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Abstract. This paper presents a new technique of coronary digital sub-
traction angiography which separates layers of moving background struc-
tures from dynamic fluoroscopic sequences of the heart and obtains mov-
ing layers of coronary arteries. A Bayeisan framework combines dense
motion estimation, uncertainty propagation and statistical fusion to achieve
reliable background layer estimation and motion compensation for coro-
nary sequences. Encouraging results have been achieved on clinically
acquired coronary sequences, where the proposed method considerably
improves the visibility and perceptibility of coronary arteries undergoing
breathing and cardiac movements. Perceptibility improvement is signif-
icant especially for very thin vessels. Clinical benefit is expected in the
context of obese patients and deep angulation, as well as in the reduction
of contrast dose in normal size patients.

1 Introduction

Digital subtraction angiography (DSA) is a fluoroscopy technique to clearly vi-
sualize blood vessels by subtracting a pre-contrast image called mask from later
images once the contrast medium has been introduced. In this work, we intro-
duce a new technique called coronary DSA (cDSA) to better visualize coronary
vessels in 2D dynamic fluoroscopic sequences of the heart. Using a small number
of pre-contrast masks, cDSA produces sequences of dynamic coronary arteries
by separating and subtracting sequences of moving background layers. cDSA is
an important technique with broad applications in image guided cardiovascu-
lar intervention. Fig. 1 shows two applications of cDSA. First, the separation
of background and coronary layers enables the function of fade-in and fade-out
of the dynamic background structures, thus giving clinicians more options in
displaying the coronary arteries in motion during cardiac interventions or for
diagnosis purpose. Second, with the coronary layer extracted from fluoroscopic
sequences, we are able to virtually enhance the contrast medium for improved
visibility and perceptibility of coronary arteries, which brings clinical benefits in
the context of obese patients and deep angulation.

A main challenge for cDSA is to deal with complex motion caused by cardiac,
breathing and patient table movements. In cardiac fluoroscopic sequences, both
static bone tissues and tissues undergoing a mixture of cardiac and respiratory
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Fig. 1. cDSA applications. From left to right: original image, two images with fading
background layer, coronary layer, coronary enhanced image.

Fig. 2. Bayesian framework of dynamic layer separation.

movements can be seen in transparency. Existing techniques of motion correction
[4] remain largely insufficient in dealing with such complex motion. Related
work has been reported in dealing with transparent motion [1, 2, 5, 6]. In [7], a
technique based on non-parametric motion estimation has been proposed, where
a dense motion field is used for motion correction between a mask and a contrast
image, and learning-based method is used to facilitate motion estimation.

We present a Bayesian framework for tracking the moving layer of dynamic
background structures to achieve coronary subtraction in cardiac fluoroscopic
sequences. Dense motion estimation between mask images and a contrast image
are used to predict the background layer of the contrast image, and predictions
from multiple masks are statistically fused to obtain the final estimation of the
background layer. Compared to the method in [7] which selects one mask im-
age for motion compensation, the Bayesian framework improves the accuracy
of background layer estimation through uncertainty propagation and statistical
fusion of motion compensation from multiple masks.

2 Method

In X-ray imaging, the intensity of the energy flux undergoes exponential attenu-
ation through layers of tissues, resulting in multiplicative transparency [4]. With
logarithmic postprocessing, fluoroscopic images are represented by an additive
model consisting of multiple layers. In cDSA, only two layers are considered to
simplify the problem, a coronary layer defined as the transparent layer containing
coronary arteries filled with contrast medium, and a background layer defined
as the transparent layer containing background structures. Denote It(x), IC,t(x)



