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Four-Chamber Heart Modeling and Automatic
Segmentation for 3D Cardiac CT Volumes Using
Marginal Space Learning and Steerable Features

Yefeng Zheng, Adrian Barbu, Bogdan Georgescu, Michael Scheuering, and Dorin Comaniciu

Abstract— We propose an automatic four-chamber heart seg-
mentation system for the quantitative functional analysis of
the heart from cardiac computed tomography (CT) volumes.
Two topics are discussed: heart modeling and automatic model
fitting to an unseen volume. Heart modeling is a non-trivial task
since the heart is a complex nonrigid organ. The model must
be anatomically accurate, allow manual editing, and provide
sufficient information to guide automatic detection and segmen-
tation. Unlike previous work, we explicitly represent important
landmarks (such as the valves and the ventricular septum cusps)
among the control points of the model. The control points can
be detected reliably to guide the automatic model fitting process.

Using this model, we develop an efficient and robust approach
for automatic heart chamber segmentation in 3D CT volumes.
We formulate the segmentation as a two-step learning problem:
anatomical structure localization and boundary delineation. In
both steps, we exploit the recent advances in learning discrimina-
tive models. A novel algorithm, marginal space learning (MSL),
is introduced to solve the 9-dimensional similarity transforma-
tion search problem for localizing the heart chambers. After
determining the pose of the heart chambers, we estimate the
3D shape through learning-based boundary delineation. The
proposed method has been extensively tested on the largest
dataset (with 323 volumes from 137 patients) ever reported in
the literature. To the best of our knowledge, our system is the
fastest with a speed of 4.0 seconds per volume (on a dual-core
3.2 GHz processor) for the automatic segmentation of all four
chambers.

Index Terms— Heart modeling, heart segmentation, 3D object
detection, marginal space learning

I. INTRODUCTION

Compared with other imaging modalities (such as ultra-
sound and magnetic resonance imaging), cardiac computed
tomography (CT) can provide detailed anatomic information
about the heart chambers, large vessels, and coronary arter-
ies [1]. Therefore, CT is an important imaging modality for
diagnosing cardiovascular diseases. Complete segmentation of
all four heart chambers, as shown in Fig. 1, is a prerequisite
for clinical investigations, providing critical information for
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quantitative functional analysis for the whole heart [2], [3].
In this paper, we propose an automatic 3D heart chamber
segmentation system using a surface-based four-chamber heart
model. There are two major tasks to develop such an automatic
segmentation system: heart modeling (shape representation)
and automatic model fitting (detection and segmentation). Due
to the complexity of cardiac anatomy, it is not trivial to repre-
sent the anatomy accurately while keeping the model simple
enough for automatic segmentation and manual correction if
necessary. The proposed heart model, as shown in Fig. 1 has
the following advantages.

1) The heart valves are explicitly modeled as closed con-
tours along their borders in our model. Therefore, our
model is more accurate concerning the anatomy, com-
pared to previous closed-surface mesh models [4]–[6].

2) Important landmarks (e.g., valves and ventricular septum
cusps) are explicitly represented in our model as control
points1. These landmarks can be detected reliably to
guide the automatic model fitting process.

3) Our model is flexible. Chambers are coupled at atrioven-
tricular valves and it is easy to extract each chamber
from the whole heart model.

4) The proposed model is expandable. Our current work
focuses on the addition of extra elements, such as
dynamic valve modules [7].

5) We propose two approaches to enforce the mesh point
correspondence, namely the rotation-axis based and
parallel-slice based methods. With such built-in cor-
respondence, we can easily learn a statistical shape
model [8] to enforce shape constraints in our automatic
model fitting approach.

Using the proposed heart model, we present an automatic
heart segmentation method based on machine learning to
exploit a large database of annotated CT volumes. As shown in
Fig. 2, the segmentation procedure has two stages: automatic
heart localization and control point guided nonrigid deforma-
tion estimation. Automatic heart localization is largely ignored
in early work on heart segmentation [9]–[12]. Recently, learn-
ing based approaches have been successfully demonstrated on
many 2D object detection problems [13], [14]. However, there
are two challenges in applying these techniques to 3D object
detection: 1) the exponential computation demands by the use
of exhaustive search and 2) lack of efficient features that can

1“Landmark” is a term used in relation with the anatomy and a “control
point” is a mesh point, representing the corresponding landmark in the mesh.
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Fig. 1. A four-chamber heart model with green for the left ventricle (LV) endocardium, magenta for the LV epicardium, cyan for the left atrium (LA),
brown for the right ventricle (RV), and blue for the right atrium (RA). The left three columns show three orthogonal cuts from a 3D volume data and the last
column shows the triangulated surface mesh.

Fig. 2. Diagram for 3D heart chamber detection and segmentation.

be calculated efficiently under rotation.
In this paper, we present an efficient 3D object detection

method based on two simple but elegant techniques, marginal
space learning (MSL) and steerable features. The idea of
MSL is not to learn a classifier directly in the full similarity
transformation space but to incrementally learn classifiers on
projected sample distributions. As shown in the top dashed
box in Fig. 2, we split the estimation into three problems:
position estimation, position-orientation estimation, and full
similarity transformation estimation. To attack the second
challenge, we introduce steerable features, which constitute
a very flexible framework. Basically, we sample a few points
(e.g., 125 points) from the volume under a sampling pattern
and extract a few local features (e.g., intensity and gradient)
for each sampling point. The efficiency of steerable features
comes from the fact that much fewer points are needed for
manipulation, compared to the whole volume. After similarity
transformation estimation, we get an initial estimate of the
nonrigid shape. We then use a learning-based 3D boundary
detector to guide the shape deformation in the active shape
model (ASM) framework [8].

In summary, we make two major contributions to the
automatic model fitting approach.

1) We propose MSL to search the similarity transformation
space efficiently, which reduces the number of testing
hypotheses by about six orders of magnitude.

2) We introduce steerable features, which can be evaluated
efficiently under any orientation and scale without rotat-
ing the volume.

Part of this work has been reported in our conference
publications [15], [16]. The remaining of the paper is orga-

nized as follows. In Section II we review the previous work
on heart modeling and segmentation. Our four-chamber heart
model and two schemes to establish point correspondence are
presented in Section III. In Section IV, we present an efficient
3D object localization approach, using marginal space learning
and steerable features. Nonrigid deformation estimation is
discussed in Section V. We demonstrate the robustness of the
proposed method in Section VI. This paper concludes with
Section VII.

