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Abstract

3D ultrasound imaging has been increasingly used in
clinics for fetal examination. However, manually searching
for the optimal view of the fetal face in 3D ultrasound vol-
umes is cumbersome and time-consuming even for expert
physicians and sonographers. In this paper we propose a
learning-based approach which combines both 3D and 2D
information for automatic and fast fetal face detection from
3D ultrasound volumes. Our approach applies a new tech-
nique – constrained marginal space learning – for 3D face
mesh detection, and combines a boosting-based 2D profile
detection to refine 3D face pose. To enhance the render-
ing of the fetal face, an automatic carving algorithm is pro-
posed to remove all obstructions in front of the face based
on the detected face mesh. Experiments are performed on
a challenging 3D ultrasound data set containing 1010 fetal
volumes. The results show that our system not only achieves
excellent detection accuracy but also runs very fast – it can
detect the fetal face from the 3D data in 1 second on a dual-
core 2.0 GHz computer.

1. Introduction

Nowadays, ultrasound has been an important medical
imaging modality for visualizing and diagnosing internal
organs and fetus’s. Compared to other modalities such as
magnetic resonance imaging (MRI) and computed tomog-
raphy (CT), ultrasound technology is safe, inexpensive and
portable. The 3D ultrasound imaging is an extension of the
standard 2D ultrasound imaging. The reflected echoes are
processed by computer programs to reconstruct 3D volu-
metric images of the internal organs or fetus. Although 3D
ultrasound is increasingly used in clinics for fetal examina-
tion, it is not easy to rapidly and precisely navigate to the
fetal face surface in order to render an optimal face view.
Even for trained sophisticated doctors, manually locating a
fetal face in 3D/4D ultrasound data is challenging and te-
dious. In general, it takes about 8 to 10 minutes to navigate

Figure 1. Examples of 3D views of fetal faces from our ultrasound
volumes. Note the complex background and large variation in ap-
pearance.

to a pleasant view of the fetal face for an expert sonogra-
pher.

In this paper, we propose a learning based approach
which combines both 2D and 3D information for automatic
fetal face detection in 3D ultrasound volumes. Aided by
automatic detection, the long learning curve needed for 3D
scanning can be reduced as the system automatically locates
the acquisition plane to obtain an optimal view. In addition,
based on the automatic detection results, one can omit any-
thing in front the face to achieve better views. Quantitative
measurements and analysis are also possible after the 3D
automatic detection. However, automatic fetal face detec-
tion from 3D ultrasound data is a very challenging prob-
lem. The variation of the ultrasound fetus data is very large.
The appearances of fetal faces at different pregnant stages
vary a lot, even for the same fetus. The positions and poses
of the fetuses in the scanned ultrasound data are also very
different. The ultrasound volumes may have low image
qualities, imaging artifacts like small particles, and blur or
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Figure 2. Examples of the initial position of a loaded volume.

dark parts because of weak signals. Cord, placenta, uterus,
and extremities can occlude the fetal face; Manual scanning
may result in incomplete faces with the forehead or cheek
missing from the volume. Besides these challenges arising
from data acquisition, it is also very hard to acquire precise
ground truth of the fetal faces for our supervised learning
approach. For example, the peripheral outline of the face
is hard to determine when annotating the data because of
occlusions, missing face parts or the quality of multi-planar
reformatting (MPR) planes, which introduces uncertainty.

Figure 1 shows some examples of the fetal face 3D views
randomly selected from our data set, from which we can see
the complex background, noise and blurs in the ultrasound
volumes. Note that all these 3D views are rendered at the
optimal position through manual navigation in the 3D vol-
umes. The original loading positions of these volumes were
not acquired at the optimal positions. Figure 2 shows an ex-
ample of the original loading position of one volume, from
which it is almost impossible to see the face.