and IB,t(x) as the contrast-filled frame, its coronary layer and background layer
at time t respectively, where x is the pixel location. The additive layer compo-
sition model is expressed as It(x) = IC,t(x) + IB,t(x). The goal is to remove the
background layer to obtain the layer of coronary arteries while both layers are
undergoing cardiac, respiratory and other types of movements. The proposed
Bayesian framework is illustrated in Fig. 2. First, prior to contrast injection, a
small number of images are acquired at different cardiac and breathing phases
to serve as static masks for background estimation. Second, once the contrast
medium has been introduced, motion estimation is performed between each mask
and a contrast image, and the resulting motion field is used to predict the back-
ground layer of the contrast image. Predictions from multiple masks are fused
statistically to obtain a final estimate of the background layer. At last, the coro-
nary layer is estimated by subtracting the background estimate from the contrast
image. In processing a fluoroscopic sequence, layer estimates obtained from pre-
vious frames are also used as dynamic masks to predict the background layer
of a current frame. In this framework, we assume that the C-arm remains still.
New masks have to be reacquired for cDSA when change of angulation occurs.

2.1 Background motion estimation

We use the non-parametric approach introduced in [7] to estimate the mo-
tion between a mask image Im and a contrast image It(x). First, a technique
of learning-based vessel segment detection is applied to the contrast image to
roughly separate the image areas of vessels from the region of background struc-
tures and to exclude most of the vessel areas from motion estimation. Second,
the Lucas-Kanade-Fusion algorithm is applied to estimate a dense motion field
v(x) between the mask image and the background region of the contrast image.
The algorithm combines the Lucas-Kanade algorithm which iteratively estimates
incremental motion and the covariance-based filtering technique to retain spatial
smoothness and consistency of the motion field. For every pixel x, the algorithm
computes an estimate of the displacement vector v̂(x) locally. In addition, the
algorithm also estimates its covariance C(v̂(x)) to characterize the uncertainty
in the motion estimation. In homogeneous image areas with lack of textures or
areas with vessel pixels excluded from motion calculation, the motion estimates
tend to be unreliable and their covariance matrices have large eigenvalues.

2.2 Background layer prediction with uncertainty propagation

Given the motion estimation v̂(x) and its covariance C(v̂(x)), the probability
distribution of the motion vector v(x) can be approximated as a Gaussian dis-
tribution with mean v̂(x) and covariance C(v̂(x)).

v(x) ∼ N(v̂(x), C(v̂(x))); E[v(x)] = v̂(x), Cov[v(x)] = C(v̂(x)) (1)

Pixel values in the background layer IB,t(x) are predicted from the mask image.

IB,t(x) = Im(x + v(x)) (2)



In contrast to the method in [7] which only takes into account the mean of
the motion estimates, we incorporate second order statistics and derive the pre-
diction probability density functions (PDFs) of pixel values in the background
layer p(IB,t(x)|Im). In general, the transformation function Im(x + v(x)) is a
nonlinear function of v(x) and techniques such as linearization and unscented
transformation [3] are required to parameterize the means and covariances of the
probability distribution. Due to the computational complexity of the unscented
transformation, we choose to linearize the transformation function as follows.

Im(x + v(x)) ≈ Im(x + v̂(x)) +5T Im(x + v̂(x))[v(x)− v̂(x)]
5Im(x + v̂(x)) = [∂xIm(x + v̂(x)), ∂yIm(x + v̂(x))]T (3)

where 5Im(x + v̂(x)) denotes the gradient vector of the transformed image
Im(x + v̂(x)). The mean and variance of IB,t(x) (2) are approximated as

E[IB,t(x)|Im] = Im(x + v̂)
V ar[IB,t(x)|Im] = 5T Im(x + v̂(x)) · C(v̂(x)) · 5Im(x + v̂(x)) (4)

Through linearization of the transformation function, the uncertainties in motion
estimation are propagated to the prediction of background pixel values. The
prediction PDF is approximated by a Gaussian distribution.

p(IB,t(x)|Im) = N(IB,t(x); E[IB,t(x)|Im], V ar[IB,t(x)|Im]) (5)

2.3 Statistical fusion with multiple mask images

In cardiac interventional procedures, sequences of fluoroscopic images showing
cardiovascular structures in motion are acquired to provide real-time image guid-
ance. Multiple image frames are often captured before a contrast medium flows
into coronary arteries. These pre-contrast frames capture the background layer
from different cardiac and respiratory phases and are used as static mask images.
To deal with large image motion caused by deep breathing, we also include the
estimated background layers from previous contrast frames as dynamic mask
images.

