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ABSTRACT

Valvular heart diseases are recognized as a significant cause
of morbidity and mortality. Accurate quantification of car-
diac flow volumes in patients is essential in evaluation of the
progression of the disease and in determination of clinical
options. Recent advances in the real-time 3D full volume
echocardiography have enabled high frame rate acquisition of
volumetric color Doppler flow images. In this paper, we pro-
pose a fully automated method to quantify the cardiac flow
using instantaneous 3D+t ultrasound data. The anatomical
information such as mitral annulus and left ventricle outflow
tract (LVOT) are detected and tracked automatically account-
ing for the heart motion. Furthermore, the proposed method
automatically detects and tracks the endocardial boundary of
the left ventricle (LV) and computes the instantaneous change
in LV volume. This information is used to overcome inher-
ent limitation of the color Doppler velocity ambiguity such
that de-aliasing parameters are computed and used to correct
flow computations. Preliminary results with clinical data pre-
sented here agree well with accepted clinical measurements in
a quantitative manner. The proposed method is efficient and
achieves high speed performance of 0.2 second per volume of
ultrasound data.

Index Terms— Color Doppler, Anatomy Detection, Mo-
tion Tracking, Learning-Based Methods

1. INTRODUCTION
The quantification of flow volume is important for evaluation
of patients with cardiac dysfunction and cardiovascular dis-
ease. However, the accurate flow quantification remains a sig-
nificant challenge for cardiologists [1]. Doppler ultrasound is
a non-invasive and cost effective method for evaluation of in-
tracardiac blood flow, for assessment of cardiac function, for
estimation of shunt flows in congenital cardiac defects, and
for assessment regurgitation in the presence of valvular dis-
ease. With real-time full volume echocardiography it is now
feasible to acquire transthoracic 3D color flow imaging (CFI)
for every heartbeat (without stitching) such that both mitral
valve and LVOT can be covered by color Doppler region of
interest. However, a fundamental limitation of flow velocity
aliasing remains which can introduce significant errors in flow

quantification directly using color Doppler data. The velocity
ambiguity cannot be overcome just by ultrasound data espe-
cially when true velocity is several multiples of the Nyquist
level [2]. To address this issue, various approaches have been
proposed using customized hardware [3] or certain geometric
assumptions [4, 5, 6, 7].

In this paper, we propose a fully automated method for
cardiac flow volume quantification using instantaneous 3D+t
ultrasound data. More specifically, our method automatically
detects both the mitral annulus and left ventricular outflow
tract (LVOT) and places measurement planes at appropriate
locations. To compensate non-rigid heart motion, measure-
ment planes are tracked through the whole cardiac cycle
to adjust the sampling locations and orientations in each
frame. As a result, the flow volumes are computed consis-
tently based on the anatomical structure of the left ventricle
(LV). Furthermore, to recover the de-aliasing factor of the
color Doppler flow data, our method also estimates the LV
volume change by automatically detecting and tracking the
endocardial boundary on the ultrasound data. A de-aliasing
approach is proposed to compute the volume of both mitral
inflow and LVOT outflow. To demonstrate the performance,
we evaluated our method on a clinical dataset taken from
22 normal subjects. The comparison of measurements with
the proposed method with two routine clinical measurements
provide a quantitative comparison with existing reference
methods. The clinical measurements used for comparison are
2D quantitative Doppler with pulsed wave Doppler acquisi-
tion at LVOT to estimate LV stroke volume and LV stroke
volume from 3D b-mode contouring of LV cavity. These
are clinically accepted methods and independently validated
elsewhere.

2. FRAMEWORK
In this section, we present the new framework to estimate 3D
volume of both the mitral and LVOT flow. As illustrated in
Figure 1, our system includes the following main steps:

1. Automatic anatomy detection: In the first frame, the en-
docardial boundary of the left ventricle (LV), the mitral
annulus, and the left ventricular outflow tract (LVOT)
are detected using Marginal Space Learning (MSL) [8].
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Fig. 1. The outline of our automatic flow volume quantification framework.

2. Cardiac motion tracking: The 3D motion of the left
ventricle, including the ventricular wall, the mitral an-
nulus, and the LVOT, are estimated by fusing informa-
tion from multiple cues, including optical flow, bound-
ary detection, and motion prior.

3. Three-dimensional flow sampling: The tracked loca-
tions of the mitral annulus and LVOT are used to con-
struct and adjust the sampling planes of the color flow
data. Consequently, the flow volume is computed by
aggregating the sampled color flow values in the three-
dimensional space.

4. Flow de-aliasing: Based on the tracked LV endocar-
dial boundaries, the LV volume change is computed be-
tween neighboring frames to estimate the de-aliasing
factor of the measured color Doppler data. The de-
aliased flow volumes are computed for both the mitral
inflow and the LVOT outflow.