II. RELATED WORK

The research presented in this paper is related to previous
work on heart modeling and segmentation.

A. Heart Modeling

Except for a four-chamber heart model from [17] and [10],
most of the previous work focused on the left ventricle (LV)
and/or the right ventricle (RV). A closed mesh was often used
to represent heart chambers [4]–[6]. Nevertheless, it is not
clear how the atria interacted with the ventricles around the
mitral and tricuspid valves in [4]. The heart model in [10] was
more accurate in anatomy and it also included trunks of the
major vessels connected to heart chambers. However, artificial
patches were added at all valves to close the chamber meshes.
These artificial patches were not specifically processed in the
segmentation algorithm, therefore, they could not be delineated
accurately [17]. In our heart model, we keep the mesh open at
a valve. Mesh points around the valves are labeled as control
points, which are treated differently to the normal mesh points
during automatic segmentation.

The statistical shape model [8] is widely used in nonrigid
object segmentation to enforce shape constraints and make
the system more robust. However, to build a statistical shape
model, it is necessary to establish point correspondence among
a group of shapes [8]. There are a few papers on building a
statistical 3D shape model automatically using pair-wise or
group-wise registration based approaches [18], [19], which
are complicated and time consuming. Another approach is
to establish correspondence among shapes during the manual
labeling process. Though this is difficult for a generic 3D
shape, we can consistently resample the surface to establish
correspondence for a few simple shapes (e.g., a tube and a
parabola) [5], [9].
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(a) (b) (c)

Fig. 3. Delineating the mitral and aortic valves. (a) A 3D view of the control points around the valves. (b) Control points around the mitral valve embedded
in a CT volume. Since the curves are 3D, they are only partially visible on a specific plane. (c) Annotated LV/LA meshes embedded in a CT volume.

B. Heart Segmentation

Given the heart model, the segmentation task is to fit
the model onto an unseen volume. Since the heart is a
nonrigid shape, the model fitting (or heart segmentation)
procedure can be divided into two steps: object localization
and boundary delineation. Most of the previous approaches
focused on boundary delineation based on active shape models
(ASM) [20], active appearance models (AAM) [21], [22], and
deformable models [12], [17], [23]–[26]. These techniques
suffer from the following limitations: 1) Most of them are
semi-automatic and proper manual initialization is demanded.
2) Gradient based search in these approaches are likely to get
stuck in a local optimum.

Object localization is required for an automatic segmenta-
tion system, a task largely ignored by previous researchers.
Recently, the discriminative learning based approaches have
been proved to be efficient and robust to detect 2D objects [13],
[14]. In these methods, object detection or localization was
formulated as a classification problem: whether an image
block contains the target object or not [13]. The parameter
space was quantized into a large set of discrete hypotheses.
Each hypothesis was tested by the trained classifier to get a
detection score. The hypothesis with the highest score was
taken as the final detection result. This search strategy is quite
different from other parameter estimation approaches, such as
deformable models, where an initial estimate is adjusted (e.g.,
using the gradient descent technique) to optimize a predefined
objective function.

Exhaustive search makes the system robust under local op-
tima, however there are two challenges to extend the learning
based approaches to 3D. First, the number of hypotheses
increases exponentially with respect to the dimensionality of
the parameter space. For example, there are nine degrees of
freedom for the anisotropic similarity transformation 2, namely
three translation parameters, three rotation angles, and three
scales. Suppose each dimension is quantized to n discrete
values, the number of hypotheses is n9 (for a very coarse

2The ordinary similarity transformation allows only isotropic scaling. In
this paper, we search for anisotropic scales to cope better with the nonrigid
deformation of the heart.

Fig. 4. LV/LA meshes with green for the LV endocardium and left ventricular
outflow tract (LVOT), magenta for the LV epicardium, and cyan for the LA.
The control points are shown as blue dots and appropriately connected to form
the red contours. From left to right are the LV, LA, and combined meshes,
respectively.

estimation with a small n=5, n9=1,953,125). The computa-
tional demands are beyond the capabilities of current desktop
computers. The second challenge is that we need efficient
features to search the orientation spaces. To estimate the object
orientation, one has to rotate either the feature templates or
the volume. Haar wavelet features can be efficiently computed
under translation and scaling [13], [27], but no efficient way is
available to rotate the Haar wavelet features. Previously, time-
consuming volume rotation has been performed to estimate
the object orientation [28].

III. FOUR-CHAMBER HEART MODELING

In this section, we first describe our four-chamber heart
model, and then present our consistent resampling techniques
to establish point correspondence, which is demanded to build
a statistical shape model [8]. In the model, some mesh points
are special and correspond to distinctive anatomical structures
(e.g., those around the valve holes). We label these points as
control points. Control points are integral part of the mesh
model in the sense that they are also connected to other mesh
points with mesh triangles.

A. LV and LA Models

A closed mesh has been used to represent the LV [4]–[6].
Due to the lack of object boundary on the image, it is hard to
consistently delineate the interfaces among the LV main body,
the left ventricular outflow tract (LVOT), and the basal area
around the mitral valve. The mesh often cuts the LVOT and the
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Fig. 5. Delineating the RV control points. (a) The divergence plane (indicated by the cyan line) of the RV inflow and outflow tracts. (b) Delineating the
divergence plane. (c) The RV mesh with ventricular septum cusps indicated.

mitral valve at an arbitrary position [4]–[6]. In our heart model,
the mitral valve is explicitly represented as a closed contour
along its border. Since we exclude the moving valve leaflets
(which are hardly visible) from the model, the basal area
can be delineated more consistently. Both the endo- and epi-
cardiums are delineated for the LV. The commissure contour
of both surfaces corresponds to the mitral valve annulus on
one side and the aortic valve level (lying at the bottom edge
of the Valsalva sinuses) on the other side, as shown in Fig. 3c.
As shown in Fig. 3, three curves are formed by control points
around the mitral valve, namely, the mitral lateral (16 points),
the mitral septum (15 points), and the LVOT lateral (16 points).
They define two closed regions, one for the interface between
the LV and the LA, and the other for the LV and the LVOT.
The aortic valve (annotated with 32 points) is approximated
as a plane, which cuts the valve at the bottom of the Valsalva
sinuses. The LA is represented as an open mesh with an
open area enclosed by the mitral septum and the mitral lateral
control points (as shown in Fig. 3b). Fig. 4 shows the LV/LA
meshes with the control points (blue dots connected by red
contours). The LV endocardium, epicardium, and LA meshes
are represented with 545 points and 1056 triangles each. The
LVOT mesh is represented with 64 points and 64 triangles.

