations, each cluster center candidate is perturbed

by a random vector of small norm and the mean shift procedure is let to converge again.

4. Derive the cluster centers Y1 : : :Yp from the cluster center candidates. Any subset

of cluster center candidates which are su�ciently close to each other (for any given point in
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the subset there is at least another point in the subset such that their distance is less than

h), de�nes a cluster center. The cluster center is the mean of the cluster center candidates

in the subset. Note that p � m.

5. Validate the cluster centers. Between any two cluster centers Yi and Yj a signi�cant

valley should occur in the underlying density. The existence of the valley is tested for each

pair (Yi;Yj). The sphere Sh(x) is moved with step h along the line de�ned by (Yi;Yj)

and the weighted number the data points lying in the sphere is counted at each position,

i.e., the density is estimated with Epanechnikov kernel KE along the line. Whenever the

ratio between min
h
f̂(Xi); f̂(Xj)

i
and the minimum density along the line is larger than a

threshold T2, a valley is assumed between Yi and Yj. If no valley was found between Yi

and Yj, the cluster center of lower density (Yi or Yj) is removed from the set of cluster

centers.

6. Delineate the clusters. At this stage each sample point is associated with a cluster

center. To allocate the data points a k-nearest neighbor technique is employed, i.e., each

data point belongs to the cluster de�ned by the majority of its k-nearest sample points.

6 Performance Evaluation

The clustering algorithm makes use of three parameters: the searching sphere radius h

which controls the sensitivity of the decomposition, the threshold T1 which imposes the

density constraint, and the threshold T2 corresponding to the minimum acceptable peak-

valley ratio. The parameters T1 and T2 generally have a weak inuence on the result. All the

experimental results described here were obtained with T1 = 50 and T2 = 1:2. Unless it is

speci�ed otherwise, we used k = 1, i.e., clusters were delineated using the nearest neighbor
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for the last step of the algorithm. Since the experimental data sets had di�erent scales, the

sphere radius h has been changed accordingly. Note also that the Improved Absolute Error

Inequality [13] was employed to e�ciently compute Euclidean distances.

Experiment 1. The �rst example is shown in Figure 1. The data set contained 32640

points with dimension d = 3, grouped into 3 non-linearly separable clusters (Figure 1a). A

standard unsupervised procedure such as ISODATA [11] would fail on this data. Using a

radius h = 0:2, the obtained sample set had 167 points (Figure 1c) and converged to 3 cluster

centers. In Figure 1b the 3 extracted clusters are shown, having 11050, 10874, and 10716

points, respectively. The algorithm running time was less than 10 seconds on a standard

workstation.

Experiment 2. A simpler clustering example is shown in Figure 2. The purpose

of this experiment was to compare the performance of the nonparametric algorithm with

the performance of the classical Bayes classi�er. The data set contained 10000 points with

dimension d = 3 coming from two normal distributions with covariance 102I and mean vector

(0; 0; 0)T and (40; 0; 0)T , respectively.

Figure 2b shows the delineated clusters corresponding to a radius h = 10. Using the

Bayes classi�er the error rate is 2:34%, due to 234 points that overlap. Figure 3 shows the

error rate resulted from our algorithm for sphere radii between 8 and 20. The allocation of

data points to the modes used k-nearest neighbors, where k was taken 1 and 3, respectively.

The error rate increases with radius h due to the increase in the boundary delineation error.

The straight line in the graph represents the Bayes error rate. The performance of the

nonparametric algorithm is very close to that of the Bayes classi�er, in spite of no a priori

knowledge being used in the nonparametric case.
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Experiment 3. The third experiment shows the application of the new algorithm to the

segmentation of the color image in Figure 4a. Clustering is performed in the perceptually

uniform L�u�v� color space, each delineated cluster corresponding to homogeneous regions

in the image. The color space (Figure 5a) contained 14826 points, and four clusters have

been extracted by using a radius of h = 10. Note the irregular boundaries of the clusters

in Figure 5b. The clustering quality can be assessed by observing the segmented image in

Figure 4b, where spatial constraints have been used to remove small regions containing less

than 25 pixels. [4].

We tested the stability of the algorithm by using di�erent sets of sample points, each set

resulting in a distinct tessellation of the input space. Four values of the window radius h

have been considered: 4, 7, 16, and 22. Ten trials have been performed for each window

radius. The algorithm proved to be very stable producing similar mode locations and clus-

ter delineations for a given radius value. Table 1 shows the number of detected clusters

corresponding to each radius class.

Experiment 4. A second color segmentation example is presented in Figure 6. Using

the same radius of h = 10, the algorithm extracted three color clusters.

Experiment 5. A di�cult data set is shown in Figure 7a. It contains 17748 points and

represents the �rst 2 components of the L�u�v� space of the color image in Figure 8a. We

used only this subspace to be able to visualize the behavior of the algorithm. Large amount

of background noise, asymmetric clusters, narrow peaks and large plateaus are present. Real

data often have such a complex structure.

Using a radius of h = 5 the proposed algorithm detected 7 clusters (Figure 7b). The 47

sample points are shown in Figure 7c together with the Epanechnikov estimate of the density.
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The estimate was computed with a resolution of one on both axes and using the same window

radius of h = 5. The sample points converged to the cluster center candidates (Figure 7d)

located at local maxima of the density estimate. The valley test further removed some of

the cluster center candidates located on plateaus, allowing the correct cluster delineation.

The decomposition in Figure 7b does not have a physical meaning since it is based only

on two dimensions. However, when the color image is processed in the full (3-dimensional)

color space the obtained segmentation is satisfactory (see Figure 8b).