(a) (b) (c)
Fig. 2. The anatomical model used to represent the left ventricle,
mitral annulus, and left ventricular outflow tract (LVOT). (a) is the
side and bottom views of the 3D mesh model, where the mitral an-
nulus and LVOT are highlighted in the yellow and blue color, re-
spectively. (b) and (c) are the side and bottom views of the sampling
planes at the mitral annulus and LVOT, respectively.

2.1. Anatomical Model
To represent the anatomical structure of the left ventricle, mi-
tral annulus, and left ventricular outflow tract, a 3D mesh
model is used in our system as illustrated in Figure 2(a-b).
Figure 2(a) shows the side view of our 3D model with the
mitral annulus and the LVOT ring highlighted in the yellow
and blue color, respectively. The sampling planes at the mi-
tral annulus and LVOT are illustrated in Figure 2(b) and (c).
Because of the physical form of the 3D ultrasound pyramid,
a plane in the acoustic space with a constant distance to the
transducer corresponds to a Gaussian sphere in the Cartesian
space, centering at the tip of the pyramid. Therefore, the
sampling plane in our model is defined on a Gaussian sphere

passing through the mitral annulus or LVOT. To compute the
integral volume of the mitral inflow and LVOT outflow, we
consider the circular area enclosed by the mitral annulus and
LVOT ring, as shown in Figure 2(c).

2.2. Learning-based anatomy detection
In the starting frame (typically the end-diastole cardiac
phase), we detect automatically the endocardial boundary
of the left ventricle (LV), the mitral annulus, and the left
ventricular outflow tract (LVOT). A 3D detector is learned to
locate the pose, including the position X = (x, y, z), orienta-
tion θ = (α, β, γ) and scale S = (sx, sy, sz), of the LV using
the marginal space learning (MSL) approach [8]. The local
deformations of the mitral annulus, LVOT, and myocardial
boundaries are further estimated based on the posterior dis-
tribution pi(X|I) of each control point on the surface, which
is learned using the steerable features and the probability
boosting-tree (PBT) [9].

2.3. Cardiac motion tracking
Starting from the detection result at the initial frame, the
model deformations are propagated to neighboring frames
using both the learned features and the local image templates.
To ensure temporal consistency and smooth motion and to
avoid drifting and outliers, two collaborative trackers, an op-
tical flow tracker and a boundary detection tracker, are used
in our method. The optical flow tracker directly computes
the temporal displacement for each point from one frame to
the next, while the detection tracker obtains the deforma-
tions in each frame with maximal probability. The above
two trackers are integrated into a single Bayesian framework,
with the assumption that the input images I are mutually
independent [10]:

arg max
~Xt

p( ~Xt|~Y1:t) = arg max
~Xt

p(~Yt| ~Xt)p( ~Xt|~Y1:t−1), (1)

where ~Y1:t = ( ~Y1, . . . , ~Yt) are the measurements from the
first t frames I1:t = (I1, . . . , It). For clarity, we use ~Xt to
denote a concatenation of the mesh point positions, ~Xt =
[X1, · · · , Xn], which need to be estimated at the current time
instance t, and n is the total number of points in the model.

The likelihood term p(~Yt| ~Xt) is computed from both
boundary detection and local image template matching, i.e.,

p(~Yt| ~Xt) = (1− λ)p(Ft| ~Xt) + λp(Tt| ~Xt), (2)



where Ft is the steerable feature response [8], Tt is the lo-
cal image template, and λ is the weighting coefficient of the
matching term. Given the resulting shapes ~X1:t−1 from the
previous t − 1 frames, the prediction term p( ~Xt|~Y1:t−1) can
be simplified as p( ~Xt| ~X1:t−1), which can be learned from the
training data set as in [11]. The motion prior is estimated at
the training stage using motion manifold learning and hierar-
chical K-means clustering, from a pre-annotated database of
sequences containing one cardiac cycle each. Firstly the tem-
poral deformations are aligned by 4D generalized procrustes
analysis. Next a low-dimensional embedding is computed
from the aligned training sequences using the ISOMAP algo-
rithm [12]. Finally, in order to extract the modes of motion,
the motion sequences are then clustered with hierarchical K-
means based on the Euclidean distance in the lower dimen-
sional manifold.

The above deformation propagation step is repeated un-
til the full 4D model is estimated for the complete sequence.
In this way the collaborative trackers complement each other,
as the optical flow tracker provides temporally consistent re-
sults and its major issue of drifting is addressed by the bound-
ary detection. Finally to obtain a smooth motion field, the
tracking is performed in both forward and backward direc-
tions given the periodic nature of the cardiac motion.

