
Morphological and Functional Modeling of the
Heart Valves and Chambers

Razvan Ioan Ionasec, Dime Vitanovski and Dorin Comaniciu

Image Analytics and Informatics, Siemens Corporate Research, Princeton NJ, USA

Abstract Personalized cardiac models have become a crucial component of the clin-
ical workflow, especially in the context of complex cardiovascular disorders, such as
valvular heart disease. In this chapter we present a comprehensive framework for the
patient-specific modeling of the valvular apparatus and heart chambers from multi-
modal cardiac images. An integrated model of the four heart valves and chambers
is introduced, which captures a large spectrum of morphologic, dynamic and patho-
logic variations. The patient-specific model parameters are estimated from four-
dimensional cardiac images using robust learning-based techniques. These include
object localization, rigid and non-rigid motion estimation, and surface boundary es-
timation from dense 4D data (TEE, CT) as well as regression-based techniques for
surface reconstruction from sparse 4D data (MRI). Clinical applications based on
the patient-specific modeling approach are proposed for decision support in Tran-
scatheter Aortic Valve Implantation and Percutaneous Pulmonary Valve Implanta-
tion while performance evaluation is conducted on a population of 476 patients.

1 Introduction

The unprecedented increase in life expectancy over the current and past century pro-
pelled Cardiovascular Disease (CVD) to become the deadliest plague, which today
causes approximately 30% of fatalities worldwide and nearly 40% in high-income
regions. Valvular Heart Disease (VHD) is a representative class of CVD, which af-
fects 2.5% of the global population and requires yearly over 100,000 surgeries in the
United States alone. Yet, heart valve operations are the most expensive and riskiest
cardiac procedures, with an average cost of $141,120 and 4.9% in-hospital death
rate (Lloyd-Jones et al. (2009)).

Due to the strong anatomical, functional and hemodynamic inter-dependency of
the heart valves, VHDs do not affect only a single valve, but rather several valves are
impaired. Recent studies demonstrate strong influence of pulmonary artery systolic
pressure on the tricuspid regurgitation severity (Mutlak et al. (2009)). In Lansac
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et al. (2002); Timek et al. (2003) the simultaneous evaluation of aortic and mitral
valves is encouraged, given the fibrous aortic-mitral continuity, which anchors the
left side valves and facilitates the reciprocal opening and closing motion during the
cardiac cycle. Moreover, in patients with mitral and tricuspid valve regurgitation,
joint surgery is recommended to minimize the risk for successive heart failure or
reduced functional capacity. Morphological and functional assessment of the com-
plete heart valve apparatus is crucial for clinical decision making during diagnosis
and severity assessment as well as treatment selection and planning.

Decisions in valvular disease management increasingly rely on non-invasive
imaging. Techniques like Transesophageal Echocardiography (TEE), cardiac Com-
puted Tomography (CT) and Cardiovascular Magnetic Resonance (CMR) imaging,
enable dynamic four dimensional scanning of the beating heart over the whole car-
diac cycle. Precise morphological and functional knowledge about the valvular ap-
paratus is highly esteemed and it is considered a prerequisite for the entire clinical
workflow including diagnosis, therapy-planning, surgery or percutaneous interven-
tion as well as patient monitoring and follow-up. Nevertheless, most non-invasive
investigations to date are based on two-dimensional images, user-dependent pro-
cessing and manually performed, potentially inaccurate measurements (Bonow et al.
(2006)).

The progress in medical imaging is matched by important advances in surgical
techniques, bioprosthetic valves, robotic surgery and percutaneous interventions,
which have led to a twofold increase in the number of valve procedures performed
in the United States since 1985 (Jablokow (2009)). There has been a major trend in
cardiac therapy towards minimally invasive transcatheter procedures to reduce the
side effects of classical surgical techniques. Without direct access and view to the
affected structures those interventions are usually performed in so-called Hybrid
ORs, equipped with advanced imaging technology. Thus, procedures such as the
Transcatheter Aortic Valve Implantation (TAVI) are permanently guided via real-
time intra-operative images provided by X-ray Fluoroscopy and Transesophageal
Echocardiography systems (Agarwal and Triggs (2004)). Powerful computer-aided
tools for extensive non-invasive assessment, planning and guidance are mandatory
to continuously decrease the level of invasiveness and maximize effectiveness of
valve therapy.

Except for the past decade, cardiac modeling was almost exclusively focused on
the left ventricle (LV) (Park et al. (1996); Staib and Duncan (1996)). Rueckert and
Burger (1997); Fritz et al. (2006) achieved a combined model of the two ventricles,
LV and right ventricle (RV). Few methods in the literature also consider the left and
right atria (Zheng et al. (2008); Lorenz and von Berg (2006); Zhuang et al. (2010a);
Huang et al. (2007); Zhuang et al. (2010b); Ecabert et al. (2008)), but none explic-
itly handle the heart valves. The majority of existent valve models presented in the
literature are generic and rough approximations of the true valvular anatomy. Their
primary application is the analysis of the blood-tissue interaction during the cardiac
cycle as well as mechanical and functional behavior of the valvular apparatus. The
first cardiac model to include the heart valves was proposed by Peskin and McQueen
(1996). De Hart et al. (2002) introduced a refined computational model of the aortic
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valve while Soncini et al. (2009) presented a realistic finite element model of the
physiological aortic root from medical imaging data. Kunzelman et al. (2007) in-
troduced the first three-dimensional finite element model of the mitral valve. Votta
et al. (2008) presented an extended mitral valve model based on in vivo data. Watan-
abe et al. (2005) introduced a geometrical model of the mitral valve, obtained from
real-time three-dimensional TEE. The study by Veronesi et al. (2009b) also con-
siders the aortic valve to investigate the functional dependency between the two
left-side valves. Schievano et al. (2007b) proposed an analysis protocol of the pul-
monary trunk based on rapid prototyping systems. Recently introduced models of
the aortic valve (Waechter and et al. (2010), Ionasec et al. (2008b)), the mitral valve
(Schneider et al. (2010), Conti et al. (2010)) aortic-mitral coupling (Ionasec et al.
(2009a); Veronesi et al. (2009a), Ionasec et al. (2010)) address important aspect of
data-driven valve models, yet do not offer a unified approach for the patient-specific
modeling of the entire valvular apparatus.

In this chapter we present a complete patient-specific model of the valvular ap-
paratus and heart chambers estimated from multi-modal cardiac images. Section 2
describes a morphological and functional representation of the aortic, mitral, tricus-
pid and pulmonary valves as well as the four heart chambers. The patient-specific
parameters of the cardiac models are estimated from four-dimensional cardiac im-
ages using learning-based methods. Section 3 describes robust algorithms for object
localization and rigid motion estimation, non-rigid motion estimation, and surface
boundary estimation from dense 4D data (Computed Tomography and Echocardiog-
raphy) as well as regression-based techniques for surface reconstruction from sparse
4D data (Magnetic Resonance Imaging). Based on the patient-specific modeling
techniques, in section 5 we introduce two clinical applications that support analy-
sis and planning in Transcatheter Aortic Valve Implantation (TAVI) and Percuta-
neous Pulmonary Valve Implantation (PPVI). Part of this work has been reported in
our previous publications (Ionasec et al. (2009b,a); Vitanovski et al. (2009, 2010);
Ionasec et al. (2010); Grbić et al. (2010)).