To make the detection robust and precise, we propose
combining both 3D face surface detection and 2D face pro-
file detection to obtain an accurate 3D face detection. For
the 3D face surface detection, we adopt a mesh based de-
tection method which treats the detection problem as a two-
stage task: rigid object localization and non-rigid bound-
ary shape detection. Furthermore, when sonographers scan
for the fetal face, they start the acquisition at the profile.
So based on the observation that in 3D ultrasound data a
2D face profile is usually clearer and easier to acquire, we
combine the 3D face surface detection with a 2D face pro-
file detection which further refines the 3D detection. The
combined method implicitly gives more weights to those

distinctive and stable features along the face profile and re-
duced the effect of noise and outliers from other parts of the
face.

1.1. Related Work

Although a lot of work has been done in the 2D image
face detection field (please refer to surveys [14, 15]), less
work was done for 3D face detection [1, 3, 4, 6, 9, 10, 13].
Furthermore, to our best knowledge this is the first work
to detect fetal faces from 3D ultrasound data. Most ap-
proaches for 2D face detection employ an exhaustive search
over the input image, which is hard to directly extend to
3D face detection because the calculation complexity would
exponentially increases with the dimensions of the parame-
ter space. Colombo et al [4] proposed a curvature analysis
based detection approach for 3D faces acquired by a laser
range scanner. Their method first detects salient face fea-
tures such as eyes and nose, and then through face surface
curvature analysis a PCA-based classifier is applied to the
detected candidate noses and eyes to determine if they are
real faces. Wang et al. [13] proposed “point signature” rep-
resentation for 3D surface and combined the 2D image Ga-
bor features for face detection and recognition. Moreno et
al [9] segmented faces using surface curvatures. Face sur-
face analysis approaches based on face profile extraction are
also studied by Cartoux et al. [3], Beumier and Acheroy [1],
and Pan et al. [10].

This work is different with previous one in several as-
pects. First, our approach combines both 3D and 2D infor-
mation to detect the fetal face. The 2D profile detection fol-
lowing the 3D surface detection makes the approach more
robust. Second, we use learning based approaches for both
the 3D face surface detection and the 2D face profile de-
tection. Third, a new technique, the constrained marginal
space learning proposed by [17] is used for 3D face sur-
face detection. The 2D profile detection is conducted with a
boosted selection of features [5, 11, 12]. Fourth, our system
performs quite fast. It takes about one second to detect the
3D face on a dual-core 2.0 GHz computer.

2. Fetal Face Representation

We expect our automatic fetal face detection system to
facilitate multiple purposes of medical fetal examination,
e.g. measurement of particular anatomies and carving for
better rendering views. This requires a relative precise rep-
resentation of the fetal faces, i.e. besides the exact pose
information of the fetal faces, the positions of important
landmarks (e.g. eyes and nose) of the faces are also nec-
essary. On the other hand, overly precise face representa-
tion introduces much work for manually annotating faces.
In order to meet all the requirements, we proposed a rela-
tive sparse mesh representationM(P, T ) for the fetal faces,
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Figure 3. Mesh representation for a fetal face.

where P = {pi ∈ R3}n
i=1 is the set of n mesh points and

T = {ti ∈ Z3}m
i=1 the set of m mesh triangles. In our fetal

face mesh, the mesh point set P consists of three main com-
ponents: face profile points, face contour points and other
facial landmarks.

Face profile points are a set of key points along the face
profile and face contour points define the peripheral out-
line for the face mesh. There are 8 other facial landmarks,
including four eye points, two nose points and two mouth
points. The points of each of the first two components – pro-
file and contour – must be co-planar, and the two planes de-
termined by the profile and the boundary respectively must
be perpendicular to each other. These geometry constraints
simplify the annotation procedure and also guarantee the
consistence of annotations over large data sets. Figure 3
shows an example of an annotated face mesh for a fetal face
volume, with the middle red line for the face profile, four
magenta points for eyes, two cyan points for nose roots and
two yellow points for mouth corners.

3. 3D Fetal Face Detection
The whole procedure of our fetal face detection follows

the workflow shown in Figure 4, which consists of three
steps: 3D face surface localization, face location refinement
based on 2D profile detection and 3D face non-rigid defor-
mation. In the 3D face localization step we find the bound-
ing box of fetal face in 3D volumes, which is described by a
set of rigid parameters – its position, orientation and scale.
This step will generates multiple candidate locations of the
fetal face. In the next step, a 2D face profile detector will
be applied to refine the mean location aggregated from the
set of candidates. Then a mean shape is aligned with the
estimated location as a rough estimate of the face shape. In
the final step, a 3D boundary detector is used to move each
landmark to the optimal position and a non-rigid deforma-
tion of the mean shape is made towards the optimal face
shape.

