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Abstract. Automated segmentation of the esophagus in CT images is
of high value to radiologists for oncological examinations of the medi-
astinum. It can serve as a guideline and prevent confusion with patho-
logical tissue. However, segmentation is a challenging problem due to low
contrast and versatile appearance of the esophagus. In this paper, a two
step method is proposed which first finds the approximate shape using a
“detect and connect” approach. A classifier is trained to find short seg-
ments of the esophagus which are approximated by an elliptical model.
Recently developed techniques in discriminative learning and pruning of
the search space enable a rapid detection of possible esophagus segments.
Prior shape knowledge of the complete esophagus is modeled using a
Markov chain framework, which allows efficient inferrence of the approx-
imate shape from the detected candidate segments. In a refinement step,
the surface of the detected shape is non-rigidly deformed to better fit the
organ boundaries. In contrast to previously proposed methods, no user
interaction is required. It was evaluated on 117 datasets and achieves a
mean segmentation error of 2.28mm with less than 9s computation time.

1 Introduction

The mediastinal region is of particular interest to radiologists for oncological
examinations [1]. For diagnosis and therapy monitoring, CT scans of the thorax
are common practice. Lymphoma, which is the second most common tumor in
the mediastinum, often affects regions close to the trachea and the esophagus as
these are natural gateways of the human body. While the trachea is very easy
to see in CT, the esophagus is sometimes hard to find in single slices. Especially
in coronal view, even experts have difficulties to see the boundaries, which is
one reason why interpretation of the images is tedious. Fast and automatic seg-
mentation of the esophagus can shorten the time a radiologist needs to read an
image.

Automated segmentation of the esophagus is challenging because of its com-
plex shape and its inhomogeneous appearance. As its wall consists of muscle



tissue, there is only little contrast if it is empty. Sometimes it is filled with air
bubbles, remains of oral contrast agent or both. Up to now, there are few publi-
cations on esophagus segmentation, and all of them require a significant amount
of user input. In [2], a probabilistic spatial and appearance model is used to ex-
tract the centerline. In a second step, the outer wall is approximated by fitting
an ellipse into each slice using a region-based criterion. However, the method
requires as input two points on the esophagus and furthermore a segmentation
of the left atrium and the aorta. In [3], a semi-automated method is proposed
that takes one contour in an axial slice as user input and propagates the contour
to other slices by registration using optical flow. The quality of the segmentation
was not evaluated quantitatively. Another semi-automated method is described
in [4]. The user draws several contours in axial slices. The segmentation is ob-
tained by interpolating the contours in the frequency domain. The image itself
is not used.

In this work, a method is proposed that first detects the approximate shape.
This is carried out in three sub steps, which are visualized in Figure 1 (a-c). In
step (a), for each slice a detector that was trained from annotated data is run to
detect weighted candidate esophagus segments, which are modeled as ellipses.
An ellipse in visualized by its bounding box. These candidates are clustered to
find modes in the distribution (b). Candidates of a cluster are merged into a
weighted cluster center. A Markov chain model is then used to find the most
likely path through the cluster centers. Prior shape knowledge is incorporated
into the Markov chain by learning the transition probability distribution from a
slice to the next from annotated data. In the final step (d), a surface is generated
from the detected sequence of ellipses. A detector is trained offline to learn
the boundary of the esophagus. The surface is deformed along its normals and
smoothed to adapt the mesh to the organ boundary.

Fig. 1. Overview of the proposed method.



2 Esophagus segmentation

2.1 Ellipse detection

To approximate the contour of the esophagus, an elliptical model was chosen as
it can be described by a relatively low dimensional parameter vector e

e = (x, y, θ, a, b) (1)

where x and y are the coordinates of the center within an axial slice, θ is the
rotation angle and a and b are the semi-major and the semi-minor axis, respec-
tively.

Recently developed techniques in discriminative learning [5] and search space
pruning based on learning in marginal spaces [6] enable a rapid detection of can-
didate model instances. A probabilistic boosting tree (PBT) classifier was trained
with a large number of positive and negative examples to learn the target distri-
bution p(m = 1|e,v) which describes the probability that e is a correct model
instance in the currently observed image v. In order to accelerate search, a de-
tector was also trained on the subspaces (x, y) and (x, y, θ) of the full parameter
space e to learn the distributions p(m = 1|(x, y)) and p(m = 1|(x, y, θ)). This
allows to reject wrong model instances at an early stage. As feature pool, a com-
bination of 3D Haar-like and steerable features were used [6]. Haar-like features
are computed by convolving the image with box filter kernels of different size,
position and weight. They gain their power from speed as they can be computed
in constant time even for large kernels using an integral image. They are called
Haar-like because of their similarity to the Haar wavelets. Steerable features are
simple point features like intensity and gradient and nonlinear combinations of
those evaluated at a certain sampling pattern, which is a regular grid of size
7 × 7 × 3 in this case. The final output are the N best model instances e(i),
i = 1 . . . N together with a score ς(i) = p(m = 1|e(i),v) for each one.