B. RV and RA Models

The right ventricle (RV) has a complicated shape with
separate inflow and outflow portions. Using a plane (indicated
by a cyan line in Fig. 5a) passing the divergence point of
the inflow and outflow tracts, we can naturally split the RV
into three parts with the RV main body lying below the
cutting plane. We will call this plane as “the RV divergence
plane.” During the manual labeling of ground truth, the RV
divergence plane is determined in the following way. We first
determine the tricuspid valve, which is approximated as a
plane. We then move the plane toward the RV apex to a
position where the RV inflow and outflow tracts diverge. As
shown in Fig. 5b, two curves, tricuspid lateral (23 points) and
right ventricular outflow tract (RVOT) lateral (15 points), are
annotated on the RV divergence plane to define the inflow
and outflow connections. On a short axis view, the RV main

Fig. 6. RV/RA meshes with brown for RV and blue for RA. The control
points are shown as blue dots and appropriately connected to form the
red contours. From left to right are the RV, RA, and combined meshes,
respectively.

body is a crescent (as shown in Fig. 5b). Two cusp points
on the intersection are important landmarks, and an automatic
detection algorithm should be able to detect them reliably.
They are explicitly represented in our model (Fig. 5c). The
tricuspid (28 points) and pulmonary (18 points) valves are
approximated as a plane. Similar to the LA, the right atrium
(RA) is represented as an open mesh with the open area
defined by the tricuspid valve. Fig. 6 shows the RV/RA meshes
with the control points (blue dots connected by red contours).
In our model, the RV is represented with 761 points and 1476
triangles and the RA is represented with 545 points and 1056
triangles.

C. Establishing Point Correspondence

Since the automatic segmentation algorithm (discussed in
Section V) exploits a statistical shape model, we need to
establish point correspondence. This task is difficult for a
generic 3D shape. Fortunately, for a few simple shapes, such as
a tube or a parabola, we can consistently resample the surface
to establish this correspondence. Since it is easy to consistently
resample a 2D curve, we use a few planes to cut the 3D
mesh to get a set of 2D intersection curves. The resulting
2D curves are uniformly sampled to get a point set with built-
in correspondence. Using different methods to select cutting
planes, we develop two resampling schemes, the rotation-axis
based method for simple parabola-like shapes such as the LV,
LA, and RA, and parallel-slice based method for the more
complicated RV. In both methods, the long axis of a chamber
needs to be determined from the annotated mesh. Generally,
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Fig. 7. The rotation-axis based resampling method demonstrated for the
LV endocardium mesh. (a) The LV endocardium mesh with its long axis. A
cutting plane passing the long axis is also illustrated. (b) The intersection of
the mesh with the cutting plane. (c) Resampled points indicated as dots.

(a) (b) (c)

Fig. 8. The parallel-slice based resampling method for the RV main body.
(a) The RV main body mesh. A cutting plane perpendicular to the RV long
axis is also illustrated. (b) The crescent-shaped intersection of the mesh with
the cutting plane. Two cusps separate the intersection into two parts and each
can be uniformly resampled independently. (c) Resampled points indicated as
dots.

we define the long axis as the line connecting the center of a
valve and the mesh point farthest from the valve. For example,
the LV long axis is the line connecting the mitral valve center
and the LV apex. The RV long axis is determined as a line
passing the RV apex and perpendicular to the divergence plane.
Compared to other approaches [18], [19], [29] for establishing
point correspondence, our solution is simple and each shape is
processed independently. No time-consuming and error-prone
3D registration is necessary.

The rotation-axis based method is appropriate for a roughly
rotation symmetric shape, which contains a rotation axis.
Cutting the mesh with a plane passing the axis, we get a 2D
intersection. As shown in Fig. 7b, the rotation axis separates
the intersection into two parts, which can be uniformly resam-
pled independently. We then rotate the plane around the axis
to get another intersection and resample the intersection in the
same way. Repeating the above process, we achieve a set of
points with built-in correspondence. We use this approach to
resample the LV, LA, and RA, and it is also used to resample
the LVOT, and RV inflow and outflow tracts, which can be
approximated as tubes.

The rotation-axis based method is not applicable to the
RV main body since it is not rotation symmetric. Instead, a
parallel-slice based method is developed for the RV, where we
use a plane perpendicular to the RV long axis to cut the 3D
mesh, as shown in Fig. 8a. The shape of an RV short-axis
intersection is a crescent containing two cusp points (which
have a high curvature and can be reliably determined from the
intersection contour). They split the contour into two parts and
each can be uniformly resampled, as shown in Fig. 8c.

IV. 3D OBJECT LOCALIZATION

In this section, we present our machine learning based
3D object localization technique using two novel techniques,
marginal space learning (MSL) and steerable features. The
work is built upon recent progress on machine learning based
object detection [13], [14], [28].

A. Obtaining Ground Truth from a Mesh

To train object localization classifiers, we need a set of
CT volumes. For each volume, we need a nine dimensional
vector of the ground truth about the position, orientation, and
scaling of a heart chamber in the volume. The ground truth
for each chamber is determined from the annotated mesh using
a bounding box. The long axis of a chamber defines axis x.
The perpendicular direction from a predefined anchor point to
the long axis defines axis y. For different chambers, we have
freedom to select the anchor point, as long as it is consistent.
For example, for the LV, we use the center of aortic valve
as the anchor point. The third axis z is the cross-product of
axes x and y. This local coordinate system can be represented
as three Euler angles, ψt, φt, and θt. (Among several well-
known Euler angle conventions, the ZXZ convention is used.)
We then calculate a bounding box (which is aligned with the
local coordinate system) for the mesh points. The bounding
box center gives us the position ground truth X t, Y t, and Z t,
and the box size along each side defines the ground truth of
scaling St

x, St
y, and St

z .
Previously, the Procrustes analysis has been widely used to

calculate the mean shape of a set of training samples [8]. We
cannot use it in our case since the Procrustes analysis only
allows isotropic scaling, but not anisotropic scaling. For each
heart chamber, using the method discussed in the previous
paragraph, we can calculate its position (T = [X,Y, Z] ′), ori-
entation (represented as a rotation matrix R), and anisotropic
scaling (Sx, Sy , Sz). Since we know the orientation of each
shape, we just need to transform each point from the world
coordinate system, Mworld, to the object-oriented coordinate
system, mobject, and calculate the average over the whole
training set. The transformation between Mworld and mobject
is

Mworld = R

[
Sx 0 0
0 Sy 0
0 0 Sz

]
mobject + T. (1)

Reversing the transformation, we can calculate the position
in the object-oriented coordinate system as

mobject =

⎡
⎣ 1

Sx
0 0

0 1
Sy

0

0 0 1
Sz

⎤
⎦R−1 (Mworld − T ) . (2)

The mean shape is the average over the whole training set

m̄ =
1

J

J∑
j=1

mj
object, (3)

where J is the number of training samples.