2 Morphological and Functional Modeling of the Heart Valves
and Chambers

This section introduces an explicit mathematical representation of the cardiac valves
and chambers that parameterizes relevant clinical aspects observable through non-
invasive imaging modalities (see figure 1). The proposed model of the aortic, mitral,
tricuspid and pulmonary valves and the four chambers precisely captures morpho-
logical, dynamical and pathological variations. To handle the inherent complexity,
the representation is structured on three abstraction layers: global location and rigid
motion, non-rigid landmark motion model, and comprehensive surface model. Each
model abstraction naturally links to anatomical and dynamical aspects at a specific
level of detail, while the hierarchical interconnection of the individual parameteri-
zations is driven by the physiology of the valves.
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(a) (b) (c)

Fig. 1 The proposed model of the heart valves and chambers in systole (a) and diastole (c). (b) Ex-
planted specimen of the heart valves - Reproduced with permission of the author and the European
Association for Cardio-Thoracic Surgery from: Anderson RH. The surgical anatomy of the aortic
root. Multimedia Man Cardiothorac Surg doi:10.1510/mmcts.2006.002527.

2.1 Parametrization

Global Location and Rigid Motion: The global location of the valves is parameter-
ized through a similarity transformation in the Euclidean three-dimensional space,
which includes nine parameters. A time variable t is augmenting the representation
to capture the temporal variation during the cardiac cycle and model the rigid valve
motion:

θ(t) =
{
(cx,cy,cz),(αx,αy,αz),(sx,sy,sz), t

}
(1)

where (cx,cy,cz), (αx,αy,αz), (sx,sy,sz) are the position, orientation and scale
parameters. The location and rigid motion of each valve is modeled independently
through its individual set of parameters θ(t), which results into a total of 36× T
parameters for a given volume sequence I(t) of length T .

Non-Rigid Landmark Motion Model: The second abstraction level models anatom-
ical landmarks that are robustly identifiable by doctors, possess a particular visual
pattern, and serve as anchor points for qualitative and quantitative clinical assess-
ment. Normalized by the time-dependent similarity transformation, the motion of
each anatomical landmark j can be parameterized by its corresponding trajectory
Lj over a full cardiac cycle. For a given volume sequence I(t), one trajectory Lj is
composed by the concatenation of the spatial coordinates:

Lj(θi) = [Lj(0),Lj(1), · · · ,Lj(t), · · · ,Lj(T −1)] (2)

where Lj are spatial coordinates with Lj(t) ∈R3 and t an equidistant discrete time
variable t = 0, · · · ,T −1.



Morphological and Functional Modeling of the Heart Valves and Chambers 5

Comprehensive Surface Model: The full geometry of the valves and chambers
is modeled using surface meshes constructed along rectangular grids of vertices.
For each anatomic structure Ak, the underlying grid is spanned along two physi-
ologically aligned parametric directions, u and v. Each vertex pAk ∈ R3 has four
neighbors, except the edge and corner points with three and two neighbors, re-
spectively. Therefore, a rectangular grid with n× m vertices is represented by
(n− 1)× (m− 1)× 2 triangular faces. The model M of a certain component at
a particular time step t is uniquely defined by vertex collections of the anatomic
structures Ak. The time parameter t extends the representation to capture dynamics:

M(Lj,θi) = [

first anatomy︷ ︸︸ ︷{
pA1

0 , · · · ,pA1
N1

}
, · · · ,

n-th anatomy︷ ︸︸ ︷{
pAn

0 , · · · ,pAn
Nn

}
, t] (3)

where n is the number of represented anatomies, and N1 . . .Nn are the numbers
of vertices for a particular anatomy given in the following sections.

2.2 Left-Heart Valves

Aortic Valve: The aortic valve (AV) connects the left ventricular outflow tract to the
ascending aorta and includes the aortic root and three leaflets/cusps (left (L) aortic
leaflet, right (R) aortic leaflet and none (N) aortic leaflet). The root extends from
the basal ring to the sinotubular junction and builds the supporting structure for the
leaflets. These are fixed to the root on a crown-like attachment and can be thought
of as semi-lunar pockets (see figure 2).

Three aortic commissure points, LR-Comm, NL-Comm and RN-Comm, de-
scribe the interconnection locations of the aortic leaflets, while three hinges, L-
Hinge, R-Hinge, and N-Hinge, are their lowest attachment points to the root. For
each leaflet of the valve, the center of the corresponding free-edge is marked by the
leaflet tip point: L/R/N-Tip. The interface between the aorta and coronary arteries is
symbolized using the L/R-Ostium, the two coronary ostia (see figure 3(b)).

The anatomical landmarks are also used to describe the global location and rigid
motion as follows (see figure 3(a)): (cx,cy,cz)aortic equals to the gravity center of
the aortic landmarks, except aortic leaflet tips. αz is the normal vector to the LR-
Comm, NL-Comm, RN-Comm plane, αx is the unit vector orthogonal to αz which
points from (cx,cy,cz)aortic to LR-Comm, αy is the cross-product of αx and αz.
(sx,sy,sz)aortic is given by the maximal distance between the center (cx,cy,cz)aortic
and the aortic landmarks, along each of the axes (αx,αy,αz).

Four surface structures represent the aortic valve: aortic root, left coronary leaflet,
right coronary leaflet and non coronary leaflet. The aortic root connects the ascend-
ing aorta to the left ventricle outflow tract and is represented through a tubular grid
(see figure 2(a)). This is aligned with the aortic circumferential u and ascending
directions v and includes 36× 20 vertices and 1368 faces. The root is constrained
by six anatomical landmarks, i.e. three commissures and three hinges, with a fixed
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Isolated surface components of the aortic and mitral models with parametric directions and
spatial relations to anatomical landmarks: (a) aortic root, (b) aortic leaflets, (c) aortic-mitral in end-
systole, (d) anterior mitral leaflet, (e) posterior mitral leaflet and (f) aortic-mitral in end-diastole.

correspondence on the grid. The three aortic leaflets, the L-, R- and N-leaflet, are
modeled as paraboloids on a grid of 11×7 vertices and 120 faces (see figure 2(b)).
They are stitched to the root on a crown like attachment ring, which defines the
parametric u direction at the borders. The vertex correspondence between the root
and leaflets along the merging curve is symmetric and kept fixed. The leaflets are
constrained by the corresponding hinges, commissures and tip landmarks, where the
v direction is the ascending vector from the hinge to the tip (see figure 2(c)).

Mitral Valve: Located in between the left atrium (LA) and the left ventricle (LV),
the mitral valve (MV) includes the posterior leaflet, anterior leaflet, annulus and
the subvalvular apparatus. The latter consists of the chordae tendiane and papillary
muscles, which are not explicitly treated in this work (see figure 2).

The two interconnection points of the mitral leaflets at their free edges are defined
by the mitral anterior and posterior commissures, while the mitral annulus is fixed
by the L/R-Trigone and posteroannular midpoint (PostAnn MidPoint). The center
of the two mitral leaflets’ free-edges is marked by the leaflet tip points, the Ant and
Post-Tip (anterior/posterior) leaflet tips (see figure 4(b))

The barycentric position (cx,cy,cz)mitral is computed from the mitral landmarks,
except mitral leaflet tips (see figure 4(a)). αz is the normal vector to the L/R-Trigone,
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(a) (b)

Fig. 3 Anatomical landmark model of the aortic valve. (a) Perspective view including the bounding
box. (b) Landmarks relative to the anatomical location illustrated in long and short axis from an
example CT study.