We employ a learning-based method for the 3D localiza-
tion of fetal face, i.e. finding a bounding box for the fetal
face. The learning-based method takes box detection as a
two-category classification problem: each candidate box ei-
ther contains the target object or not. The location of each
candidate box is parameterized by 9 transformation param-
eters (3 for translation, 3 for orientation and 3 for scale).
Although exhaustive search is widely used for 2D object
detection for its robustness, for 3D objects it is extremely
expensive to exhaustively consider all possible candidates.
Under a uniform sampling scheme over the whole param-
eter space, the number of tested candidates exponentially
increases with the dimensionality of the parameter space.
In our fetal face detection system, we used a marginal space
learning framework proposed by Zheng, et al [16], which
basically learns the location parameters in a sequential way
on projected sampling sub-spaces. A classifier is trained for
each projected space using the probabilistic boosting-tree
(PBT) [11].

For 2D face profile detection, we adopt the boosting
models similar to those used in [5]. The models first detect
the rigid transformation of the profile structure through an
exhaustive search over the whole cutting image, then per-
form a shape inference to find the most likely associated
profile shape.

In the following sections we will discuss the models we
used for 3D face surface detection and 2D face profile de-
tection.

3.1. Constrained Marginal Space Learning for 3D
Fetal Face Surface Localization

In the 3D fetal face surface localization task, given a 3D
ultrasound volume V we want the system to output a set
of volume blocks each of which has a high probability of
containing the fetal face. Denote the block parameter as
[p, σ, s] ∈ <9, where p = (X,Y, Z) represents the position,
σ = (ψ, φ, θ) the orientation and s = (Sx, Sy, Sz) the scale
along x, y, z axes respectively. Then this task is to find the
set of blocks each of which satisfies:

Pr(p, σ, s|V ) > thr, (1)

where thr is the threshold determining if a block contains
the target object. It is empirically selected by tuning on the
training set. Marginal space learning (MSL) provides an ef-
ficient inference scheme to solve (1), which breaks the orig-
inal parameter space Ω into subsets of increasing marginal
spaces Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ωn = Ω and sequentially train
and detect over each subset. In fetal face detection, we as-
sume the whole parameter space is decomposed into the fol-
lowing sequence: Ω1 = p, Ω2 = [p, σ] and Ω3 = [p, σ, s].
Accordingly, we have:

Pr(p, σ, s|V ) = Pr(p|V )Pr(σ|p, V )Pr(s|σ, p, V ). (2)
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Figure 4. Diagram for 3D fetal face detection.

Each of the marginal probabilities is estimated by the prob-
abilistic boosting tree(PBT). For position probability esti-
mation, 3D Haar features are used and for orientation and
scale probabilities steerable features [16] are used. In the
marginal space learning, each marginal space is uniformly
sampled with an assumption that the parameters of that
marginal space are independent with each other. However,
in many applications the parameters of a marginal space are
not independent. Usually, there are correlations among their
distributions. For example, in fetal face detection, the pa-
rameters in the orientation space σ = (ψ, φ, θ) represent
the three Euler angles of a fetal face rotated along x, y and z
axes respectively. Although each parameter has a large vari-
ation range, the combined parameters σ are not uniformly
distributed in the 3D orientation space. Figure 6.(c) shows
the distribution of the σ in the 3D space, which indicates a
strong correlation among the three Euler angles. Uniformly
sampling this marginal space will include much more hy-
potheses than necessary, which slows down the training and
detection process. Moreover, potential outliers introduced
by uniformly sampling may hurt the detection performance.
Similar situation also holds for the scale space.