B. Marginal Space Learning

Fig. 9 shows the basic idea of machine learning based object
detection. First, we train a classifier, which can assign a score
(in range [0, 1]) for each input hypothesis. We then quantize



IEEE TRANSACTIONS ON MEDICAL IMAGING 6

(a) (b) (c)

Fig. 9. The basic idea of a machine learning based 3D object detection method. (a) A trained classifier that assigns a score to a hypothesis. (b) The parameter
space is quantized into a large number of discrete hypotheses and the classifier is used to select the best hypotheses in exhaustive search. (c) A few hypotheses
of the left ventricle (represented as boxes) embedded in a CT volume. The red box shows the ground truth and the green boxes show only a few hypotheses.

Fig. 10. Marginal space learning. A classifier trained on a marginal
distribution p(y) can quickly eliminate a large portion (regions 1 and 3) of the
search space. Another classifier is then trained on a restricted space (region
2) for the joint distribution p(x, y).

the full parameter space into a large number of hypotheses.
Each hypothesis is tested with the classifier to get a score.
Based on the classification scores, we select the best one
or several hypotheses. Unlike the gradient based search in
deformable models or active appearance models (AAM) [30],
the classifier in this framework acts as a black box without an
explicit closed-form objective function.

One drawback of the learning based approach is that the
number of hypotheses increases exponentially with respect to
the dimension of the parameter space. We observed that, in
many real applications, the posterior distribution is clustered
in a small region in the high dimensional parameter space.
Therefore, the uniform and exhaustive search is not necessary
and wastes the computational power. Fig. 10 illustrates a
simple example for 2D space search. A classifier trained
on p(y) can quickly eliminate a large portion of the search
space. We can then train a classifier in a much smaller region
(region 2 in Fig. 10) for joint distribution p(x, y). Based
on this observation, we propose a novel efficient parameter
search method, marginal space learning (MSL), to search such
clustered spaces. In MSL, the dimensionality of the search
space is gradually increased. As shown in the top dashed box
in Fig. 2, we split 3D object localization into three steps:
position estimation, position-orientation estimation, and full
similarity transformation estimation. After each step we keep
a limited number of candidates to reduce the search space. To
increase the speed further, we use a pyramid-based coarse-to-
fine strategy such that object localization is performed on a
low-resolution (3 mm) volume.

To train a classifier, we need to split a set of hypotheses
into two groups, positive and negative, based on their distance
to the ground truth. The error in object position and scale
estimation is not comparable with that of orientation estima-
tion. Therefore, a normalized distance measure is defined by
normalizing the error in each dimension to the corresponding
search step size,

E = max
i=1,...,D

|P e
i − P t

i |/SearchStepi, (4)

where P e
i is the estimated value for parameter i, P t

i is
corresponding the ground truth, and D is the dimension of
the parameter space. For similarity transformation estimation,
the parameter space is nine dimensional, D = 9. A sample is
regarded as a positive one if E ≤ 1.0 and all the others are
negative samples.

C. Training of Position Estimator

In this step, we want to estimate the position of the object
and learning is constrained in a marginal space with three
dimensions. Given a hypothesis (X,Y, Z), the classification
problem is formulated as whether there is an object centered
at (X,Y, Z). Haar wavelet features are fast to compute and
have been shown to be effective for many applications [13],
[27]. Therefore, we use 3D Haar wavelet features for learning
in this step. Readers are referred to [13], [27] for more details,
and [28] for a description of 3D Haar wavelet features.

The search step for position estimation is one voxel. Ac-
cording to Eq. (4), a positive sample (X,Y, Z) should satisfy

max{|X −Xt|, |Y − Y t|, |Z − Zt|} ≤ 1 voxel, (5)

where (X t, Y t, Zt) is the ground truth of the object center.
Given a set of positive and negative training samples, we
extract 3D Haar wavelet features and train a classifier using the
probabilistic boosting-tree (PBT) [31]. After that, we test each
voxel in a volume one by one as a hypothesis of the object
position using the trained classifier. As shown in Fig. 9a, the
classifier assigns each hypothesis a score, and we preserve a
small number of candidates (100 in our experiments) with the
highest detection score for each volume.

D. Steerable Features

Before discussing our technique for the position-orientation
and full similarity transformation estimation, we present an-
other major contribution of this paper, steerable features.
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(a) (b) (c)

Fig. 11. Using a regular sampling pattern to incorporate a hypothesis
(X, Y, ψ, Sx, Sy) about a 2D object pose. The sampling points are indicated
as ’+’. (a) Move the pattern center to (X, Y ). (b) Align the pattern to the
orientation ψ. (c) The final aligned sampling pattern after scaling along each
axis, proportional to (Sx, Sy).

Global features, such as 3D Haar wavelet features, are effective
to capture the global information (e.g., orientation and scale)
of an object. To capture the orientation information of a
hypothesis, we should rotate either the volume or the feature
templates. However, it is time consuming to rotate a 3D
volume and there is no efficient way to rotate the Haar wavelet
feature templates. Local features are fast to evaluate but lose
the global information of the whole object.

In this paper, we propose a new framework, steerable
features, which can capture the orientation and scale of the
object and at the same time be very efficient. In steerable
features, we sample a few points from the volume under a
sampling pattern. We then extract a few local features for
each sampling point (e.g., voxel intensity and gradient) from
the original volume. The novelty of our steerable features
is that we embed the orientation and scale information into
the distribution of sampling points, while each individual
feature is locally defined. Instead of aligning the volume to
the hypothesized orientation, we steer the sampling pattern.
This is where the name “steerable features” comes from.