(a) (b)

Fig. 4 Anatomical landmark model of the mitral valve. (a) Perspective view including the bound-
ing box. (b) Landmarks relative to the anatomical location illustrated in long and short axis from
an example CT study.

PostAnn MidPoint plane, αx is orthogonal to αz and points from (cx,cy,cz)mitral
towards the PostAnn MidPoint. The scale parameters (sx,sy,sz)mitral are defined as
for the aortic valve, to comprise the entire mitral anatomy.

The mitral leaflets separate the (LA) and (LV) hemodynamically and are con-
nected to the endocardial wall by the saddle shaped mitral annulus. Both are mod-
eled as paraboloids and their upper margins implicitly define the annulus. Their
grids are aligned with the circumferential annulus direction u and the orthogonal
direction v pointing from the annulus towards leaflet tips and commissures (see fig-
ures 2(d) and 2(e)). The anterior leaflet is constructed from 18×9 vertices and 272
faces while the posterior leaflet is represented with 24× 9 vertices and 368 faces.
Both leaflets are fixed by the mitral commissures and their corresponding leaflet
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Isolated surface components of the tricuspid and pulmonary models with parametric direc-
tions and spatial relations to anatomical landmarks: (a) tricuspid leaflet, (b) tricuspid annulus and
leaflets, (c) tricuspid-pulmonary in end-diastole, (d) pulmonary trunk, (e) pulmonary leaflets and
(f) tricuspid-pulmonary in end-systole.

tips. The left / right trigones and the postero-annular midpoint further confine the
anterior and posterior leaflets, respectively (see figure 2(f)).

2.3 Right-Heart Valves

Pulmonary Valve: The pulmonary trunk emerges out of the (RV) and branches
into the left and right pulmonary arteries, which connect to the corresponding lung.
It supports a semilunar valve, geometrically and topologically similar to the aortic
valve. The three leaflets of the pulmonary valve (PV) are named according to their
relationship with respect to the (AV) as left and right facing leaflet, and none facing
leaflet (see figure 5).

Identical as for the aortic valve, three commissure points, LR-Comm, NL-Comm
and RN-Comm, describe the interconnection locations of the pulmonary leaflets,
while three hinges, L-Hinge, R-Hinge, and N-Hinge, are their lowest attachment
points to the pulmonary trunk. For each leaflet of the valve, the center of the cor-
responding free-edge is marked by the leaflet tip point: L/R/N-Tip. The pulmonary
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(a) (b)

Fig. 6 Anatomical landmark model of the pulmonary valve. (a) Perspective view including the
bounding box. (b) Landmarks relative to the anatomical location illustrated in long and short axis
from an example CT study.

trunk is bounded by two landmarks, the RVOT on the right ventricle side and Bifur-
cation distal to the valve location. The model is completed by right ventricle Trigone
landmark (see figure 6(b)).

The location (cx,cy,cz)pulmonary is equal to the gravity center of the commis-
sures and hinges landmarks (see figure 6(b)). αz is the normal vector to the LR-
Comm, NL-Comm, RN-Comm plane, αx is the unit vector orthogonal to αz which
points from (cx,cy,cz)aortic to LR-Comm, αy is the cross-product of αx and αz.
(sx,sy,sz)aortic is given by the maximal distance between the center (cx,cy,cz)aortic
and the aortic landmarks, along each of the axes (αx,αy,αz).

The representation of the pulmonary valve is composed out of four structures:
pulmonary trunk, left facing leaflet, none facing leaflet and right facing leaflet. The
pulmonary trunk emerges out of the right ventricular outflow tract, supports the pul-
monary valves and its three leaflets, and ends at the level of the pulmonary artery
bifurcation. The grid, which spans the pulmonary trunk surface, is aligned with
the circumferential u and longitudinal direction v of the valve (see figure 5(d)). It
includes 50×40 vertices and 3822 faces confined through the pulmonary commis-
sures, hinges and the (RV) trigone. Additionally, the RVOT and Bifurcation land-
marks determine its longitudinal span. The attached L-, R- and N- leaflets, are mod-
eled as paraboloids along the annulus circumferential direction u and vector v point-
ing from the corresponding hinge to the leaflet tip (see figure 5(e)). Each includes
11× 7 vertices and 120 faces bounded by the associated two commissures, hinge
and tip (see figure 5(f)).

Tricuspid Valve: The tricuspid valve (TV), also called the right atrioventricular
valve, separates the (RA) from the (RV). It mainly consists of the annulus and sub-
valvular apparatus as well as three leaflets: septal, inferior and anterosuperior leaflet
(see figure 5).
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(a) (b)

Fig. 7 Anatomical landmark model of the tricuspid valve. (a) Perspective view including the
bounding box. (b) Landmarks relative to the anatomical location illustrated in long and short axis
from an example CT study.

The three leaflets of the tricuspid valve, septal-, anterior- and posterior leaflet
interconnect in three points marked by three tricuspid commissures, namely the AS
Comm, the PA Comm and the SP Comm landmarks. The tricuspid landmark model
is completed by the Sept Tip, Ant Tip and Post Tip landmarks, which mark the
center of the leaflets’ free edge (see figure 7(b)).

The barycentric position (cx,cy,cz)tricuspid is computed from the tricuspid com-
missures, AS Comm, PA Comm and SP Comm (see figure 7(a)). αz is the normal
vector to the commissural plane, αx is orthogonal to αz and points towards the AS
Comm. The scale parameters (sx,sy,sz)tricuspid are defined to comprise the entire
tricuspid valve anatomy.

The function of the tricuspid valve is to regulate the blood flow from the (RA) to
the (RV), staying closed during systole and open during diastole. The model is con-
strained by three surfaces: septal-, anterior- and posterior leaflet (see figure 5(a)).
The tricuspid leaflets are modeled as hyperbolic paraboloids and implicitly describe
the tricuspid annulus. Their grids are spanning along the annulus circumferential
direction u and the perpendicular vector v pointing for the annulus towards the cor-
responding leaflet tip, and consist out of 22×14 vertices and 546 faces (see figure
5(b)). Each leaflet is constrained by the corresponding two commissures and one
leaflet tip (see figure 5(c)).

2.4 Heart Chambers

Left Ventricle and Atrium: The left ventricle is constructed from 78 landmarks
(16 mitral lateral, 15 mitral septum, 16 left ventricle output tract and 32 aortic valve
control points) and four surface geometries (LV epicardium, LV endocardium and
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(a) (b)

(c) (d) (e) (f)

Fig. 8 Cardiac model components: (a) the left heart (left ventricle and left atrium), (b) right heart
(right ventricle and right atrium), (c) aortic valve, (d) mitral valve, (e) pulmonary valve and (f)
tricuspid valve.

LV output tract). The left atrial surface is connected to the left ventricle via the aortic
valve control points (figure 8(a)) Zheng et al. (2008).

Right Ventricle and Atrium: The right ventricle is composed of 74 landmarks (16
tricuspid lateral, 15 tricuspid septum, 28 tricuspid valve and 18 pulmonary valve
control points) and four surface geometries (RV apex, RV output tract and RV inflow
tract). The right atrial surface is constrained by 28 tricuspid valve control points and
links to the right ventricle (figure 8(b)) Zheng et al. (2008).