To reduce the unnecessary hypotheses tested, we use a
constrained marginal space learning framework proposed
by [17], which proposes an example-based strategy to gen-
erate testing hypotheses. The basic procedure is simple:
first uniformly sample the marginal space to get the initial
hypothesis set Hu, and then for each training sample, search
the neighboring hypotheses in the Hu and insert those hy-
potheses in the selected set H , finally remove all redun-
dant hypotheses from H . Then H is the generated testing
hypotheses for detection. Using the constrained marginal
space learning, both the detection speed and accuracy are
improved.

Another improvement of the constrained marginal space
learning is that the Euler angle representation of 3D orienta-
tion σ = (ψ, φ, θ) is converted to the unit quaternion repre-
sentation q = [s,w] proposed by Karney et al. [7], where s
is a scalar and w a vector. Each quaternion is also expressed
as

q = [cos(θ/2),v · sin(θ/2)], (3)

where v ∈ R and |v| = 1. This basically means a rota-
tion of θ around the axis v. The original Euler angle rep-
resentation for 3D orientation has two main drawbacks for

estimating orientation marginal probability. First, the Eu-
ler angle representation for a 3D orientation is not unique.
Second, uniform step size of Euler angles does not generate
a uniform sampling in the orientation space, which causes
uncertainty of the distribution of the samples in the orienta-
tion space. The quaternion representation overcomes these
drawbacks. One important property is that the composi-
tion of two rotations can be computed as the product of two
quaternions, which makes the calculation of rotation dis-
tance from one orientation O1 to another O2 easier:

D(O1, O2) = arccos(|s1s2 −w1 ·w2|). (4)

One can refer [7] for the details and [2] for an example of
its applications in fetal head anatomy indexing. The quater-
nion representation guarantees that the initial sampling over
the orientation space is unform and avoids the orientation
ambiguity of Euler angle representation.

After the candidates of the bounding box of the fetal
face are detected, the mean shape of the fetal face mesh is
aligned within each box as a rough shape of the candidate
face.

3.2. 2D Face Profile Detection and Results Refine-
ment

In our system, the 3D box detector generates a set of
fetal face candidates. In this section we discuss the 2D face
profile detection and how it is used to refine the detected 3D
locations.

The intuition to refine the 3D mesh detection using a 2D
profile detection is based on the following facts. First, in 3D
ultrasound volumes of fetus the 2D face profile is usually
clearer and easier to acquire comparing with the whole face
surface. When sonographers acquire ultrasound volumes
for fetal head, they usually first navigate the transducer to
capture the face profile, serving as an important clue. Sec-
ond, the profile detector is more robust and performs better
than the 3D detection in terms of accuracy. The 2D pro-
file detection is less sensitive to occlusions and missing face
parts. For example, even if the whole cheek is missed or a
hand covers the whole cheek of the face in the 3D volume,
the profile will not be effected.

We adopt a simple way to refine the 3D mesh detection
using the 2D profile detection, which does show the im-
provement on final face detection as experiments indicate:
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Figure 5. Illustration of the detected 3D mesh from the MSL and
the detected 2D profile for refinement. The detected mesh in the
left picture is off the true position indicated by the detected 2D
profile. Through refinement, it is dragged back to the correct posi-
tion as the right picture shows.

1. Based on the pool of candidate boxes of the 3D box
detection, we aggregate one mean box and associate it
with a mean face mesh.

2. From this mean face mesh at the aggregated position,
the initial profile points can be easily extracted and
used to determine the MPR plane.

3. A 2D face profile detector is then applied to this MPR
plane to detect a new profile.

4. Adjust the location and pose of the detected mean
mesh according to the newly detected profile.

Figure 5 shows an example of the detected 3D mesh from
the MSL and the detected 2D profile for refinement. The
3D mesh is off the true position, but through the 2D profile
refinement it can be dragged back to the true position.

We also tried other approaches to refine the 3D mesh de-
tection using the 2D profile detection. For example, instead
of refining the aggregated mesh we refine each candidate
from the MSL detection and select the one with the highest
2D detection probability. But this does not help the final
detection in our experiments because the best profile image
does not always cut through the exact middle of the face.