2.4. Flow computation and de-aliasing
Given the tracking result ~X from Section 2.3, the two planes
as shown in Figure 2(b,c) are constructed to sample and com-
pute the mitral and LVOT flow. Figure 3 shows the examples
of flow sampling on two different frames, one with the mitral
inflow and the other with LVOT outflow. The mitral annulus
and LVOT sampling planes are highlighted in the yellow and
blue color, respectively. Thus, given a color flow image Ft at
the time instance t, the flow volume is computed as an integral
of the color measurements on the sampling plane:

V Fma
t = dA× V Fm

t /128/fr × vs
V Fm

t =
∑Ns

i=1 Ft( ~X(i))
(3)

where dA is the unit sampling area on the sampling plane, fr
is the frame rate, vs is the Doppler velocity scale, Ns is the
number of non-zero samples on the sample plane, and ~X(i)
is the 3D position of the i− th sampling area.

In color flow images, aliasing is a common issue which
describes single or multiple exceeding of the color Doppler
Nyquist velocity, causing ambiguity for velocities beyond the
Nyquist level [2]. In our proposed method, the LV volume
Vt can be computed based on the tracking result ~X from Sec-
tion 2.3 for each frame t. As a result, the LV volume change
can be computed as the difference between two neighboring
frames as follows:

dVt = Vt − Vt−1 (4)

Since the LV volume change dV and the flow volume V Fma

measures the same amount of blood flow through the left ven-

(a) Mitral inflow (b) LVOT outflow
Fig. 3. Flow sampling examples. (a) and (b) show the flow sampling
on two different frames. The mitral annulus and LVOT sampling
planes are highlighted in the yellow and blue color, respectively.

tricle at certain time instance, the de-aliasing factor of the
color flow measurement can be computed as the ratio between
two volume values, i.e.,

fde = b dVt − V Fma
t

dA×Ns/fr × vs
c (5)

where dA is the unit sampling area, Ns is the number of non-
zero samples on the sample plane, fr is the frame rate, and
vs is the Doppler velocity scale, and bxc is the floor function
which returns the closest integer not greater than x.

3. EXPERIMENTAL RESULTS
Figure 4 shows a multi-beat example from a normal patient.
Figure 4(a) shows the aliased flow measurement sampled
from the color flow images, while Figure 4(b) shows the re-
sulting flow from our de-aliasing method. The input sequence
has 37 volumes with 3 heart beats.

(a) Aliased flow (b) De-aliased flow
Fig. 4. Example flow estimation on a normal case. (a) shows the
original flow volume measurement from color flow images with ve-
locity aliasing. (b) is the resulting flow volume from our de-aliasing
method. The mitral inflow is plotted in the red curve while the LVOT
outflow is in blue. The de-aliased mitral inflow and LVOT outflow
volume curves show a consistent pattern in all three cycles.

To evaluate the performance of our method, a set of
3D full-volume ultrasound sequences were acquired by a
Siemens SC2000 scanner with an average volume rate of 15
vps at the Ohio State University Medical Center. 22 subjects
with normal valves were enrolled with the IRB approval.



Figures 5 and 6 report the comparison between the expert
measurements using 2D pulsed wave (PW) Doppler and the
flow volumes estimated by our method. The LV stroke vol-
ume (LVSV) was very close to the volume from LVOT-PW
(70.1 ± 20.8 ml, 69.7 ± 16.7 ml) with good correlation
(r = 0.78). 3-D LV inflow and outflow volumes (73.6± 16.3
ml, 67.6 ± 14.6 ml) were correlated well with LVSV and
LVOT-PW respectively (r = 0.77, 0.91). Therefore all the
estimated flow volumes were consistent and close to the ex-
pert measurements, which demonstrated the accuracy and
robustness of our proposed method.

Measure (ml) Mean STD Std. Error Mean
LVOT-PW 69.7 16.7 3.6

LVSV 70.1 20.8 4.4
3D CD Mitral Inflow 73.6 16.3 3.5

3D CD LVOT Outflow 67.6 14.6 3.1
Fig. 5. Flow measure comparison on 22 normal patients. The first
row shows the LVOT outflow volume measured by a clinical expert
using 2D pulsed wave (PW) Doppler. The second row is the esti-
mated LV stroke volume using the delineated LV endocardial bound-
ary on the volumetric b-mode ultrasound data. The last two rows are
the de-aliased mitral inflow and LVOT outflow based on the sampled
volumetric color Doppler data by our method. The estimated flow
volumes are consistent between all four measurements and close to
the expert measurements, which demonstrates the accuracy and ro-
bustness of our proposed method.