Fig. 11 shows how to embed a hypothesis in steerable
features using a regular sampling pattern (illustrated for a 2D
case for clearance in visualization). Suppose we want to test if
hypothesis (X,Y, Z, ψ, φ, θ, Sx, Sy, Sz) is a good estimation
of the similarity transformation of the object. A local coordi-
nate system is defined to be centered at position (X,Y, Z)
(Fig. 11a) and the axes are aligned with the hypothesized
orientation (ψ, φ, θ) (Fig. 11b). A few points (represented as
‘+’ in Fig. 11) are uniformly sampled along each coordinate
axis inside a box. The sampling distance along an axis is
proportional to the scale of the shape in that direction (Sx,
Sy , or Sz) to incorporate the scale information (Fig. 11c). The
steerable features constitute a general framework, in which
different sampling patterns [15], [32] can be defined.

At each sampling point, we extract a few local features
based on the intensity and gradient from the original volume.
A major reason to select these features is that they can be
extracted fast. Suppose a sampling point (x, y, z) has intensity
I and gradient g = (gx, gy, gz). The three axes of object-
oriented local coordinate system are nx, ny, and nz . The angle
between the gradient g and the z axis is α = arccos(nz .g),
where nz.g means the inner product between two vectors nz

and g. The following 24 features are extracted: I ,
√
I , 3

√
I ,

I2, I3, log I , ‖g‖,
√‖g‖, 3

√‖g‖, ‖g‖2, ‖g‖3, log ‖g‖, α,
√
α,

3
√
α, α2, α3, logα, gx, gy, gz , nx.g, ny.g, nz.g. In total, we

have 24 local features for each sampling point. The first six
features are based on intensity and the remaining 18 features
are transformations of gradients. Feature transformation, a
technique often used in pattern classification, is a process
through which a new set of features is created [33]. We use it
to enhance the feature set by adding a few transformations of
an individual feature. Suppose there are P sampling points, we
get a feature pool containing 24×P features. (In our case, the
5×5×5 regular sampling pattern is used for object localization,
resulting in P = 125 sampling points.) These features are
used to train histogram-based weak classifiers [34] and we
use the probabilistic boosting-tree (PBT) [31] to combine them
to get a strong classifier. Following are some statistics about
the selected features by the boosting algorithm. Combining
features in all object localization classifiers, overall, there
are 3696 features selected. We found each feature type was
selected as least once. The intensity features, I ,

√
I , 3

√
I , I2,

I3, log I , counted about 26% of the selected features, while,
the following four gradient-based features, gx, gy, gz , and ‖g‖,
counted about 34%.

E. Training of Position-Orientation Estimator

In this step, we want to jointly estimate the position and ori-
entation. The classification problem is formulated as whether
there is an object centered at (X,Y, Z) with orientation
(ψ, φ, θ). After object position estimation, we preserve the top
100 candidates, (Xi, Yi, Zi), i = 1, . . . , 100. Since we want to
estimate both the position and orientation, we need to augment
the dimension of candidates. For each position candidate, we
quantize the orientation space uniformly to generate hypothe-
ses. The orientation is represented as three Euler angles in
the ZXZ convention, ψ, φ, and θ. The distribution range of
an Euler angle be estimated from the training data. Each
Euler angle is quantized within the range using a step size of
0.2 radians (11 degrees). For each candidate (X i, Yi, Zi), we
augment it with N (about 1000) hypotheses about orientation,
(Xi, Yi, Zi, ψj , φj , θj), j = 1, . . . , N . Some are close to the
ground truth (positive) and others are far away (negative). The
learning goal is to distinguish the positive and negative sam-
ples using trained classifiers. Using the normalized distance
measure of Eq. (4), a hypothesis (X,Y, Z, ψ, φ, θ) is regarded
as a positive sample if it satisfies both Eq. (5) and

max{|ψ − ψt|, |φ− φt|, |θ − θt|} ≤ 0.2, (6)

where (ψt, φt, θt) represent the orientation ground truth. All
the other hypotheses are regarded as negative samples. To
represent the orientation information, we have to rotate either
the volume or feature templates. We use the steerable features,
which are efficient under rotation. Similarly, the PBT is used
for training and the trained classifier is used to prune the
hypotheses to preserve only a few candidates (50 in our
experiments).

F. Training of Similarity Transformation Estimator

The similarity transformation (adding the scales) estimation
step is analogous to position-orientation estimation except
learning is performed in the full nine dimensional similarity
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(a) (b) (c)

Fig. 12. Nonrigid deformation estimation for control points (the tricuspid lateral and the right ventricular outflow tract lateral) on the RV divergence plane.
(a) Detected mean shape. (b) After boundary adjustment. (c) Final result by projecting the adjusted shape onto a shape subspace (25 dimensions).

transformation space. The dimension of each candidate is
augmented by searching the scale subspace uniformly and
exhaustively. The search step is set to 2 voxels (6 mm).

G. Object Localization on Unseen Volume

This section provides a summary about the testing pro-
cedure on an unseen volume. The input volume is first
converted to the 3 mm isotropic resolution. All voxels are
tested using the trained position estimator and the top 100
candidates, (Xi, Yi, Zi), i = 1, . . . , 100, are kept. Each can-
didate is augmented with N (about 1000) hypotheses about
orientation, (Xi, Yi, Zi, ψj , φj , θj), j = 1, . . . , N . Next, the
trained position-orientation classifier is used to prune these
100 × N hypotheses and the top 50 candidates are retained,
(X̂i, Ŷi, Ẑi, ψ̂i, φ̂i, θ̂i), i = 1, . . . , 50. Similarly, we augment
each candidate with M (also about 1000) hypotheses about
scaling and use the trained classifier to rank these 50 × M
hypotheses. The average of the top K (K = 100) candidates
is taken as the final aggregated estimate.

In terms of computational complexity, for position esti-
mation, all voxels are tested (about 260,000 for a small
64×64×64 volume at the 3 mm resolution) for possible object
position. There are about 1000 hypotheses for orientation and
scale each. If the parameter space is searched uniformly and
exhaustively, there are about 2.6×1011 hypotheses to be tested!
However, using MSL, we only test about 260, 000 + 100 ×
1000 + 50 × 1000 = 4.1 × 105 hypotheses and reduce the
testing by almost six orders of magnitude.