For 2D face profile detection, given an MPR I extracted
from the volume the system needs to determine the face
profile position and shape. This step is performed by an
probabilistic-boosting-tree (PBT) based object localization
and a nearest-neighboring based shape inference for pro-
file shape optimization. Our PBT for profile localization
is similar to the boosted cascade of Haar features by Viola
and Jones [12]. Instead of an exhaustive search over the
whole MPR, only a local search is performed near the ini-
tial profile position extracted from the 3D face mesh candi-
date. To infer the optimal profile shape for the detected lo-
cation, a weighted nearest-neighbor approach by Georgescu
et. al [5] is used to find the closest profile prototype in the

training set. One can refer to [11, 12] and [5] for the tech-
nique details of rigid object detection and shape inference
respectively.

3.3. Fetal Face Surface Deformation

After the localization of the 3D fetal face, we align the
mean face mesh within the bounding box to get an initial
face shape. Then we use a set of local boundary detectors to
adjust the position of each mesh point. These boundary de-
tectors are trained using PBT and steerable features around
the mesh points, similarly to [8,16]. Formally, a mesh point
P̂ is selected to maximize the probability of being on the
boundary B in volume V :

p̂ = arg max
p∈Qp

Pr(B|p, V ), (5)

where Qp is a set of candidate points within the local search
range around p. Unlike in [8,16] where Qp is along the nor-
mal direction of the boundary at p for a reduced computa-
tion, we search a surrounding region because of the sparsity
of our mesh points. To achieve a smooth and natural face
mesh, the adjusted shape is projected into the shape sub-
space to get a final detected face mesh.

4. 3D Fetal Face Carving
One goal of our system is to generate a pleasant render-

ing of the fetal face, which requires omitting all the obstruc-
tions in front of the face. Based on the detected fetal face
mesh, we can achieve the goal by carving out all the voxels
in front of the face. We develop a carving algorithm to per-
form this. The basic idea of the algorithm is simple. First
we calculate all the surface points on the face mesh trian-
gles, then along the reverse direction of the view, we set all
the points on the rays from those surface points to have zero
intensity. The carving algorithm is described in Algorithm
1.

5. Experiments

5.1. DataSet

Our experiments are performed on a dataset containing
1010 fetal face volumes, collected from 51 different fetuses
at different pregnant periods from the 21st week to 40th
week. The average size of the volumes is 157× 154× 104
(mm) and the resolution is isotropically 1mm for all the vol-
umes. All these volumes have been manually annotated
with a face mesh. As mentioned in the introduction, this
dataset is very challenging because of the large variation
among the scanned data. For example, the fetuses at the
20th week of the pregnancy have quite different appear-
ances with those at the 30th week. Different obstructions
may exist in the volumes, e.g. extremities and cords, some

2492



Algorithm 1 3D Face Carving
1: V olMask ← initialize false
2: PointsInTriangles ← initialize empty
3: for all mesh triangles T do
4: collect points within T to PointsInTriangles
5: end for
6: for all PointsInTriangles p do
7: p front = p
8: while p front within volume do
9: voxel at p front ← 0

10: p front − = faceNorm
11: end while
12: p back = p
13: while p back within volume do
14: V olMask[p back] = 1
15: p front + = faceNorm
16: end while
17: end for
18: K ← calculate plane of face contour
19: for all voxel indices q do
20: if V olMask[q] == 0 and voxel at q 6= 0 and q in

front of K then
21: voxel at q ← 0
22: end if
23: end for
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Figure 6. The distributions of position, scale, orientation and week
of the fetal faces in our dataset. Each point in (a) indicates the
normalized x and y coordinates of a face center and each point in
(b) indicates the width and height of a fetal face. In (c), each point
represents the Euler angles of a fetal face rotated around x,y, and
z axes respectively. (d) shows the distribution of the number of
fetuses across different weeks.

of which may be directly on the faces. Furthermore, the po-
sition, orientation and size of fetal faces change a lot in the

data set. Figure 6 shows the distributions of position, scale,
orientation and week of the fetal faces in our dataset.

In our experiments for 3D face mesh detection, out of
the 1010 volumes 962 volumes are used for training and 48
volumes for testing. The test set consists of volumes of dif-
ferent fetuses and different pregnant weeks. The partition
also guarantees that for each volume in the test set, there
are no volumes in the training set that are from the same
fetus and the same week. This setting makes sure that the
performance on the test set can truly reflect the generaliza-
tion of our models on totally unseen data. The 2D profile
detector was trained on 500 annotated profile MPRs 1 from
the ultrasound volumes, and tested on 48 profile MPRs from
the volumes in the test set.

