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Abstract

The segmentation of anatomical structures has been
traditionally formulated as a perceptual grouping task,
and solved through clustering and variational approaches.
However, such strategies require the a priori knowledge
to be explicitly defined in the optimization criterion, e.g.,
“high-gradient border”, “smoothness”, or “similar inten-
sity or texture”. This approach is limited by the validity of
underlying assumptions and cannot capture complex struc-
ture appearance. This paper introducesdatabase-guided
segmentation as a new data-driven paradigm that directly
exploits expert annotation of interest structures in large
medical databases. Segmentation is formulated as a two-
step learning problem. The first step is structure detection
where we learn how to discriminate between the object of
interest and background. The resulting classifier based on
a boosted cascade of simple features also provides a global
rigid transformation of the structure. The second step is
shape inference where we use a sample-based representa-
tion of the joint distribution of appearance and shape an-
notations. To learn the association between the complex
appearance and shape we propose a feature selection mech-
anism and the corresponding metric. We show that the se-
lected features are better than using directly the appearance
and illustrate the performance of the proposed method on a
large set of ultrasound heart images.

1. Introduction

Accurate localization of complex structures is important
in many computer vision applications ranging from facial
feature detection [5, 7] to segmentation of anatomical struc-
tures in medical images [3, 13, 19, 21]. Availability of large
databases with expert annotation of the interest structures
makes a learning approach more attractive than classical ap-
proaches of solving perceptual grouping tasks [17] through

clustering or variational formulations [12, 14]. This is es-
pecially important when the underlying image structures do
not have clear border definition, show complex appearance
with large amounts of noise, or when there is a relatively
large variation between expert’s own annotations.

The difficulty of the segmentation task is illustrated by
the images in Figure 1. They represent ultrasound images
of the heart and the goal is to delineate the left ventricle
border (endocardium) [3, 13, 23]. Automated segmentation
of echocardiographic images has proved to be challenging
due to large amount of noise, signal drop-out and also due to
large variations between the appearance, configuration and
shape of the left ventricle.

Segmentation is one of the most important low-level
image processing methods and has been traditionally ap-
proached as a grouping task based on some homogeneity as-
sumption. For example clustering methods have been used
to group regions based on color similarity [4] or graph par-
titioning methods have been used to infer global regions
with coherent brightness, color and texture [18]. Alterna-
tively the segmentation problem can be cast in an optimiza-
tion framework as the minimization of some energy func-
tion. Concepts such as “high-gradient border”, “smooth-
ness”, or “similar intensity or texture” are encoded as region
or boundary functionals in the energy function and mini-
mized through variational approaches [12, 14].

However as the complexity of the targeted segmentation
increases, it is more difficult to encode prior-knowledge into
the grouping task. Learning has become more important for
segmentation and there are methods that infer rules for the
grouping process conditioned by the user input [2, 17].

On a different approach, active appearance models [6]
use registration to infer the shape associated with the cur-
rent image. However, modeling assumes a Gaussian distri-
bution of the joint shape-texture space and requires initial-
ization close to the final solution. Alternatively, characteris-
tic points can be detected in the input image [7] by learning
a classifier through boosting [8, 20].



Figure 1. Samples of ultrasound heart images. Note the large vari-
ation in appearance and shape.

We propose a method to directly exploit expert annota-
tion of the interest structure in large databases by formulat-
ing the segmentation as a two-step learning problem. The
first step is to learn a discriminative function between the
appearance of the object of interest and the background.
The second step is to learn the discriminative features that
best associates the shapes to different appearances of the
object, and infer the most likely shape. The advantages are
that complex prior knowledge is implicitly encoded and the
resulting procedure is able to process the input images un-
der real-time constraints.

The paper is structured as follows. Section 2 gives an
overview of our approach and Section 3 presents the first
learning step for structure detection. We also propose a
principled solution for handling invalid image regions. Sec-
tion 4 presents our shape inference procedure and the as-
sociated feature selection. Experimental results on a large
number of ultrasound heart images are illustrated in Section
5 and we conclude in Section 6.

2. Database-Guided Segmentation

We use the termdatabase-guided segmentationto un-
derline the process of implicitly encoding the prior knowl-
edge embedded in expert annotated databases. We decom-
pose this process into two learning tasks. The first isstruc-
ture detectionwhere we learn to discriminate between the
appearance of the interest object and the background. The
second isshape inferencewhere we learn to discriminate
between appearances corresponding to different shapes and
derive the most likely shape given an object appearance.