V. NONRIGID DEFORMATION ESTIMATION

After automatic object localization, we align the mean shape
with the estimated pose using Eq. (1). We then deform the
mean shape to fit the object boundary. Active shape models
(ASM) are widely used to deform an initial estimate of a
nonrigid shape under the guidance of the image evidence
and the shape prior. The non-learning based generic boundary
detector in the original ASM [8], [9] does not work in our
application due to the complex background and weak edges.
Learning based methods have been demonstrated to have better
performance on 2D images [35]–[37] since they can exploit
more image evidences to achieve robust boundary detection. In
the previous work [35], [37], a detector was trained to detect

(a) (b) (c)

Fig. 13. RV mesh warping using control points. Blue dots indicate control
points (which are connected by red contours for visualization) and brown
shows the RV mesh. (a) Mean shape using the estimated RV pose. (b) After
control point refinement, the mesh is not consistent. (c) Warped mesh, where
the control points and the mesh are consistent again.

boundary with a specific orientation (e.g., horizontal bound-
ary). In order to detect boundary with different orientations,
we need to perform detection on a set of rotated images.

In this paper, we extend learning based methods to 3D and
completely avoid time-consuming volume rotation using our
efficient steerable features. Here, boundary detection is formu-
lated as a classification problem: whether there is a boundary
passing point (X,Y, Z) with orientation (Ox, Oy , Oz). This
problem is similar to the classification problem we solved
for position-orientation estimation: whether there is an object
centered at (X,Y, Z) with orientation (ψ, φ, θ). Therefore, the
same approach is used to train a boundary detector using the
PBT [31] and steerable features.

Control points in our mesh representation have different
image characteristics and should be treated specially. As
shown in [17], without special processing, the connection
of different chambers around the mitral or tricuspid valve
cannot be delineated well. Our nonrigid deformation has three
steps (as shown in Fig. 2). We first estimate the deformation
of control points. The thin-plate-spline (TPS) model [38] is
then used to warp the initial mesh toward the refined control
points for better alignment. Last, the normal mesh points are
deformed to fit the image boundary. Note that, at this step, the
control points are kept unchanged.

In what follows, we illustrate the refinement of the control
points on the RV divergence plane. All other control points
are refined in a similar way. First, MSL is used to detect the
pose of the divergence plane. After that, we get an aligned
mean shape for the control points. Fig. 12a shows the aligned
mean shape under the estimated pose. The boundary detectors
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(a) (b) (c)

Fig. 14. Nonrigid deformation estimation for the LV with green for the endocardium and magenta for the epicardium. (a) Mean shape. (b) After boundary
adjustment. (c) Final delineation by projecting the adjusted shape onto a shape subspace (50 dimensions).

are then used to move each control point along the normal
direction to the optimal position, where the score from the
boundary detector is the highest. After adjustment, the control
points fit the boundary well, but the contour is not smooth
(Fig. 12b). Finally, we project the deformed shape onto a
shape subspace [8]. In all our experiments, to determine the
dimension of the subspace, we demand it to capture 98%
variations. As shown in Fig. 12c, the statistical shape model
is very effective to enforce the prior shape constraint.

The refined control points can be used to warp a mesh
to make it fit the image better (as shown in Section VI-C).
Fig. 13a shows the mean shape aligned with the detected RV
pose. Fig. 13b shows the refinement of the control points,
which fit the data more accurately, but inconsistent with the
mesh. Using the original and refined control points as the
anchor points, we can estimate the nonrigid deformation of the
TPS model and use it to warp the mesh points. As shown in
Fig. 13c, the mesh points and the control points are consistent
again after warping. Since the control points are clustered
around the aortic and mitral valves for the LV, we add the
point farthest from the mitral valve (which is the LV apex) as
an anchor point in the TPS model to warp the LV. A similar
treatment is applied to warp both atria.

Due to the large variation introduced by cardiac motion,
each chamber is processed separately since the variation of a
chamber is smaller than that of a whole heart. After chamber
pose estimation, the initial mesh of atria and ventricles have
conflict around the mitral and tricuspid valves. Using the
control points around the valves as anchor points in TPS
warping, we can resolve such mesh conflict. After the whole
segmentation procedure, further mesh conflict can be resolved
through a post-processing step.

After TPS warping, the mesh points are closer to the
chamber boundary. To further reduce the error, we train again
a boundary detector for each mesh surface. The boundary
detectors are then used to adjust each point (the control points
are kept unchanged in this step). Fig. 14a shows the aligned
LV in a cardiac CT volume. Fig. 14b shows the adjusted shape.
Shape constraint is enforced by projecting the adjusted shape
onto a shape subspace to get the final result, as shown in
Fig. 14c. The above steps can be iterated a few time. Based on
the trade-off between speed and accuracy, we use one iteration
for LV/LA, and two iterations for RV/RA since the right side

of the heart has typically much lower contrast.

VI. EXPERIMENTS

A. Data Set

Under the guidance of cardiologists, we manually annotated
all four chambers in 323 cardiac CT volumes (with various
cardiac phases) from 137 patients with various cardiovascular
diseases. The specific disease information for a patient has not
been captured. Since the LV is clinically more important than
other chambers, to improve the system performance on LV
detection and segmentation, we annotated extra 134 volumes.
In total, we have 457 volumes from 186 patients for the LV.
The annotation is done by several of the authors. However,
for each volume, there is only one annotation. Therefore, we
cannot study the intra- and inter-observer variabilities, this
being a limitation of the dataset. The number of patients used
in our experiments is significantly larger than those reported
in the literature, for example, 13 in [17], 18 in [39], 27
in [10], and 30 in [9]. The data was collected from 27 institutes
over the world (mostly from Germany, the USA, and China)
using Siemens Somatom Sensation or Definition scanners. The
imaging protocols are heterogeneous with different capture
ranges and resolutions. A volume may contain 80 to 350 slices,
while the size of each slice is the same with 512×512 pixels.
The resolution inside a slice is isotropic and varies from 0.28
mm to 0.74 mm for different volumes. The slice thickness
(distance between neighboring slices) is larger than the in-slice
resolution and varies from 0.4 mm to 2.0 mm for different
volumes. We use four-fold cross validation to evaluate our
algorithm. Data from the same patient may have similar shapes
and image characteristics since they were often captured on the
same CT scanner with the same scanning parameters. If such
data appear in both the training and test sets during cross-
validation, the result is biased toward a lower segmentation
error. To remove such bias, we enforce the constraint that the
volumes from the same patient can only appear in either the
training or test set, but not in both.

B. Experiments on Heart Chamber Localization

In this section, we evaluate the proposed approach for heart
chamber localization. The error measure defined in Eq. (4) is
used since we can easily distinguish optimal and non-optimal
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Fig. 15. The error, defined in Eq. (4), of the best candidate with respect to the number of candidates preserved after each step. (a) Position estimation. (b)
Position-orientation estimation. (c) Full similarity transformation estimation. The red dotted lines show the lower bound of the detection error.

estimates, compared to other error measures (e.g., the weighted
Euclidean distance). The optimal estimate is up-bounded by
0.5 search steps under any search grid. However, a non-optimal
estimate has an error larger than 0.5.