Denote {Im,i(x) : i = 1, · · · , ns} as the static mask images acquired at time
t1, · · · , tns , and {ID,k(x) = IB,t−k(x) : k = 1, · · · , nd} as the dynamic mask
images coming from the estimated background layers of frames t− 1, · · · , t−nd.
Through motion estimation and uncertainty propagation, we obtain multiple
prediction PDFs of the background layer.

p(IB,t(x)|Im,ti) = N(IB,t(x); mt,ti(x), σ2
t,ti

(x)) (i = 0, · · · , ns)
p(IB,t(x)|ID,k) = N(IB,t(x); mt,t−k(x), σ2

t,t−k(x)) (k = 1, · · · , nd)
(6)

where mt,ti(x) = E[IB,t(x)|Im,i], σ2
t,ti

(x) = Cov[IB,t(x)|Im,i], mt,t−k(x) =
E[IB,t(x)|ID,k], σ2

t,t−k(x) = Cov[IB,t(x)|ID,k] are the estimated mean and co-
variance of background pixel values. Fusing multiple estimates of the background



layer, we obtain the linear minimum-mean-square-error (MMSE) estimate as

ÎB,t(x) =

ns∑
i=0

σ−2
t,ti

(x)mt,ti(x) +
nd∑

k=1

σ−2
t,t−k(x)mt,t−k(x)

ns∑
i=0

σ−2
t,ti

(x) +
nd∑

k=1

σ−2
t,t−k(x)

(7)

and the estimation of coronary layer is obtained through subtraction

ÎC,t(x) = It(x)− ÎB,t(x) (8)

With the background layer separated from the coronary layer, it is straightfor-
ward to fade out the background layer or to enhance the coronary layer by layer
composition.

αC ÎC,t + αB ÎB,t (αC ≥ 1, 0 ≤ αB ≤ 1) (9)

To fade out the background layer, we set αC = 1 and decrease αB . To virtually
enhance the contrast, we set αB = 1 and increase αC .

3 Experimental Results

Fluoroscopic sequences of 30 patients acquired during cardiovascular interven-
tion have been used to evaluate the proposed cDSA method. The sequences were
acquired on Angiographic C-arm systems (AXIOM Artis, Siemens Medical So-
lution) from different rotational angles and included cases of patients holding
breath, deep breathing as well as table movements. Since the proposed cDSA
technique was planned at the end of the imaging chain for general use cases,
the test sequences were not selected particularly by disease phenotypes. Never-
theless, they contain cases of stenosis, lesions and stent placement. Each image
frame has either 512×512 pixels or 1024×1024 pixels, and the pixel size is either
0.17mm or 0.28mm. Frames at the beginning of each sequence and before the
contrast medium starts to flush into the coronaries are sampled to define static
mask images used in processing the following frames. The number of mask im-
ages ranges from 3 to 9 frames in each sequence, and they are uniformly sampled
from half to one cardiac cycle. There are between 18 to 150 frames per sequence
showing intra-coronary flow of the contrast medium, and in total there are 1829
such frames used to compute performance metrics. All testing frames are scaled
to 8-bit images with gray values between 0 and 255.