3 Patient-Specific Parameter Estimation from Cardiac Images

3.1 Object Localization and Rigid Motion Estimation

The goal is to determine the location of each specific anatomy from multimodal
cardiac images. Thus, the location and motion parameters θ of each valve, defined
in section 2.1, are estimated from a sequence of volumes I:



12 Razvan Ioan Ionasec, Dime Vitanovski and Dorin Comaniciu

argmaxθ p(θ |I) = argmaxθ

p(θ(0), · · · ,θ(n−1)|I(0), · · · , I(n−1)) (4)

Location Estimation: To solve equation 4, we formulate the object localization
as a classification problem and estimate θ(t) for each time step t. The probability
p(θ(t)|I(t)) can be modeled by a learned detector D, which evaluates and scores
a large number of hypotheses for θ(t). To avoid exhaustive search along a nine-
dimensional space we apply the Marginal Space Learning (MSL) framework (Zheng
et al. (2008)) and break the original parameter space into a subset of increasing
marginal spaces:

Σ1 ⊂ Σ2 ⊂ ·· · ⊂ Σn = Σ

The nine-dimensional space described by the similarity transform in a three-dimensional
Euclidean space is decomposed as follows:

Σ1 = (cx,cy,cz)
Σ2 = (cx,cy,cz,αx,αy,αz)
Σ3 = (cx,cy,cz,αx,αy,αz,sx,sy,sz)

where Σ1 represents the position marginal space, Σ2 the position + orientation
marginal space and Σ3 the position + orientation + scale marginal space, which
coincides with the original domain. In practice, the optimal arrangement for MSL
sorts the marginal spaces in a descending order based on their variance. In our case,
due to the CT, MRI and TEE acquisition protocols and physiological variations of
the heart, the highest variance comes from translation followed by orientation and
scale.

From the marginalization of the search domain, the target posterior probability
can be expressed as:

p(θ(t)|I(t)) = p(cx,cy,cz|I(t))
p(αx,αy,αz|cx,cy,cz, I(t))
p(sx,sy,sz|αx,αy,αz,cx,cy,cz, I(t))

Instead of using a single detector D, we train detectors for each marginal spaces
D1, D2 and D3, and estimate θ(t) by gradually increasing the dimensionality. De-
tectors are trained using the Probabilistic Boosting Tree (Tu (2005)) with Haar and
Steerable Features (Zheng et al. (2008)). After each stage only a limited number of
high-probability candidates are kept to significantly reduce the search space: 100
highest score candidates are retained in Σ1, 50 in Σ2 and 25 in Σ3.

Robust Motion Aggregation: [θ0(0) . . .θ25(0)] . . . [θ0(n−1) . . .θ25(n−1)] are the
candidates with the highest score estimated at each time step t, t = 0, . . .n−1. To ob-
tain a temporally consistent global location and motion θ(t), a RANSAC estimator
is employed. We assume a constant model for the cardiac motion, which drives the
global movement of the entire valvular apparatus. From randomly sampled candi-



Morphological and Functional Modeling of the Heart Valves and Chambers 13

dates, the one yielding the maximum number of inliers is picked as the final motion.
Inliers are considered within a distance of σ = 7mm from the current candidate and
extracted at each time step t. The distance measure d(θ(t)1,θ(t)2) is given by the
maximum L1 norm of the standard unit axis deformed by the parameters θ(t)1 and
θ(t)2, respectively:

L1(a1,a2) = max{|x1− x2|, |y1− y2|, |z1− z2|}
d(θ(t)1,θ(t)2) =

1
4 (L1(c1,c2)+L1(X1sx1,X2sx2)+L1(Y1sy1,Y2sy2)
+L1(Z1sz1,Z2sz2))

(5)

where X ,Y and Z are the unit axes obtained from the Euler angles (αx,αy,αz), c the
position vectors, and sx,sy,sz scale parameters.

3.2 Trajectory Spectrum Learning for Non-Rigid Motion
Estimation

Based on the determined global location and rigid motion, in this section we in-
troduce a trajectory spectrum learning algorithm to estimate non-linear landmark
movements from volumetric sequences (Ionasec and et al. (2009)). Considering the
representation in section 2.1 equation 2, the objective is to find for each landmark j
its trajectory Lj, with the maximum posterior probability from a series of volumes
I(t), given the rigid motion θ(t):

argmaxLj p(Lj|I,θ) = argmaxLj p(Lj(0), · · · ,Lj(n−1)|
I(0), · · · , I(n−1),θ(0), · · · ,θ(n−1))

(6)

It is difficult to solve Eq. 6 directly, thus various assumptions, such as the Marko-
vian property of the motion (Yang et al. (2008)), have been proposed to the poste-
rior distribution over Lj(t) given images up to time t. However, results are often
not guaranteed to be smooth and may diverge over time, due to error accumulation.
These fundamental issues can be addressed effectively if both, temporal and spatial
appearance information is considered over the whole sequence at once. A trajectory
can be uniquely represented by the concatenation of its Discrete Fourier Transform
(DFT) coefficients,

sj = [sj(0),sj(1), · · · ,sj(n−1)] (7)

where sj( f ) ∈ C 3 is the frequency spectrum of the x, y, and z components of the
trajectory Lj(t), and f = 0,1, · · · ,n−1. The magnitude of sj( f ) is used to describe
the shift-invariant motion according to the shift theorem of DFT, while the phase in-
formation is used to handle temporal misalignment. Equation 6 can be reformulated
as finding the DFT spectrum sj, with the maximal posterior probability:
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argmaxsj p(sj|I,θ) = argmaxsj p(sj(0), · · · ,sj(n−1)|
I(0), · · · , I(n−1),θ(0), · · · ,θ(n−1))

(8)

Instead of estimating the motion trajectory directly, we apply discriminative learning
to detect the spectrum sj in the frequency domain by optimizing equation 8.

Search Space Marginalization: Inspired by the MSL, we efficiently perform tra-
jectory spectrum learning and detection in DFT subspaces with gradually increased
dimensionality. The intuition is to perform a spectral coarse-to-fine motion estima-
tion, where the detection of coarse level motion (low frequency) is incrementally
refined with high frequency components representing fine deformations.

As described earlier, the motion trajectory is parameterized by the DFT spec-
trum components s j( f ), f = 0, . . . ,n− 1. We differentiate between two types of
subspaces, individual component subspaces Σ (k) and marginalized subspaces Σk de-
fined as:

Σ
(k) = {s(k)} (9)

Σk = Σk−1×Σ
(k) (10)

Σ0 ⊂ Σ1 ⊂ . . .⊂ Σr−1,r = |ζ | (11)

The subspaces Σ (k) are efficiently represented by a set of corresponding hypothe-
ses H (k) obtained from the training set. The pruned search space enables efficient
learning and optimization:

Σr−1 = H (0)×H (1)× . . .×H (r−1),r = |ζ |

Learning in Marginal Trajectory Spaces: The algorithm starts by learning the
posterior probability distribution in the DC marginal space Σ0. Subsequently, the
learned detector D0 is applied to identify high probable candidates C0 from the
hypotheses H (0). In the following step, the dimensionality of the space is increased
by adding the next spectrum component (in this case the fundamental frequency,
Σ (1)). Learning is performed in the restricted space defined by the extracted high
probability regions and hypotheses set C0×H (1) . The same operation is repeated
until reaching the genuine search space Σr−1.