Both tasks use the same pool of a large set of simple fea-
tures for appearance representation. For structure detection
we select the features to solve a two-class problem using
a boosted cascade of weak-classifiers. As a result we find
the global rigid transformation for the possible locationsof
the interest object. For shape inference we propose a fea-
ture selection procedure to encode the joint distribution of
appearance and shape. The local nonrigid shape deforma-
tion and the final segmentation is derived through a nearest-
neighbor approach by using a sample based representation
of the joint distribution.

3. Structure Detection

Some of the most successful real-time object detection
methods are based on boosted cascade of simple features
[1, 15, 20]. By combining the response of a selected num-
ber of simple classifiers through boosting [8], the resulting
strong classifier is able to achieve high detection rates and
is capable to process images in real-time. The advantage
of boosting as oppose to traditional Gaussian appearance
models is that it can deal with complex distributions such
as multi-modal distributions, which is the case for our ap-
plication. Boosting is also much faster than other non-linear
alternatives such as kernel support vector machines [11].

The simple features used in our method are rectangle fea-
tures similar to Haar basis functions [16] and we use Ad-
aBoost to learn a two-class classifier able to distinguish be-
tween the set of positive appearance examples (containing
the object) and the set of negative examples. For complete
technical details of this boosting approach to detection we
refer the reader to [20].

Here we address two of the problems that directly affects
the stability of the object appearance representation. First
we propose a weighted structure alignment to increase the
influence of stable landmark points. Second we introduce a
solution to eliminate the influence of invalid image regions
in feature computation.

3.1. Weighted Structure Alignment

As a data preprocessing step the location parameters as-
sociated with the detection have to be eliminated from the
object appearance training set. To generate the set of posi-
tive examples we first eliminate the variations due to global
rigid transformations through Procrustes alignment [5, 9].
Hence, the object appearance is normalized with respect to
translation, rotation and scale.

An important issue that has been largely overlooked by
the existing work on Procrustes shape alignment is the vary-
ing stability (or detectability) of the landmark points. In-
tuitively, points that are more stable or more detectable
should receive a higher weight during the least-square align-
ment process. Some work has addressed this issue “sub-



Figure 2. Shape normalized images used for training.

consciously”. For example, for face detection, some align
training faces by eye corners only, instead of aligning all fa-
cial features including points from mouth and nose, which
are much less stable. We argue that the optimal solution
should be a weighted Procrustes alignment process, with
the weights reflecting feature stability.

In this work, we quantify the stability of control points
based on their “detectability” using local detectors that learn
from the neighboring appearance of each control point. In
our case, of left ventricle detection in echocardiography,lo-
cal detectors perform much better near the basal region of
the heart than those near the apical or lateral wall regions.
This is in agreement with the nature of ultrasound images:
in apical views the reflection from the basal region is much
stronger and more stable than the reflection from the apical
or lateral wall, where signal dropout is most likely to hap-
pen. Nevertheless, how tooptimally select the weights re-
mains an open question: one can envision an optimization
formulation incorporating also the down-stream detection
algorithm. This is among our future research efforts.

With a weight matrixW, the minimized criterion for
aligning shapes is given by the Mahalanobis distance:

JGPA = ||siRici + ti − c̄||W (1)

where ci represents theith shape control points and
si,Ri, ti represents scale, rotation and translation;c̄ is the
mean shape. This is solved iteratively through weighted
least squares.

Figure 2 illustrate some of the aligned positive appear-
ance examples used for training. Compared with Figure 1
the global rigid shape transformations are canceled out and
the object appearance started to have some “order” as all
instances share the same mean shape. The negative set is
generated randomly from the same images by varying the
parameters of the global transformations.

3.2. Feature Computation for Invalid Image Re-
gions

The simple features used for the weak classifiers are rect-
angle features which are similar to Haar basis functions [16]

(a) (b)

Figure 3. (a) Occluded rectangle feature; (b) Invalid mask

and have been proved to provide a rich image representation
for object detection [15, 20].

However the existing methods do not address the detec-
tion problem under the presence of invalid image regions
(occlusions). The erroneous response of a simple (weak)
classifier will influence negatively the detection outcome.
We propose a method to eliminate the influence of known
invalid regions in the object detection process. Our ap-
proach has minimal added computation and correctly es-
timate the simple classifiers response using only the valid
image information.