To evaluate the performance of the background layer estimation, we com-
puted the mean squared error (MSE) of the background estimation in each frame,
i.e. the mean squared difference between estimated background pixels and the
actual background pixels of a testing frame It in the background region Ωt of
the frame, MSE = 1

|Ωt|
∑

x∈Ωt

||ÎB,t(x)− It(x)||2. The histogram of the MSE over

1829 testing frames is shown in Fig. 3-1. MSEs of the 50th, 60th, 70th, 80th and
90th percentiles are 11.77, 16.02, 18.07, 21.34 and 24.40 respectively, which corre-
sponds to 3.43, 4.00, 4.25, 4.62 and 4.94 of gray value difference. The mean MSE
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Fig. 3. Performance metrics. (a) Histogram of MSEs over 1829 testing frames. (b) JM
distances measured in the original images, images with faded background layers and
images with enhanced coronary layers. (c) A test frame. (d) Annotated vessel pixels
(in white) and (e) Background pixels (in white) used to compute JM distance.

Table 1. Mean, median and standard deviation (std) of JM distances over original
images, coronary layers, images with faded background layers, images with enhanced
coronary layers.

cDSA mean median std

original (αC = αB = 1) 0.3845 0.4262 0.1366

coronary layer (αC = 1, αB = 0) 0.7170 0.7289 0.2244

faded background (αC = 1, αB = 0.5) 0.5239 0.5604 0.1865

enhanced coronary (αC = 2, αB = 1) 0.5271 0.5706 0.1869

is 13.06 and the standard deviation is 10.00. To evaluate how cDSA improves
the visibility conditions around coronary arteries, we use Jeffries-Matusita (JM)
distance to measure the difference in the gray values between coronary arteries
and surrounding background areas. In each testing sequence, we manually anno-
tated coronary arteries in a contrast-filled frame. The distribution of pixel values
in the areas occupied by coronary vessels (Fig. 3-(d)) was computed as pC . The
distribution of the gray values of background pixels in the areas surrounding
coronary vessels (Fig. 3-(e)) was computed as pB . The JM distance is defined as
JM(pC , pB) = [

∫
z
(
√

pC(z)−
√

pB(z))2]1/2. The JM distance measures how well
the two gray value distributions are separated from each other. It is bounded
between 0 and

√
2. Higher values of the JM distance is related to better visi-

bility conditions around coronary arteries. The JM distances measured on the
original images, the coronary layers, the images with faded background layers
and the images with enhanced coronary layers are plotted in Fig. 3-(b). Their
mean, median and standard deviation are further compared in Table 1.The JM
distances measured on the coronary layers are consistently higher compared to
the JM distances measured on the original images. In 90% of the cases, the JM



distances are improved by both fading out the background layers and enhancing
the coronary layers, suggesting improved visibility conditions achieved by cDSA.
Fig. 4 shows several image results of layer separation, fade-out of background
layers and enhancement of coronary layers. The visibility and perceptibility of
the coronary arteries is considerably improved through enhancing coronary lay-
ers. In particular, thin vessels are made more visible by the cDSA method. We
have also observed that the use of dynamic masks compensates table motion
considerably due to the fact that image motion between adjacent frames is small
even though over time the accumulated image motion can be large.

4 Discussion

We have presented a novel method for coronary digital subtraction angiography
in 2D dynamic fluoroscopic sequences. Through dense motion estimation and
statistical fusion, a Bayesian framework is proposed to estimate the moving layers
of background structures in cardiac fluoroscopic sequences and to obtain the layer
of coronary arteries through subtraction. Using this method to separate coronary
layers from background structures, we are able to fade out the background layer
or virtually enhance the contrast by enhancing the coronary layers to improve
the image quality. Encouraging results have been obtained in terms of visibility
and perceptibility improvement of coronary vessels and thin vessels in particular.
The clinical benefits are expected for cardiac intervention in the context of obese
patients and deep angulation. In addition, the ability of coronary enhancement
also allows for the reduction of the contrast medium used in normal size patients.
Our future study includes the evaluation of cDSA on cases involving diluted
contrast medium.
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Fig. 4. cDSA results. Column 1: original images; column 2: background layer estima-
tion; column3: coronary layer estimation; column 4: images with faded background;
column5: images with enhanced coronary layers. Last row from left to right: original
image and coronary enhanced image with white boxes enclosing thin vessels, zoom in
on patches of thin vessels from original image and coronary enhanced image.