Measure 1 Measure 2 correlation p-value
LVOT-PW LVSV 0.78 < 0.001

3D CD Mitral Inflow LVSV 0.77 < 0.001

3D CD LVOT Outflow LVOT-PW 0.91 < 0.001

Fig. 6. Correlation and statistical significance testing of flow mea-
sure on 22 normal patients between (1) the LVOT outflow volume
measured using 2D pulsed wave (PW) Doppler and the estimated
LV stroke volume; (2) the LVOT and the de-aliased Mitral inflow
by our method; and (3) the LVOT-PW and the LVOT outflow by our
method. The comparison shows good correlation between all mea-
surements which is statistically significant.

4. CONCLUSION
In this paper, we present a fully automatic method to estimate
both mitral inflow and LVOT outflow on 3D real-time full vol-
ume ultrasound data. A 3D model is fitted automatically to
the left ventricle (LV), mitral annulus, and LVOT to construct
measurement planes in a volumetric color Doppler image. To
compensate heart motion, multiple information sources, such
as image gradients, boundary detection and motion predic-
tion, are fused to achieve a robust tracking through the whole
cardiac cycle. Furthermore, given the tracked LV endocardial
boundaries, a new approach is proposed to correct for alias-
ing in the color Doppler data by using LV volume change
between two neighboring frames. Preliminary results on clin-
ical data showed good correlation with expert measurements
in two reference methods. The proposed method is efficient

and achieves high speed performance of 0.2 second per frame
for volumetric ultrasound data.

5. REFERENCES

[1] Little, S.H.: Quantifying mitral valve regurgitation: New solu-
tions from the 3rd dimension. Journal of the American Society
of Echocardiography 23(1) (2010) 9 – 12

[2] Hatle, L., Angelsen, B.: Doppler ultrasound in cardiology:
physical principles and clinical applications. Lea & Febinger

[3] Skaug, T.R., Hergum, T., Amundsen, B.H., Skjrpe, T., Torp,
H., Haugen, B.O.: Quantification of mitral regurgitation us-
ing high pulse repetition frequency three-dimensional color
doppler. Journal of the American Society of Echocardiogra-
phy 23(1) (2010) 1 – 8

[4] Zoghbi, W.A., Enriquez-Sarano, M., Foster, E., Grayburn,
P.A., Kraft, C.D., Levine, R.A., Nihoyannopoulos, P., Otto,
C.M., Quinones, M.A., Rakowski, H., Stewart, W.J., Wag-
goner, A., Weissman, N.J.: Recommendations for evalua-
tion of the severity of native valvular regurgitation with two-
dimensional and doppler echocardiography. Journal of the
American Society of Echocardiography 16(7) (2003) 777 – 802

[5] Matsumura, Y., Fukuda, S., Tran, H., Greenberg, N.L., Agler,
D.A., Wada, N., Toyono, M., Thomas, J.D., Shiota, T.: Geom-
etry of the proximal isovelocity surface area in mitral regurgi-
tation by 3-dimensional color doppler echocardiography: Dif-
ference between functional mitral regurgitation and prolapse
regurgitation. American Heart Journal 155(2) (2008)

[6] Yosefy, C., Levine, R.A., Solis, J., Vaturi, M., Handschu-
macher, M.D., Hung, J.: Proximal flow convergence region as
assessed by real-time 3-dimensional echocardiography: Chal-
lenging the hemispheric assumption. Journal of the American
Society of Echocardiography 20(4) (2007) 389–396

[7] Plicht, B., Kahlert, P., Goldwasser, R., Janosi, R.A., Hunold, P.,
Erbel, R., Buck, T.: Direct quantification of mitral regurgitant
flow volume by real-time three-dimensional echocardiography
using dealiasing of color doppler flow at the vena contracta.
Journal of the American Society of Echocardiography 21(12)
(2008) 1337 – 1346

[8] Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comani-
ciu, D.: Four-chamber heart modeling and automatic segmen-
tation for 3-D cardiac CT volumes using marginal space learn-
ing and steerable features. TMI 27(11) (2008) 1668–1681

[9] Tu, Z.: Probabilistic boosting-tree: Learning discrimina-
tive models for classification, recognition, and clustering. In:
ICCV. (2005) II: 1589–1596

[10] Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: A dy-
namical shape prior for lv segmentation from RT3D echocar-
diography. In: Proc. Int’l Conf. Medical Image Computing and
Computer Assisted Intervention. (2009) 206–213

[11] Wang, Y., Georgescu, B., Comaniciu, D., Houle, H.: Learning-
based 3D myocardial motion flow estimation using high frame
rate volumetric ultrasound data. In: ISBI. (2010) 1097–1100

[12] Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geo-
metric framework for nonlinear dimensionality reduction. Sci-
ence 290(5500) (2000) 2319 – 2323