Rectangle features provide an over complete basis, for
example for a base region size of 24x24 pixels the num-
ber of features is 180,000 [20]. One of the advantages of
rectangle features is computational speed. By using an in-
termediate representation known as the “integral image”, a
feature value can be calculated through a fixed number of
operations (for example a two-rectangle feature requires six
array references). The integral image contains at each loca-
tion the sum of intensities of the pixels above and to the left
and it can be computed in one pass over the input image.

It is clear that an invalid intensity value for a pixel will
yield an incorrect estimate for the feature using that pixel
(Figure 3a). If the valid image mask is available we can
use it to eliminate the contribution of the invalid pixels to
the feature value. The mask is available when images are
taken in controlled environments or it can be inferred from
the data (for example in surveillance applications the static
background is known, in ultrasound images the fan location
can be computed or analysis of time variations can yield
the static regions). If we set to zero the intensity for the
invalid pixels, the rectangle sum will no longer be influ-
enced by incorrect values. However due to the missing data
the sum will be “unbalanced”. If there are no missing val-
ues, the rectangle sum is proportional to the mean intensity
value, therefore we can approximate the mean value if we
know the number of valid intensities (when occlusions are
present). The number of valid pixels can be easily found
by first computing an equivalent map: the “integral mask”.
Given the valid pixels maskM with boolean values (1 for
valid pixel, 0 for invalid or occluded) then the integral mask
IM contains the number of valid pixels above and to the



left of the current location(x0, y0)

IM(x0, y0) =
∑

x≤x0,y≤y0

M(x, y) . (2)

Similarly to the integral image the number of valid pixels in
a rectangle can be computed from the integral mask in the
same number of operations.

The equivalent feature value will be given by a weighted
difference between the sum of the intensitiesI in the “posi-
tive” and “negative” image regions. If we denote byR+ the
region where the pixels intensities contribute with a positive
value and byR− with a negative value, the feature valuef
is

f =
n−

N

∑

(x,y)∈R+

I(x, y) −
n+

N

∑

(x,y)∈R
−

I(x, y) , (3)

wheren−, n+ denote the number of valid pixels for neg-
ative and positive regions respectively, each containingN
pixels (note that a similar formulation exist for regions
containing a different number of pixels). It can be easily
checked that when all pixels are valid, the feature value is
equal to the original and the value goes to 0 if one of the
region becomes more occluded.

Compared to the original algorithm, the proposed
method requires the additional computation of the integral
mask and two more multiplications/feature. However, the
operations do not modify the complexity of the algorithm
and no singularities appear in feature value computation.
The advantage is that by using only the valid information,
the strong classifier is not influenced by incorrect data, thus
increasing the detection performance.

4. Shape Inference

The result of the first classification task is a set of possi-
ble locations of the structure of interest and the likelihood
of a particular appearance instance is measured by the de-
tection score. We also can say that so far, the associated
shape is the mean shape used in alignment, deformed by
the corresponding rigid global transformation.

The problem that we try to solve now is: given an ap-
pearance of the interest structure, what is the most likely
associated shape? For this task we propose to directly use
the expert’s structure annotations by maintaining a sample
based representation of the joint distribution of appearance
and shape. We do not use a mixture of Gaussian approach
due to the large variations in the joint space of appearance
and shape.

To infer the shape we use a nearest-neighbor approach
by finding the closest prototypes in the database. To mea-
sure similarity we can use the distance between the image
intensities directly or we can even use the features selected

C+ C-
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Figure 4. Feature importance:f0 better for classification,f1 better
for within-class variance.

for the detection classifier and infer the shape through the
nearest-neighbor method. The similarity distance is equiva-
lent to the probability of observing that appearance instance
given the training set, and therefore is combined with the
detection score to yield the most likely segmentation.

However because the detection classifier was trained to
distinguish between the positive and the negative examples,
the selected features for detection are the best to maximize
the classes separability and they do not necessarily express
the “within class” variability. This is illustrated in Figure
4 where featuref1 represents better the variability of the
positive class thanf0 which is better for detection.

We propose a simple feature selection procedure from
the same feature pool used in the detection stage, to better
capture the within-class variability. The approach can be
actually seen as a boosting approach for improving nearest-
neighbor classification.

4.1. Forward Sequential Feature Selection

The problem is to select the features that best asso-
ciate the respective appearance with the corresponding
shape. Note that the number of initial features can be quite
large (∼200.000) and also the number of samples is large
(∼5000), therefore the selection procedure has to be simple
and the evaluation criterion fast to compute.