For each marginal space Σk, corresponding discriminative classifiers Dk are
trained on sets of positives Posk and negatives Negk. We analyze samples con-
structed from high probability candidates Ck−1 and hypotheses H (k). The sample
set Ck−1×H (k) is separated into positive and negative examples by comparing the
corresponding trajectories to the ground truth in the spatial domain using the fol-
lowing distance measure:

d(Lj
1,Lj

2) = max
t
‖Lj

1(t)−Lj
2(t)‖ (12)
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Fig. 9 Diagram depicting the estimation of non-rigid landmark motion using trajectory spectrum
learning.

where Lj
1 and Lj

2 denote two trajectories for the j-th landmark. Positives are in a
certain distance distpos (e.g. 1.5mm) to the ground-truth over the whole trajectories.
Negatives, however, are selected individually for each time step, if the tested posi-
tion in space and time is larger than distneg (e.g. 3.5mm). The probabilistic boosting
tree PBT is applied to train a strong classifier Dk.

Motion Trajectory Estimation: The local non-rigid motion is parameterized by
both magnitude and phase of the trajectory spectrum s j( f ). The parameter estima-
tion is conducted in the marginalized search spaces Σ0, . . . ,Σr−1 using the trained
spectrum detectors D0, . . . ,Dr−1 as illustrated in figure 9. Starting from an initial
zero-spectrum, we incrementally estimate the magnitude and phase of each fre-
quency component s(k). At the stage k, the corresponding robust classifier Dk is
exhaustively scanned over the potential candidates Ck−1×H (k). The probability of
a candidate Ck ∈ Ck−1×H (k) is computed by the following objective function:

p(Ck) =
n−1

∏
t=0

Dk(IDFT (Ck), I, t) (13)

where t = 0, . . . ,n−1 is the time instance (frame index). After each step k, the top
50 trajectory candidates Ck with high probability values are preserved for the next
step k+1. The procedure is repeated until a final set of trajectory candidates Cr−1,
defined in the full space Σr−1, is computed.

3.3 Comprehensive Model Estimation

The final stage in our hierarchical model estimation algorithm is the delineation of
the full morphology and dynamics of the anatomies:

argmaxM p(M|I,θ ,L) = argmaxM p(M(0), · · · ,M(n−1)|
I(0), · · · , I(n−1),θ(0), · · · ,θ(n−1),L(0), · · · .L(n−1)) (14)
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Fig. 10 Diagram depicting the estimation of the comprehensive valve model. Estimation in cardiac
key phases, end-diastole and end-systole.

Fig. 11 Diagram depicting the estimation of the comprehensive valve model. Estimation in the full
cardiac cycle.

The shape model is first estimated in the End-Diastole (ED) and End-Systole (ES)
phases of the cardiac cycle and then the non-rigid deformation is propagated to the
remaining phases using a learned motion prior.

Estimation in Cardiac Key Phases: Using the previously estimated model param-
eters, a pre-computed mean shape of the comprehensive valvular model is placed
into the volumes I(tED) and I(tES) through a TPS transform Bookstein (1989). The
initial estimate is then deformed to fit the true valvular anatomy using learned object
boundary detectors, regularized by statistical shape models (see figure 10).

Learning based methods provide robust results Zheng et al. (2008); Yang et al.
(2008) by utilizing both gradients and image intensities at different image resolu-
tions and by incorporating the local context. Hence, the non-rigid deformation is
guided by a boundary detector Db learned using the probabilistic boosting-tree and
steerable features ( Zheng et al. (2008)). After initialization, Db evaluates hypothe-
ses for each discrete boundary point along its corresponding normal direction. The
new boundary points are set to the hypotheses with maximal probability. To guar-
antee physiologically compliant results, the final model is obtained after projecting
the estimated points to the statistical shape space ( Ionasec et al. (2010)).

Motion Estimation: Starting from the detection results in the ED and ES phases,
the model deformations are propagated in both forward and backward directions us-
ing learned motion priors similar as in Yang et al. (2008) (see figure 11). The motion
prior is estimated at the training stage using motion manifold learning and hierar-
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chical K-means clustering, from a pre-annotated database of sequences containing
one cardiac cycle each. First the temporal deformations are aligned by 4D general-
ized procrustes analysis. Next a low-dimensional embedding is computed from the
aligned training sequences using the ISOMAP algorithm Tenenbaum et al. (2000),
to represent the highly nonlinear motion of the heart valves. Finally, in order to ex-
tract the modes of motion Xm, the motion sequences are clustered with hierarchical
K-means based on the Euclidean distance in the lower dimensional manifold.

One-step forward prediction is used to select the correct motion mode for predict-
ing time step T . Therefore the previous shapes M(t) from time steps t = 1 · · ·T −1
and the corresponding time steps in each of the motion modes Xm are sub-sampled
by a constant factor k and the TPS transform TT PS computed. The mean error be-
tween the warped shape and the corresponding shape on each motion mode is com-
puted, and the motion mode with minimum distance is selected for prediction:

ET PS(Xm(t),M(t)) =
k
N

N/k

∑
j=1
||Xm

j
(t)−TT PS(M j(t))|| (15)

X(T ) = argmin
m

1
T −1

T−1

∑
t=1

ET PS(Xm(t),M(t)) (16)

where N denotes the number of points in M(t), Xm
j and M j are shape vertices,

and X(T ) the selected motion mode. The shape prediction M(T )′ for the following
frame T is then computed by inverse TPS mapping M(T )′ = T−1

T PS(X(T )) and the
boundary detector Db deforms the initialization to make it fit the data in the update
step. To ensure temporal consistency and smooth motion and to avoid drifting and
outliers, two collaborative trackers, an optical flow tracker and a boundary detection
tracker Db, are used in our method. The results are then fused into a single estimate
by averaging the computed deformations and the procedure is repeated until the full
4D model is estimated for the complete sequence.

3.4 Regression-based Surface Reconstruction

Sections 3.1 - 3.3 describe the framework for parameter estimation from dense 4D
images. In this section we present a regression-based method for estimating model
parameters from sparse 4D data, usually produced during Cardiac Magnetic Reso-
nance (CMR) exams.

In regression a solution to the following optimization problem is normally sought
Zhou et al. (2005):

R̂ (x) = argminR∈ℑ

N

∑
n=1

L(y(xn),R(xn))/N (17)
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where ℑ is the set of possible regression functions, L(◦,◦) is a loss function that
penalizes the deviation of the regressor output R(xn) from the true output, and N
is the number of available training examples. In our case the reconstruction task is
defined as a regression problem between the full surface model of a heart valve and
the respective sparse data acquired using the proposed CMR protocol:

M = R̂ (xsparse))+ ε (18)

In our regression problem both for input and output data we focus on shape infor-
mation and ignore respective volume data. Thus, the output M is always a set of m
3D points as defined in section 2.1.