In order to reduce subsequent search effort and to detect modes in the distri-
bution of the candidates, they are clustered using an agglomerative hierarchical
average-linkage clustering algorithm until a distance threshold dmax is reached,
which was set to 10mm in the experiments. The distribution is now represented
by the cluster centers c(1) . . . c(K) with weights σ(1) . . . σ(K), where the weight
σ(k) of cluster center k is the sum of weights of all members.

2.2 Inferring the path

So far, the axial slices of the volume image were treated separately. Shape knowl-
edge is incorporated into a Markov chain model [7] of the esophagus, which is
used to infer the most likely path through the axial slices. A graph of the Markov
model used is depicted in Figure 2 (left). The variables s1 . . . sT correspond to
the axial slices of the image. Possible states of a variable st are the ellipses cor-
responding to the cluster centers c(k)

t , k = 1 . . .Kt of slice t. Each state variable
st is conditioned on the observed image slice vt. In Figure 2 (right), the factor



graph [8] of the Markov model is shown. The clique potentials (or factors) of the
observation cliques are denoted with Φt. They are set to the score of the cluster
centers:

Φt(c
(k)
t ,vt) = σ

(k)
t . (2)

The clique potentials Ψt between adjacent state variables st, st+1 represent the
prior shape knowledge. They are set to the transition distribution from one slice
to another:

Ψt(st, st+1) = p(st+1|st). (3)

Fig. 2. Markov chain model of the esophagus along with corresponding factor graph.

To simplify the transition distribution, it was assumed that the transition
of the translation parameters x, y is statistically independent from the other
parameters. The same was assumed for the scale parameters. As the rotation
parameter θ is not well defined for approximately circular ellipses, the transition
of rotation also depends on the scale parameters, but independence was assumed
for rotation and translation parameters. With these assumptions, the transition
distribution can be factorized and becomes

p(st+1|st) = p(xt+1, yt+1|xt, yt)p(θt+1|θt, at, bt)p(at+1, bt+1|at, bt). (4)

The translation transition p(xt+1, yt+1|xt, yt) is modeled as a 2D normal distri-
bution N (∆x,∆y|Σp,mp) and the scale transition p(at+1, bt+1|at, bt) as a 4D
normal distribution N (at+1, bt+1, at, bt|Σs,ms). The variance of the rotation
transition highly increases with the circularity of the ellipse as θ becomes ar-
bitrary for a circle. Therefore, p(θt+1|θt, at, bt) is modeled with ten 1D normal
distributions, one for a certain interval of circularity, which is measured by the
ratio b

a :
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))
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The parameters of all normal distributions were estimated from manually anno-
tated data.

The a posterior joint distribution of all states p(s1:T |v1:T ) is then given by
the product of all factors of the factor graph. The maximum a posteriori (MAP)



estimate

ŝ
(MAP)
1:T = argmax

s1:T

(
Φ1(s1,v1)

T∏
t=2

Φt(st,vt)Ψt−1(st−1, st)

)
(6)

can be computed efficiently using the max-sum algorithm, which is a variant of
the sum-product algorithm [8].

2.3 Surface generation and refinement

After the MAP estimate of the path has been detected, the sequence of ellipses
is converted into a triangular mesh representation by sampling the ellipses and
connecting neighboring point sets with a triangle strip.

The cross-section of the esophagus is generally not an ellipse, and the path
obtained in section 2.2 often contains some inaccuracies. Therefore, the mesh
model is further refined to better fit the surface of the organ.

A PBT classifier was trained to learn the boundary of the esophagus. The
classifier uses steerable features as proposed in [6]. As for ellipse detection, the
steerable features are sampled on a regular grid, but now with a size of 5 ×
5 × 9. For each mesh vertex, the sampling pattern is placed so that the vertex
is in the center of the pattern and the longest axis points in direction of the
mesh normal. Now the pattern is moved along the normal to find the maximal
detector response and the new position of the vertex. Finally, the surface is
passed through a Laplacian smoothing filter. This process of deformation and
smoothing is repeated for a certain number of iterations.

3 Results

The proposed method was evaluated on 117 CT scans of the thorax using three-
fold cross-validation. Manual segmentation was available for each dataset. The
spatial resolution of the datasets was typically 0.72× 0.72× 5mm3. Among the
scans, 34 were taken from patients suffering from lymphoma, which often causes
enlarged lymph nodes in the mediastinal region. In some datasets, the esopha-
gus contained remains of orally given contrast agent. For evaluation, the datasets
were cropped around the region of interest.