At run-time we are given the features and we have to
infer the associated shape from the joint distribution(f , c)
where we denote byf the appearance feature vector and
c the corresponding shape. The feature selection criteria
in this case is the one thatminimizes the distance between
the inferred shape and the real shape. In other words the
distance between shapes

d(cq, cr) = (cq − cr)
⊤(cq − cr) (4)

is emulated through the distance between the feature vec-
tors:

d(fq, fr) = (fq − fr)
⊤Σ(fq − fr) (5)



Figure 5. Three of the modes for the A4C set (top) and for the A2C
set (bottom) relative to the mean shape.

where(fq, cq), (fr, cr) represent the vector of the query and
respectively the reference, andΣ is the linear metric associ-
ated with the feature vector space.

We propose a simple selection procedure based on for-
ward sequential feature selection with the criteria based on
class separability. We want to emulate in the feature space
as close as possible the distance in the shape space. Thus,
we cluster the data in the shape space in an representative
number of shape clustersK. Because our criterion to be
minimized is the euclidean distance between shapes, we can
use a simple K-means algorithm for clustering, which as-
sumes an isotropic Gaussian distribution in the shape space.
This will partition the original feature vectors inK classes.
The number of clusters is not critical because is only used
to impose the shape space metric to the feature space. Fig-
ure 5 illustrates some of the shape modes obtained through
clustering relative to the mean shape for two datasets (A4C
and A2C) that we used for training.

The problem now is to find the best subset of the original
feature set that best separate the detected classes. To mea-
sure class separability we use the well known criteria based
on the between class and within class variance

Jsel = trace
(

S−1
w Sb

)

(6)

whereSw is the within class variance andSb is the between
class variance.

Ideally we would like to compute this matrices nonpara-
metrically because the points belonging to one cluster might
not be grouped in the feature space, but the class still is sep-
arable from the others (multiple modes).

However because of the large number of features and a
potential large number of training samples, the nonparamet-
ric computation is not feasible. Thus, under a normal distri-
bution assumption, we compute the matrices as:

Sb =
K

∑

k=1

πk(f̄k − f̄)(f̄k − f̄)⊤ (7)

and

Sw =

K
∑

k=1

πkΣk (8)

whereπk, f̄k,Σk are the probability, mean and covariance
of classk andf̄ the global feature mean.

The standard forward sequential feature selection ap-
proach is used to determine the relevant features. The pro-
cedure starts with an empty set. At each step each feature
is tested and the one yielding the largest increase in the cri-
terion function (6) is added to the current set. The selection
is stopped when no significant change in the criterion oc-
curs. Note that in our case it would be impossible to use
backward feature selection which would be more effective
in discovering combination of features. This is because both
the number of features and the number of samples is very
large (∼200.000 features and∼5000 samples correspond-
ing to a size of∼ 1010 for the variance matrices) .

The shape of the discriminating metric matrixΣ will be
given [10, pp. 429] by the within and between-class covari-
ance matrices as

Σ = S−1/2
w

(

S−1/2
w SbS

−1/2
w + ǫI

)

S−1/2
w

= S−1/2
w (S∗

b + ǫI) S−1/2
w (9)

which spheres the space with respect toSw and then it
stretches the space in the null-space ofS∗

b . The parameterǫ
rounds the neighborhood.

4.2. Nonrigid Shape Inference

Segmentation starts with an input image sequence on
which the appearance candidates (detections) are deter-
mined through a hierarchical search in the discretized rigid
transformation parameter space (translation, scale, rotation
and image frame). The search is refined for parameters cor-
responding to positive responses with a large error margin
of the detection classifier. We maintain multiple hypothesis
for the appearance candidates for which we infer the shape.
The shapêc is computed through a kernel smoother given
by the Nadaraya-Watson kernel-weighted average [10, pp.
166]

ĉ(f) =

∑N
i=1 Kk(f , fi)ci

∑N
i=1 Kk(f , fi)

(10)

where (fi, ci) is the ith sample of theN prototypes and
f the query feature vector. For the kernelKk we use the
Epanechnikov quadratic kernel

Kk(f , fi) =







3/4

[

1 − d(f ,fi)

d(f ,f[k])

]

if d(f ,fi)

d(f ,f[k])
≤ 1

0 otherwise
(11)
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Figure 6. Point error between the predicted shape and real shape
by using the mean shape, image intensity and selected features
relative to the minimum error for the A4C set (top) and the A2C
set (bottom).

where the distance is given by (5) andf[k] is thekth proto-
type closest to the query.