The efficiency of MSL comes from the fact that we prune
the search space after each step. One concern is that since
the space is not fully explored, it may miss the optimal
solution at an early stage. In the following, we demonstrate
that accuracy only deteriorates slightly in MSL. Fig. 15 shows
the error of the best candidate after each step with respect to
the number of candidates preserved. The curves are calculated
on all volumes based on cross validation. The red dotted lines
show the error of the optimal solution under the search grid.
As shown in Fig. 15a for position estimation, if we keep
only one candidate, the average error may be as large as 3.5
voxels. However, by retaining more candidates, the minimum
errors decrease quickly. We have a high probability to keep
the optimal solution when 100 candidates are preserved. We
observed the same trend in different marginal spaces, such as
the position-orientation space as shown in Fig. 15b. Based
on the trade-off between accuracy and speed, we preserve
50 candidates after position-orientation estimation. After full
similarity transformation estimation, the best candidates we get
have an error ranging from 1.0 to 1.4 search steps as shown in
Fig. 15c. Using the average of the topK (K = 100) candidates
as the final single estimate, we achieve an error of about 1.5 to
2.0 search steps for different chambers. Our approach is robust
and we did not observe any major failure. For comparison, the
heart localization modules in both [17] and [9] failed on about
10% volumes.

C. Experiments on Boundary Delineation

In this section, we evaluate our approach for boundary delin-
eation. As a widely used criterion [9], [10], [17], the symmetric
point-to-mesh distance, Ep2m, is exploited to measure the
accuracy in surface boundary delineation. For each point on
a mesh, we search for the closest point (not necessarily mesh
triangle vertices) on the other mesh to calculate the minimum
Euclidean distance. We calculate the point-to-mesh distance
from the detected mesh to the ground-truth and vice versa to
make the measurement symmetric.

In our experiments, we estimate the pose of each chamber
separately. Therefore, we use 4 × 9 = 36 pose parameters to

align the mean shapes. As shown in the second column of
Table I, the mean Ep2m error after heart localization is 3.17
mm for the LV endocardium, 2.51 mm for the LV epicardium,
2.78 mm for the LA, 2.93 mm for the RV, and 3.09 mm for the
RA. Alternatively, we can treat the whole heart as one object
in heart localization, then we use only nine pose parameters.
In this way, the mean Ep2m error achieved is 3.52 mm for
the LV endocardium, 3.07 mm for the LV epicardium, 3.95
mm for LA, 3.94 mm for the RV, and 4.64 mm for the RA.
Obviously, treating each chamber separately, we can obtain a
better initialization.

In our nonrigid deformation estimation, control points and
normal mesh points are treated differently. We first estimate
the deformation of control points and use TPS warping to
make the mesh consistent after warping. As shown in the
third column in Table I, after control point based alignment,
we slightly reduce the error for the LV, LA, and RA by 5%
and significantly reduce the error by 17% for the RV since
the control points are more uniformly distributed in the RV
mesh. After deformation estimation of all mesh points, the
final segmentation error ranges from 1.13 mm to 1.57 mm for
different chambers. The LV and LA have smaller errors than
the RV and RA due to the use of contrast agent in the left
heart (as shown in Fig. 16).

We compare our approach to the baseline ASM using non-
learning based boundary detection scheme [8]. The com-
parison is limited to the last step on normal mesh point
deformation. Input for both algorithms are the same initialized
mesh. The iteration number in the baseline ASM is tuned to
give the best performance. As shown in Table I, the baseline
ASM actually increase the error for weak boundaries (e.g.,
the LV epicardium and RV). It performs well for strong
boundaries, such as the LV endocardium and the LA, but it is
still significantly worse than the proposed method.

Fig. 16 shows several examples for heart chamber seg-
mentation using the proposed approach. It performs well on
volumes with low contrast (as shown in the second row of
Fig. 16) and it is robust even under severe streak artifacts
(as shown in the third example). Since our system is trained
on volumes from all phases from a cardiac cycle, we can
process volumes from the end-systolic phase (which has
a significantly small blood pool for the LV) without any
difficulty, as shown in the last example in Fig. 16. Fig. 17
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Fig. 16. Examples of heart chamber segmentation in 3D CT volumes with green for the LV endocardium, magenta for the LV epicardium, cyan for the LA,
brown for the RV, and blue for the RA. Each row represents three orthogonal views of a volume.

shows the segmentation result on a full torso CT volume,
where no contrast agent nor electrocardiogram-based gating
is applied. This volume is challenging for thresholding based
region growing techniques [9], [39]. However, our machine
learning based approach can deal with this case quite well.

After code optimization and using multi-threading tech-
niques, we achieved an average speed of 4.0 seconds for the
automatic segmentation of all four chambers on a computer
with a dual-core 3.2 GHz processor and 3 GB memory.
The computation time is roughly equally split on the MSL
based similarity transformation estimation and the nonrigid
deformation estimation.

In Table II, we presented a brief summary of the previous
work on heart segmentation in 3D CT volumes. It is obvious,

our approach is faster compared to other reported results, e.g.,
5 seconds for left ventricle segmentation in [39], 15 seconds
for nonrigid deformation in [40], and more than 1 minute
in [11], [12]. Compared with results on other imaging modali-
ties [5], [22], to the best of our knowledge, our approach is also
the fastest. Most of the previous approaches are semiautomatic,
except [17]. In general, we cannot compare error measures
reported in different papers directly due to the difference
in heart models and datasets. In the literature, we noticed
two papers [10], [17] reporting better results than ours, both
on much smaller datasets. Both used the same heart model,
one automatic [17] and one semi-automatic [10]. Different
from our four-chamber model, their heart model also included
major vessel trunks. Both papers only gave overall errors for
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TABLE I

MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF THE POINT-TO-MESH ERROR (IN MILLIMETERS) FOR THE SEGMENTATION OF HEART

CHAMBERS BASED ON CROSS VALIDATION.