Accuracy : The accuracy of the segmentation was evaluated by comparing the
result with the annotated ground truth. Mean mesh-to-mesh distance and Haus-
dorff distance (maximal mesh-to-mesh distance) were used as error measures.
Results are shown in Table 1. First, results are compared after the path infer-
rence step with surface refinement turned off (rows one to six). Accuracy was
measured for N = 100 and N = 200 model instance candidates e(i), i = 1 . . . N .
Additionally to a Markov model with a Markov order of one (M = 1), mea-
surements for M = 0 and M = 2 are also included. As a 2nd order Markov
chain over some alphabet is equivalent to a first order chain over the alphabet
of 2-tuples, the model of Figure 2 was used also for the 2nd order case, but with
a state space that consists of 2-tuples and with adapted transition probabilities.



While there is a noticeable improvement with N = 200 compared to N = 100,
the Markov order has very little influence on the numerical results. However, the
results generated with the Markov model turned on (M = 1 and M = 2) are
visually more appealing because they are smooth and look more anatomically
reasonable. As M = 1 and M = 2 produce very similar results, M = 1 is
proposed as it does not introduce unnecessary complexity. The boundary refine-
ment step significantly improves the segmentation error (rows seven and eight
of Table 1). With N = 200 and M = 1, the proposed method gives a mean
segmentation error of 2.28mm with a standard deviation of 1.58mm and a mean
Hausdorff distance of 14.5mm. For comparison, the path of the esophagus was
also detected using a particle filter approach [9] (last row of Table 1). Particle
filtering is commonly used for tracking applications and is also becoming popular
to detect tubular structures [10, 11]. The Markov chain approach gives consider-
ably better results because the image is searched exhaustively and thus it is far
less prone to tracking loss.

Method mean error Hausdorff distance

M = 0, no refinement, N = 100 2.81± 1.19 15.5
M = 1, no refinement, N = 100 2.85± 1.31 15.6
M = 2, no refinement, N = 100 2.86± 1.30 15.8

M = 0, no refinement, N = 200 2.78± 1.12 15.2
M = 1, no refinement, N = 200 2.80± 1.30 15.1
M = 2, no refinement, N = 200 2.80± 1.26 15.0

M = 1, refinement, N = 100 2.35± 1.61 15.2
M = 1, refinement, N = 200 2.28± 1.58 14.5

Particle filtering, refinement, 1000 particles 4.84± 5.01 22.67
Table 1. Accuracy of the registration in mm.

Performance: Computation time was measured for the different steps of the
algorithm. The results are summarized in Table 2. Time was measured on a
2.2GHz Intel Core2 Duo processor with 2GB of RAM on a volume of size 79×
96 × 50 voxels. Most of the time is spent on the model detection step, because
here the volume is exhaustively searched. Computation time of this step increases
linearly with the number N of candidates. In total, segmenting the esophagus
takes 3.94s for N = 100 and 8.26s for N = 200.

Method Model detection path inferrence surface refinement total

N = 100 3.67 0.0073 0.26 3.94
N = 200 7.99 0.0069 0.26 8.26

Table 2. The computation time in seconds is shown for the different steps of the
algorithm with M = 1. N denotes the number of model candidates.

Figure 3 (a-b) shows the segmentation error as a function of the number
N of candidates and the number of surface refinement iterations. A value of
N = 200 is a good trade-off between accuracy and speed, and two refinement
iterations are a reasonable choice. Examples of segmentation results are displayed
in Figure 3 (c-e).
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Fig. 3. (a-b): Segmentation error as a function of the number N of model candidates
and the number of surface refinement iterations. (c-e): Examples of segmentation re-
sults. The boxes are bounding boxes of ellipses and visualize the inferred approximate
shape. The final result after mesh generation and boundary deformation if shown in
blue. In (e), the green semitransparent surface is the ground truth segmentation.



4 Discussion

The contribution of this work is twofold. First, the well known MAP framework
for Markov chains is combined with the powerful detector based on the PBT clas-
sifier with Haar-like and steerable features [6]. Second, the method is extended
with a boundary detector and applied to the problem of automatic esophagus
segmentation, which is challenging due to the versatile shape and appearance of
the organ.

With a mean segmentation error of 2.28mm, the proposed method has a
good accuracy. Exhaustive search combined with a Markov model can well han-
dle regions with clutter and low contrast. Compared to particle filtering based
techniques, it is far less prone to tracking loss. Furthermore the method is fully
automatic and very fast with a computation time of 8.3s. It can be easily adapted
to other tubular structures like the spinal canal or larger vessels.

In the future we will consider to integrate more prior knowledge into the
boundary refinement process. A local model seems most appropriate because
otherwise cases where the esophagus is only partially visible cannot be easily
handled any more.
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