Invariant Shape Descriptors: The input, xsparse, are shape descriptors (SD) de-
scribing the cloud of points belonging to surface in the sparse CMR data. The
simplest but reliable solution is to use the coordinates of known points as input
Vitanovski et al. (2010). A different solution, which we exploit here, is to use an-
gles, distances and areas between random sampled points as point cloud descriptors
Osada et al. (2002):

• A3: Measures the Angle between three random points;
• D2: Measure the distance between two random points;
• D3: Measures the square root of the area of the triangle between three random

points;

For the different shape descriptors proposed by Osada et al. (2002) we measured
feature importance by analysing the features selected by additive boosting. We have
identified (A3, D2 and D3) to be most informative in our context with the aver-
age probability of occurrence 0.11, 0.07, and 0.13, correspondingly. In addition, all
three types are translation, rotation and scale invariant descriptors which overcome
the necessity of point correspondences. Finally, histogram bins and the four first nor-
malized central moments describing the histogram distribution are computed from
the descriptors and incorporate in the regression model as input.

Ensembles of Additive Boosting Regressors: Each component m regression prob-
lem R̂m is solved by learning using additive boosting regression (ABR) Friedman
(2000). In ABR, the weak regressors ρt are sequentially fit to the residuals, starting
from the mean M and proceeding with the residuals of the availabe set of weak re-
gressors themselves. In ABR, the output function is assumed to take a linear form
as follows Friedman (2000):

R̂(x) =
T

∑
t=1

αtρt(x);ρt(x) ∈ ℑ (19)

where ρt(x) is a base (weak) learner and T is the number of boosting iterations.
We use very simple weak regressors as the base learners: simple 1D linear re-

gression (SLR), logistic stumps (LS) and decision stumps (DS). For SLR, in each
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Fig. 12 Left: 3D MRI scan of the whole heart in the ED phase. Middle: short axis imaging plane.
Right: long axis imaging plane

boosting iteration a feature which results in the smallest squared loss with linear re-
gression is added to the pool of already selected features. Each weak learner is thus
a simple linear regressor of the form (y = β1x+β0) where x is the selected shape
descriptor and y is a scalar output coordinate. LS is a simple logistic function on one
shape descriptor x:

y =
1

1+ e−z ,z = β1x+β0 (20)

Finally, DS is a piecewise linear threshold function where threshold θ is selected
so that the variance in the subsets of instances produced is minimized. Generaliza-
tion performance improvement of the underlying regression models and avoidance
of overfitting is achieved by injecting randomization in the input data and random
features sub spacing (BRFS), similar to Webb (2000). In particular, instead of pro-
viding a single model R for the training set X , we generate a set of models R j

i , each
obtained using the same additive regression procedure but on a random sample of
the data, with instances Si obtained using random sampling with replacement, and
a subset of features Fj including 50% features randomly sampled without replace-
ment from the original set. The final solution is then simply the mean surface for the
surfaces obtained with the regressors generated from the random samples:

R = meani,m(R
m
i ) (21)

Regression-based Pulmonary Valve Model Estimation from 2D+t CMR: In clin-
ical settings the long acquisition time characteristic to CMR is reduced by scanning
the Pulmonary Valve (PV) with a sparse 4D CMR protocol. Thus, one end-diastolic
3D volume IED and two orthogonal 2D+t cine images, short axis (SA) and long axis
(LA) (see figure 12) instead of a dense 4D image. We apply the regression-based
surface reconstruction to estimate a 4D patient-specific model of the pulmonary
valve Mpulmonary from the sparse data:

Mpulmonary = R(SD[M(tED),(CLA,CSA)1...T ]) (22)
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where M(tED) is the pulmonary valve model in IED and (CLA,CSA)1...T the pul-
monary valve contours in the LA and SA images over the entire sequence of length
T . M(tED),(CLA,CSA)1...T are estimated using the pipeline from section 3.1 - 3.3.
The method is similarly applied to estimate other anatomical structures from sparse
images.

4 Experimental Results

In this section we demonstrate the performance of the proposed patient-specific
parameter estimation framework from multi-modal images. Experiments are per-
formed on a large and heterogeneous data set acquired using CT, TEE and MRI
scanners from 476 patients affected by a large spectrum of cardiovascular and valvu-
lar heart diseases: regurgitation, stenosis, prolapse, aortic root dilation, bicuspid aor-
tic valve and Tetralogy of Fallot. The imaging data set includes 1330 cardiac CT,
5061 TEE and 83 CMR volumes, which were collected from medical centers around
the world.

Each volume in our data set is associated with an annotation obtained through
an expert-guided process that includes the manual placing of anatomical landmarks
and delineation of anatomical surfaces. The obtained models are consider as ground
truth and were used for training and testing of the proposed algorithms. Three-fold
cross validation was performed for all experiments and reported results reflect per-
formance on unseen, test data.

Performance of the Object Localization and Rigid Motion Estimation: The per-
formance of the global location and rigid motion estimation, θ , described in section
3.1 is quantified at the box corners of the detected time-depenedent similarity trans-
formation. The average Euclidean distance between the eight bounding box points,
defined by the similarity transform parameters

{
(cx,cy,cz),(αx,αy,αz),(sx,sy,sz), t

}
and the ground-truth box is reported. Table 1 illustrates the mean errors and corre-
sponding standard deviations distributed over the four valves and employed image
modalities. The average accuracy of the individual detection stages is 3.09±3.02mm
for position, 9.72±5.98 for orientation, and 6.50±4.19 for scale.

Mean / STD (mm) Aortic Valve Mitral Valve Pulmonary Valve Tricuspid Valve
TEE 4.78±3.26 5.00±2.02 - -

Cardiac CT 4.40±1.98 6.94±2.19 7.72±10.03 -
CMR - - 7.19±3.50 -

Table 1 Accuracy of the global location and rigid motion estimation, quantified from the box
corners and reported using the mean error and standard deviation distribution over each valve and
employed modality.
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Performance of the Non-Rigid-Landmark Motion Estimation: The accuracy of
the Trajectory Spectrum Learning algorithm (see section 3.2), which estimate the
non-rigid landmark motion model, L, is measured using the Euclidean distance
between detected and corresponding ground truth landmark trajectories. Table 2
demonstrates the precision expressed in mean errors and standard deviations, dis-
tributed over the four valves and three data sources. Note that reported values are
obtained by averaging the performance of individual landmarks with respect to the
corresponding valve.

Mean / STD (mm) Aortic Valve Mitral Valve Pulmonary Valve Tricuspid Valve
TEE 2.79±1.26 3.60±1.56 - -

Cardiac CT 2.72±1.52 2.79±1.20 3.50±2.70 -
CMR - - 4.30±3.00 -

Table 2 Accuracy of the non-rigid landmark motion estimation, quantified by the Euclidean dis-
tance and reported using the mean error and standard deviation distribution over each valve and
employed modality.

Performance of the Comprehensive Valve Model Estimation: The accuracy of
the comprehensive valvular model estimation, M, (see section 3.3) is evaluated by
utilizing the point-to-mesh distance. For each point on a surface p, we search for the
closest point (not necessarily one of the vertices) on the other surface to calculate
the Euclidean distance. To guarantee a symmetric measurement, the point-to-mesh
distance is calculated in two directions, from detected to ground truth surfaces and
vice versa. Tabel 3 contains the mean error and standard deviation distributed over
the four valves and image types. Examples of estimation results are given in figure
13.