After Rigid
Localization

After Control Point
Deformation and Warping Baseline ASM [8] Proposed Approach

Left Ventricle Endocardium 3.17 (1.10) 3.00 (1.11) 2.24 (1.21) 1.13 (0.55)
Left Ventricle Epicardium 2.51 (0.78) 2.35 (0.73) 2.45 (1.02) 1.21 (0.41)

Left Atrium 2.78 (0.98) 2.67 (1.01) 1.89 (1.43) 1.32 (0.42)
Right Ventricle 2.93 (0.75) 2.40 (0.82) 2.69 (1.10) 1.55 (0.38)
Right Atrium 3.09 (0.86) 2.90 (0.92) 2.81 (1.15) 1.57 (0.48)

TABLE II

COMPARISON WITH PREVIOUS WORK ON HEART SEGMENTATION IN 3D CT VOLUMES.

Patients/
Subjects Volumes Chambers Automatic Speed

Point-to-Mesh
Error (mm)

Neubauer and Wegenkiltl [11] N/A N/A Left ventricle No >1 min N/A
McInerney and Terzopoulos [12] 1 16 Left ventricle No 100 mina N/A

Fritz et al. [9] 30 30 Left ventricle No N/A 1.5
Jolly [39] 18 36 Left ventricle Nob ∼5 s N/A

Ecabert et al. [17] 13 28 Four chambers and vessel trunks Yesc N/A 0.85d

Lorenz and von Berg [10] 27 27 Four chambers and vessel trunks No N/A 0.81-1.19
von Berg and Lorenz [40] 6 60 Four chambers and vessel trunks No 15 s N/A

Our approach 137+ 323+ Four chambers Yes 4.0 s 1.13-1.57
a This was the time used to process the whole sequence of 16 volumes.
b The long axis of the left ventricle needed to be manually aligned. All other steps were automatic.
c The success rate of automatic heart localization was about 90%.
d Gross failures in heart localization were excluded from evaluation.

Fig. 17. Heart chamber segmentation result for a low-contrast full-torso CT volume. The first column shows a full torso view and the right three columns
show close-up views.

the whole heart model (including the major vessel trunks),
without any break-down error measure for each chamber.
Some care needs to be taken to compare our approach with
these two papers. 1) Ecabert et al. [17] admitted that it was
hard to distinguish the boundary of different chambers. For
example, it was likely to include a part of the LA in the
segmented LV mesh and vice verse. Such errors were only
partially penalized in both [17] and [10] since they did not
provide break-down error measure for each chamber. However,
in our evaluation, we fully penalize such errors. 2) About
8% mesh points around the connection of vessel trunks to
heart chambers were excluded for evaluation in [17]. In their
model, all chambers and vessel trunks were artificially closed.
Since there are no image features around these artificial caps,
these regions cannot be delineated accurately even by an
expert. Based on this consideration, they were removed from
evaluation. In our model, all valves are represented as closed
contours along their borders in our heart model. We only need
to delineate the border of the valves and this can be done
more accurately. Therefore, no mesh part is excluded from

evaluation. 3) In [17], the automatic heart localization module
failed on about 10% volumes and such gross failures were
also excluded for evaluation. 4) In [10], only volumes from
the end-diastolic phase were used for experiments. However,
our dataset contains 323+ volumes from all cardiac phases.
The size and shape of a chamber change significantly from
the end-diastolic phase to the end-systolic phase. Therefore,
there is much more variance in our dataset.

D. Heart Chamber Tracking

The size and shape of a heart chamber (especially, the LV)
change significantly from an expansion phase to a contraction
phase. Since our system is trained on volumes from all phases
in a cardiac cycle, we can reliably detect and segment the heart
from any cardiac phase. By performing heart segmentation
frame by frame, the heart motion is tracked in the robust
tracking-by-detection framework. To make the motion more
consistent, mild motion smoothing is applied after the segmen-
tation of each frame. Fig. 18 shows the tracking results on one
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TABLE III

THE EJECTION FRACTION (EF) ESTIMATION ACCURACY FOR ALL SIX DYNAMIC SEQUENCES IN OUR DATASET.

Patient #1 Patient #2 Patient #3 Patient #4 Patient #5 Patient #6 Mean Error Standard Deviation
Ground Truth 68.7% 49.7% 45.8% 62.9% 47.4% 38.9% 2.3% 1.6%

Estimation 66.8% 51.8% 42.8% 64.4% 42.3% 38.5%

Fig. 18. Tracking results for the heart chambers on a dynamic 3D sequence with 10 frames. Four frames (1, 2, 3, and 6) are shown here.
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Fig. 19. The left ventricle volume-time curves for two dynamic 3D
sequences.

sequence. To further improve the system performance, we can
exploit a motion model learned in an annotated dataset [41],
but it is out of the scope of this paper.

The motion pattern of a chamber during a cardiac cycle
provides many important clinical measurements of its func-
tionality, e.g., the ventricular ejection fraction, myocardium
wall thickness, and dissynchrony within a chamber or between
different chambers [2]. Given the tracking result, we can
calculate the ejection fraction (EF) as follows,

EF =
VolumeED − VolumeES

VolumeED
, (7)

where VolumeED and VolumeES are the volume measures
of the end-diastolic (ED) and end-systolic (ES) phases, re-
spectively. In our dataset, there are six patients each with 10
frames from the whole cardiac cycle. Due to the space limit,
Fig. 19 shows the LV volume-time curves for two dynamic
sequences. Table III shows the EF estimation accuracy for all
six sequences. The estimated EFs are close to the ground truth
with a mean error of 2.3%.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel four-chamber surface
mesh model for a heart. In heart modeling, the following two
factors are considered and traded-off: 1) accuracy in anatomy
and 2) easiness for both annotation and automatic detection. To
more accurately represent the anatomy, important landmarks
such as valves and ventricular septum cusps are explicitly

represented in our model. These landmarks can be detected
reliably to guide the automatic model fitting process.

Using this model, we develop an efficient and robust ap-
proach for automatic heart chamber segmentation in 3D CT
volumes. The efficiency of our approach comes from the
two new techniques, marginal space learning and steerable
features. We achieved an average speed of 4.0 seconds per
volume to segment all four chambers. Robustness is achieved
by using recent advances in learning discriminative models
and exploiting a large annotated dataset. All major steps in
our approach are learning-based, therefore minimizing the
number of underlying model assumptions. According to our
knowledge, this is the first study reporting stable results on
a large cardiac CT dataset. Our segmentation approach is
general and we have extensively tested it on many challenging
3D detection and segmentation tasks in medical imaging
(e.g., ileocecal valves, polyps [42], and livers in abdominal
CT [32], brain tissues [43] and heart chambers in ultrasound
images [41], [44], and heart chambers in MRI).
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