7 Discussion

Under general conditions, the use of the algorithm has to be preceded by an application

dependent preprocessing stage to normalize the data. When no a priori information is

available the optimal window radius can be obtained as the center of the largest operating

range which yields the same number of clusters for a given data [8, p.541]. In practice,

however, the �nal objective of the decomposition is task dependent, therefore, top-down

information controls the window radius.

The new algorithm has been applied with excellent results to the task of real time segmen-

tation of medical images in a retrieval system for diagnostic pathology [5]. The nonparametric

nature of the algorithm and its robustness to noise allowed the use of a �xed radius for the

processing of hundreds of digital specimens captured under di�erent conditions.

Despite the expected di�culty given the reduced number of data points, the proposed

algorithm showed good performance for the standard IRIS data which contains 150 points.

Using a window radius of 4, letting all the individual points to seek the closest mode, and

delineating the clusters based on the 3 nearest neighbors, the correct number of 3 clusters
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were detected. Only 7 points were misclassi�ed, result which is superior to that of seven

other clustering algorithms compared in [1]. When the cluster delineation was based on the

nearest neighbor the number of misclassi�ed points increased to 8.

Appendix

In this Section we will show that the sequence f̂E =
n
f̂k(Yk; KE)

o
k=1;2:::

is strictly monotonic

increasing, i.e., if Yk 6= Yk+1 then f̂E(k) < f̂E(k + 1), for all k = 1; 2 : : :.

Let nk, n
0

k, and n
00

k with nk = n
0

k + n
00

k be the number of data points falling in the

d-dimensional windows (see Figure 9)

Sh(Yk), Sh
0(Yk) = Sh(Yk)� Sh

00(Yk), and Sh
00(Yk) = Sh(Yk)

T
Sh(Yk+1).

Without loss of generality we can assume the origin located at Yk. Using the de�nition

of the density estimate (1) with the Epanechnikov kernel (4) and noting that kYk �Xik
2 =

kXik
2 we have

f̂E(k) = f̂k(Yk; KE) =
1

nhd

X
Xi2Sh(Yk)

KE

 
Yk �Xi

h

!

=
d+ 2

2n(hdcd)

X
Xi2Sh(Yk)

 
1�

kXik
2

h2

!
: (A.1)

Since the kernel KE is nonnegative we also have

f̂E(k + 1) = f̂k+1(Yk+1; KE) �
1

nhd

X
Xi2S

00

h
(Yk)

KE

 
Yk+1 �Xi

h

!

=
d+ 2

2n(hdcd)

X
Xi2S

00

h
(Yk)

 
1�

kYk+1 �Xik
2

h2

!
: (A.2)
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Hence, knowing that n
0

k = nk � n
00

k we obtain

f̂E(k + 1)� f̂E(k) �
d+ 2

2n(hdcd)h2

2
64 X
Xi2Sh(Yk)

kXik
2
�

X
Xi2S

00

h
(Yk)

kYk+1 �Xik
2
� n

0

kh
2

3
75 ;(A.3)

where the last term appears due to the di�erent summation boundaries.

Also, by de�nition kYk+1 �Xik
2
� h2 for all Xi 2 S

0

h(Yk), which implies that

X
Xi2S

0

h
(Yk)

kYk+1 �Xik
2
� n

0

kh
2: (A.4)

Finally, employing (A.4) in (A.3) and using (10) we obtain

f̂E(k + 1)� f̂E(k) �
d+ 2

2n(hdcd)h2

2
4 X
Xi2Sh(Yk)

kXik
2
�

X
Xi2Sh(Yk)

kYk+1 �Xik
2

3
5

=
d+ 2

2n(hdcd)h2

2
42YT

k+1

X
Xi2Sh(Yk)

Xi � nkkYk+1k
2

3
5

=
d+ 2

2n(hdcd)h2
nkkYk+1k

2: (A.5)

The last item of the relation (A.5) is strictly positive except when Yk = Yk+1 = 0.
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Figure 1: First experiment. (a) Original data set (32640 points). (b) Cluster delineation

(3 clusters represented with di�erent gray levels). (c) Sample set (167 points). (d) Cluster

center candidates.

(a) (b)

Figure 2: Second experiment. (a) Original data set (10000 points). (b) Cluster delineation

(2 clusters).
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Figure 3: The error rate of the proposed algorithm for di�erent values of the sphere radius

and di�erent number of nearest neighbors. The dash-dotted line represents the error rate of

the Bayes classi�er.

(a) (b)

Figure 4: Third experiment. (a) Original image. (b) Segmented image using nonparametric

clustering.

(a) (b)

Figure 5: Third experiment. (a) Original data set (14826 color points). (b) Cluster delin-

eation (4 clusters). The position of each cluster has been shifted to show the delineation.
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(a) (b)

Figure 6: Fourth experiment. (a) Original image. (b) Segmented image using nonparametric

clustering.

(a) (b)

(c) (d)

Figure 7: Fifth experiment. (a) Original data set (17748 2D points). (b) Data decomposition

(7 clusters). The position of each cluster has been shifted to show the delineation. (c) Sample

set (47 points) and the Epanechnikov density estimate. (d) Cluster center candidates.
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(a) (b)

Figure 8: The color image used in the �fth experiment. (a) Original. (b) Segmented.

Figure 9: d-dimensional windows used in the proof of convergence: Sh(Yk), Sh
0(Yk) =

Sh(Yk)� Sh
00(Yk), and Sh

00(Yk) = Sh(Yk)
T
Sh(Yk+1). The point Yk+1 is the mean of the

data points falling in Sh(Yk).
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Table 1: Number of detected clusters versus the sphere radius for Experiment 3.

Detected Clusters 5 4 4 3

Sphere Radius 4 7 16 22
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