Mean / STD (mm) Aortic Valve Mitral Valve Pulmonary Valve Tricuspid Valve
TEE 1.35±0.54 2.29±0.64 - -

Cardiac CT 1.22±0.38 2.02±0.57 1.60±0.20 -
CMR - - 1.90±0.20 -

Table 3 Accuracy of the comprehensive valve model estimation, quantified by the Point-to-Mesh
distance and reported using the mean error and standard deviation distribution over each valve and
employed modality.

Overall, the estimation accuracy of the patient-specific valvular parameters from
multi-modal images is 1.73mm. On a standard PC with a quad-core 3.2GHz pro-
cessor and 2.0GB memory, the total computation time for the all three estimation
stages is 4.8 seconds per volume (approx 120sec for average length volume se-
quences), from which the global location and rigid motion estimation requires 15%
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Examples of comprehensive valves model estimation: (a) aortic valve in TEE, (b) mitral
valve in TEE, (c) pulmonary valve in CMR, (d) aortic valve in cardiac CT, (e) mitral valve in
cardiac CT, and (f) pulmonary valve in cardiac CT.

of the computation time (approx 0.7sec), non-rigid landmark motion 54% (approx
2.6sec), and comprehensive valvular estimation 31% (approx 1.5sec).

5 Clinical Applications

5.1 Valve Analysis for Transcatheter Aortic Valve Implantation

It is axiomatic that precise quantification of the anatomy and function is fundamen-
tal in the medical management of valvular heart disease. Emerging percutaneous
and minimally invasive valve interventions, such as the Transcatheter Aortic Valve
Implantation (TAVI), require extensive non-invasive assessment, as clinicians have
restricted direct access to the sensitive anatomies (Akhtar et al. (2009); Piazza et al.
(2008)). Measurements of the aortic annulus are mandatory for the correct sizing
the prosthetic implant, while precise knowledge of the coronary ostia position pre-
vents hazardous ischemic complications by avoiding the potential misplacement of
aortic valve implants. Data about the integral three-dimensional configuration of
critical structures (ostia, commissures, hinges, etc.) and their relative location over
the entire cardiac cycle becomes increasingly relevant.

We proposed a paradigm shift in the clinical evaluation of the valvular appara-
tus, which replaces manual analysis based on 2D images with automated model-
based quantification from 4D data. At the center of the proposed approach is the
dynamic valvular model introduced in section 2, which captures comprehensive
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(a)

Fig. 14 Examples of aortic-mitral morphological and functional measurements. From left to right:
aortic valve model with measurement traces, aortic valve area, aortic root diameters and ostia to
leaflets distances.

patient-specific information of the morphology and functions from multi-modal im-
ages following the methods described in section 3. The explicit mathematical model
is exploited to express a wide-ranging collection of quantitative parameters that sup-
port the overall clinical decision making process (see figure 14). In comparison with
the gold standard, which processes 2D images and performs manual measurements,
the key benefits of the proposed model-based analysis are: increased precision and
reproducibility, decreased processing time, and integrated and comprehensive anal-
ysis. In the following we present a series of clinical validation experiments per-
formed jointly with various clinical collaborators (Calleja et al. (2010); Gassner
et al. (2008); Ionasec et al. (2008a); Choi et al. (2008)).

(a) (b) (c) (d)

Fig. 15 Aortic Valve Area measured manually from 2D images versus the automatic 3D model-
based quantification: (a), (b) and (c) show the manual measurement from three different 2D TEE
images of the same patient, which demonstrate the sensitivity of the current gold standard approach
to the position of the 2D-dimensional section. (d) shows the proposed precise and reproducible 3D
model-based measurement.

Aortic Valve Opening Area Analysis from cardiac CT: The usefulness of car-
diac CT to assess the aortic valve opening area (AVA) has been exhaustively doc-
umented Halpern (2008). However, manual valve planimetry is cumbersome and
time-consuming. In the following experiment we evaluated the accuracy and time-
effectiveness of automated model-based AVA computation compared to manual
planimetry. Retrospectively ECG-gated cardiac CT data of 32 patients scanned
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with dual-source CT (n=21) or 64-slice CT (n=11) were included. Data were re-
constructed at 10% increments across the cardiac cycle with 1.5mm section thick-
ness and 1mm increment. Two independent observers performed manual planimet-
ric measurements by tracing the maximal systolic orifice on double oblique short
axis multiplanar reconstructions. The same data were then analyzed using an auto-
matic model-based method. The leaflets’ geometries during maximal opening define
the course of the free margins. The encompassed AVA can be computed as a surface
integral.

Data was analyzed using linear regression and Bland Altman plots. Interob-
server and intermethod variances were calculated. Analysis times for both methods
were recorded. Mean AVA by CT planimetry was 3.62± 1.21cm2. Mean AVA de-
rived from the model was 3.74±1.34cm2. Excellent correlation was found between
planimetric and automated quantification (r=0.963, p¡0.0001). Bland Altman plots
revealed a systematic bias of 0.12± 0.38cm2. Intermethod variance did not differ
significantly from interobserver variance (0.28 vs 0.25cm2), placing 82% of model
measurements between user measurements. Mean analysis time was significantly
reduced for model-based measurements (mean 125sec), compared with manual
planimetry (mean 230sec). The proposed model-based method allows automated,
patient specific morphologic and dynamic quantification of AVA. Measurement re-
sults are within the interobserver variance of manual planimetry. Quantification of
AVA derived from an aortic valve model enables fast, accurate assessment in ex-
cellent agreement with manual planimetry and has the potential to improve cardiac
imaging workflow.

Aortic Valve and Root Analysis from cardiac CT and 3D TEE: Accurate
anatomical and functional assessment of AV and aortic root is crucial for under-
standing the pathophysiology of abnormalities and for managemening decision-
making in patient with aortic valve disease and aortic aneurysm. The aim of this
study was to evaluate the feasibility of the modal-based method to assess the aortic
valve and aortic root from volumetric 3-D Echo compared to CT. Volume-rendered
3-D TEE data were obtained using V5M transducer, Siemens Sequoia. Volumet-
ric CT images were acquired using 64-Slice CT(Avanto, Siemens). We dynami-
cally measured the AVA(cm2), diameter of sinotubular junction(d-STJ, mm), sinus
of Valsalva(d-SV, mm) and basal ring(d-BR, mm). 364 CT volumes from 41 pa-
tients and 23, 3-D TEE volumes from 15 patients with normal to mild AR were
acquired. 3-D TEE data about AV and root showed strong correlation with CT data,
as illustrated in table 5.1. This novel automated model-based approach provides ac-
curate dimensions of the AV and the aortic root and may aid in valve and root repair
procedures (see figure 15).