The features used for PBT training for face mesh transla-
tion were the 3D Haar features for its efficient computation
using integral volumes. For orientation and scale training,
we used the steerable features [16], which can not only cap-
ture the orientation and scale of the target object but also be
computed very efficiently.

5.2. Detection Evaluation

In this section, we report the results for both the training
and test set. The performance on the training set indicates
the limit of our approach while that on the test set reflect
how well the approach works on novel data. The perfor-
mance metrics we used are based on the Euler distance of
the detected results and the ground truth. For each test data
we calculate the distances between corresponding points on
the detected result and the ground truth, and take the aver-
age distance as an error measurement for that test data. We
measure this error for all the test data and do statistics over
all the error measurements.

To investigate how the detection models work, we eval-
uate the performances of the 2D profile detection and the
3D face mesh detection separately. Table 1 shows the per-
formance of the 2D face profile detector on the 2D profile
images cut from the volumes, from which we can see that
the average distance of the detected profile points with the
ground truth is about 3.4 mm and for the test set this number
is slightly higher (3.7 mm). The profile detector performs
very fast, only 0.3 seconds per image of 512× 512.

Table 2 shows the performance of the 3D face mesh de-
tection on training set and test set respectively. Through
combining both 3D information and 2D profile information,
the average error of the fetal face detection on test set is im-
proved by more than one pixel. The big improvement of
error standard deviation from 10.5 to 4.2 shows the com-
bined approach is much more robust than the pure 3D mesh
detection. Figure 8 shows some results of 3D face mesh
detection with different errors.

1This is the number of volumes we had when training the profile detec-
tor
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2D profile Mean Median Std Run Time
(mm) (mm) (mm) (seconds)

Training Error 3.4 2.9 2.0 0.3
Test Error 3.7 3.5 1.4 0.3

Table 1. Performance on 2D face profile detection over the training
set and test set

3D Mesh Mean Median Std Run Time
(mm) (mm) (mm) (seconds)

Training Error 4.3 3.6 3.5 0.8
Test Error 8.8 6.2 10.5 0.8
Test Error After 2D refinement 7.6 6.6 4.2 1.0

Table 2. Performance on 3D fetal face surface detection over the
training set and test set. A sign test shows that the performance im-
provement by using 2D refinement is statistically significant with
the P-value equal to 0.03.

Figure 7. Examples of 2D profile detection. The first column
shows the input cutting image from ultrasound volume, and the
second and the third columns show our detected results and hu-
man annotation respectively.

5.3. Face Carving Based on the Detected Mesh

Figure 8 shows examples of 3D carving based on the 3D
detection results with different detection errors. From the
second, third and fourth columns in the figure, we can see
that although the 3D detection obtains a correct view for the
fetal face, we do not obtain a satisfying rendering because
of the clouds and occlusions in front of them. Through carv-
ing, the obstructions in front of the face are successfully re-
moved and a much better 3D view is rendered as shown in
the figure. The carving example at the bottom row of this
figure is based on the detected face mesh with a 6.22mm
error, which is still visually acceptable.

6. Conclusions and Future Work
In this paper, we propose an efficient and robust learning

based approach for fetal face detection from 3D ultrasound
data. Our approach combines both 3D face surface detec-
tion and 2D face profile detection to find the optimal acqui-
sition plane for face rendering. We use constrained marginal
space learning for 3D face surface detection and a boosting

approach for 2D profile detection. To enhance the 3D fetal
face rendering, we propose a carving algorithm to remove
all obstructions in front of the face based on the detection
results. Our experiments show excellent detection accuracy
and fast speed of the system on a large fetus data set. In the
future, we will further improve the detection performance
through exploiting more sophisticated features for 3D face
box detection and geometric constraints among landmarks
for boundary adjustment. We will also explore mesh based
transparency adjustment for better and smoother face ren-
dering.
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