The effect of using a kernel smoother is that it decreases
the estimate variance, which is high for nearest-neighbor
approach, at the expense of a higher bias. The final selected
candidate is the one with a minimum detection score and
small neighbor distance.

5. Experimental Results

The performance of the proposed method was tested on
two annotated sets of ultrasound heart image sequences.
The A4C set contains apical 4 chamber views of the heart
(206 videos) and the A2C set has apical 2 chamber views of
the heart (136 videos). The database has 5007 samples for
the A4C set and 3330 samples for the A2C set. We char-
acterize the associated shapes by a number of 17 control
points.

The first experiment shows the effectiveness of the se-
lected features relative to using directly the image appear-
ance, or using the features selected by boosting for de-
tection. For this experiment we consider only the joint
appearance-shape distribution, that is, the images are rigidly
aligned. In Figure 6 we plot the distance between the in-
ferred shape and the true shape by leave-one-out method.
Note that we exclude from the setall the images that be-
long to the same video and no two videos are from the same
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Figure 7. Median error for each control point (a) and for each case
(b) for the A4C set (top) and for the A2C set (bottom) relative to
the expert shape by using the between-class features and within
class features.

patient. To visualize the errors, they are sorted for each
curve, thus vertically they do not correspond to the same
image. The top two curves in each graph represent the error
between the true contour and the mean shape and the true
contour and the one inferred using the normalized appear-
ance. Thus, using the appearance is the same on average
than using the mean, this is true also by using the detection
features. The middle curve is the error by using the selected
features and for reference the bottom curve is the nearest
neighbor available in the shape space.

In the second experiment we test the error of the entire
segmentation procedure. After detection and shape infer-
ence, Figure 7a shows the median error for each of the 17
control points computed using the features used for detec-
tion (top curve, between-class features) and the selected fea-
tures (bottom curve, within-class features). Figure 7b illus-
trates the sorted global contour error for each case for all
frames, where again lower error is obtained by using the
within-class features than using the between-class features.

Figure 8 compares the completely automatic segmenta-
tion result (Figure 8b) to a contour drawn by an expert (Fig-
ure 8c). The difficulties of the problem are illustrated in
(Figure 8a) where the input images are affected by speckle
noise, there is not a clear border definition, there is signal
dropout and imaging artifacts.

Additional segmentation results are shown in Figure 9 on
a variety of new input images. Without occlusion handling
for feature computation it is difficult to detect shapes close
to the ultrasound fan (Figure 9, top right image). Note also
the large variations in appearance of the interest structure.



(a) (b) (c)

Figure 8. Left ventricle endocardial border detection on an image fromthe A4C set (top) and A2C set (bottom). (a) input image; (b)
automatic shape; (c) expert drawn contour.

Figure 9. Left ventricle endocardial border detection.



6. Summary and Discussion

We have introduceddatabase-guided segmentationas
a new paradigm that directly exploits expert annotation of
interest structures in large medical databases by formulating
it as a two-step learning problem. The proposed method
does not explicitly encode the a-priori knowledge and works
under real-time constraints (under 1sec.).

We shown the performance of the method on a variety
of ultrasound heart images. As illustrated in the examples,
the images are corrupted with large amounts of noise, have
signal drop-out in some regions and the correct segmenta-
tion regions does not correspond always to a strong edge.
For example the contour should cut the right wall (papil-
lary muscle) in images such as one in Figure 8(top row).
In this cases it is difficult to formulate explicit local con-
straints and traditional segmentation might fail. To solve
the segmentation problem for an entire video sequence (in
2D+Time), the detection and shape inference steps are in-
tegrated with our existing robust shape tracking algorithm
[22] in a maximum-likelihood framework. Please see the
accompanying videos for the performance of our algorithm
for several sequences.

Our approach is general and can be used on a variety of
segmentation problems. The requirement is that the range
of nonrigid deformations in shape and the associated ap-
pearance to be possible to be captured through boosted
learning using a large set of simple features. In the case
of large deformations or articulated structure the task can
be divided into several manageable subproblems where the
appearance variations can be learned. We are currently in-
vestigating more complex learning methods for appearance-
shape association such as for example using a regression
setting. The difficulty is the very large dimensionality of
the space in which we have to solve both the feature selec-
tion and the data fitting problems.
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