Aortic Valve and Root in Aortic Regurgitation from 3D TEE: In this study we
applied the model-based analysis approach to automatically quantify the aortic valve
and the root from 3-D TEE data in patients with aortic regurgitation (AR). Volumet-
ric 3-D TEE of the AV and proximal root from 15 patients with AR was analyzed.
The conventional measures were compared to 2-D, and the non-conventional mea-
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3D TEE cardiac CT r-value p-value
AVA (cm2) 3.09±0.85 4.33±1.36 0.707 0.013
Max. Ventriculoarterial Junct. � (mm) 2.42±0.27 2.74±0.36 0.982 0.018
Max. Valsava Sinuses � (mm) 3.16±0.32 3.92±0.46 0.993 0.007
Max.Sinotubular Junct. � (mm) 2.69±0.26 3.19±0.21 0.775 0.042

Table 4 Comparison of AVA and aortic diameter between cardiac CT and 3D TEE

(a) (b) (c) (d)

Fig. 16 Examples of model-based aortic valve measurements: (a) aortic annular diameter (ven-
triculoarterial junction), (b) sinus width, (c) inter-commissural distances, and (d) coronary ostia to
leaflet tip distances.

sures were compared to known normal database. Conventional measures- 2-D and
the model-based measures of AV area (r=0.98), STJ diameter (r=0.73) and SV di-
ameter (r=0.79) showed good correlation; annular diameter was discordant (r=0.58)
consistent with its complex geometry in AR. Nonconventional measures (abnormal
vs. normal, mm) by the model-based method - Inter-commissural distance (mm) was
increased (Left: 25.9+3 Vs. 25, Right: 27.1+3 Vs. 25.9 and Non: 27.2+3 Vs. 25.5 ),
Annulus to coronary ostia distance (mm) was increased (Right: 19.3+3 Vs. 17.2+3
and Left 16.9+3 Vs. 14.4+3); also, leaflet tip to ostia minimum distance was 5+1.6
(R) and 8+1.2 (L). The directly measured 3-D ERO in mild AR was 10− 20mm2

and moderate AR was 30mm2. Automated quantification of the aortic and the root
yields vital and incremental measures which may be valuable to guide surgical and
percutaneous interventions to improve outcomes.

5.2 Patient Selection for Percutaneous Pulmonary Valve
Implantation

Until recently, pulmonary valve replacement has been exclusively performed trough
open heart surgery Boudjemline MD et al. (2004), with all associated risks: high
morbidity, incidence of neurological damage, stroke and repeated valve replace-
ment Parr et al. (1977). Novel Percutaneous Pulmonary Valve Implantation (PPVI)
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(a) (b) (c) (d) (e) (f)

Fig. 17 Types of pulmonary trunk morphologies: (a) pyramidal shape, (b) constant diameter, (c)
inverted pyramidal shape, (d) narrowed centrally but wide proximally and distally, (e) wide cen-
trally but narrowed proximally and distally Schievano et al. (2007a). (f) Relative neighborhood
graph with unsuitable (blue cluster) and suitable (red cluster) individuals.

techniques Schievano et al. (2007c), offer a less traumatic and safer treatment of the
pulmonary valve Carnaghan (2006).

The selection of patient for PPVI treatment is largely based on the morphol-
ogy of the pulmonary trunk Bonhoeffer et al. (2002). Intervention in unsuitable
anatomies exposes patients to unnecessary invasive catherization, for which the im-
planted device has a high probability of proximal device dislodgment. In an effort
to standardize the selection process, Schievano et al. (2007a) proposed a classifica-
tion of various morphologies, based on geometric measures and appearance of the
right-ventricular outflow tract and the pulmonary trunk, into five groups: pyramidal
shape (type I), constant diameter (type II), inverted pyramidal shape (type III), wide
centrally but narrowed proximally and distally (type IV), and narrowed centrally
but wide proximally and distally (type V) (see figure 17). Patients from type I are
considered to be unsuitable for PPVI due to the narrow artery and high probability
of device migration. Therefore the main challenge lies in discriminating anatomies
of type I from other four classes.

We propose a discriminative distance function learned using Random Forest in
the product space to provide automated patient selection, namely classification of
the subjects into two classes: PPVI suitable and PPVI unsuitable (see figure 17(f)).
We formulate the problem as follows:

ŷ = argmax︸ ︷︷ ︸
y∈{−1,+1}

(p(y|C)) C = (p0, · · · ,pN ,F0, · · · ,FQ) (23)

where y ∈ {−1,+1} are the application specific labels and each model instance
is represented by a parameter vector C, composed out of N surface vertices pi ∈
Mpulmonary (see Section 2) and Q application dependent features Fi derived from the
model. Instead of learning directly the posterior probability, a distance learning fol-
lowed by the actual classification is performed, where each step requires search in a
less complex functional space than in the immediate learning Tsymbal et al. (2010).
Thus, learning is performed from weak representations described through equiva-
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lence constraints (C1,C2,y), where C1 and C2 are feature vectors (see Equation. 23)
and y ∈ {+1,−1} is a label indicating whether the two instances are similar or dis-
similar Hertz (2006). Using Random Forest (RF) for the learning algorithm, for a
given forest f the similarity between two instances C1 and C2 is calculated as fol-
lows: 1) the instances are propagated down all K trees within f and their terminal
positions z in each of the trees (z1 = (z11, · · · ,z1K) for C1, similarly z2 for C2) are
recorded, and 2) the similarity between the two instances then equals to (I is the
indicator function):

S(C1,C2) =
1
K

K

∑
i=1

I(z1i = z2i) (24)

The proposed automated PPVI patient selection method was evaluated on a popu-
lation of 102 patients that include all five types of pulmonary trunk geometry (fig-
ure 17) and cumulated into 50 patient of type I (i.e. unsuitable for PPVI) and 52
patients with suitable geometries. The accuracy of methods is validated by leave-
one-out cross-validation for various classification approaches including k-Nearest
Neighbors (kNN), AdaBoost (AB) and Random Forests (RF) in the canonical space,
as well as AdaBoost and Random Forests[23] in the product and difference spaces
(AB-pr, RF-pr, AB-di and RF-di) and intrinsic RF distance (RF-dist). AdaBoost in
the product space showed highest performance for the PPVI suitability selection
with 91% correct classification. The proposed approach has the potential to sig-
nificantly improve accuracy and reproducibility of patient selection for PPVI and
pre-procedural PPVI planning.

6 Conclusion

The main subject addressed in this chapter is the patient-specific estimation of phys-
iological heart valvular and chamber models from multi-modal cardiac images. We
proposed a physiological model of the heart valves to precisely capture their anatom-
ical, dynamical and pathological variations. Our model is hierarchically defined and
comprehensively represents the location and rigid motion, anatomical landmarks
and the comprehensive shape and dynamics of all four cardiac valves: aortic, mitral,
tricuspid and pulmonary valves. We presented discriminative learning-based frame-
work that permits the estimation of patient-specific model parameters from cardiac
images. In the first step Marginal Space Learning and RANdom SAmple Consen-
sus are applied for the time-coherent detection of the valvular location and motion
from an arbitrary four-dimensional cardiac scan. Subsequently, Trajectory Spectrum
Learning robustly estimates the parameters of the anatomical landmarks from four-
dimensional image sequences. The last method performs object delineation of dy-
namic models, using boundary detectors and motion manifold learning techniques.
The performance of the proposed estimation framework is demonstrated through
extensive experiments on 476 patients, which results into an average precision of
1.73mm and speed of 4.8 seconds per volume. Two clinical applications based on



28 Razvan Ioan Ionasec, Dime Vitanovski and Dorin Comaniciu

the modeling and estimation techniques are described: a novel paradigm for the clin-
ical analysis of the valvular apparatus with application to Transcatheter Aortic Valve
Implantation, and automated patient selection method for Percutaneous Pulmonary
Valve Implantation based on learning-based distance functions. The technology de-
scribed in this chapter can potentially advance the management of patients affected
by valvular heart disease by reducing clinical investigation costs, risks for com-
plications during procedures, and ultimately by improving the overall outcome of
valvular treatment.
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