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Abstract Medical image processing tools are playing an increasingly important role
in assisting the clinicians in diagnosis, therapy planning and image-guided interven-
tions. Accurate, robust and fast tracking of deformable anatomical objects, such as
the heart, is a crucial task in medical image analysis. One of the main challenges
is to maintain an anatomically consistent representation of target appearance that is
robust enough to cope with inherent changes due to target movement, imaging device
movement, varying imaging conditions, and is consistent with the domain expert
clinical knowledge. To address these challenges, this chapter presents a probabilis-
tic framework that relies on anatomically indexed component-based object models
which integrate several sources of information to determine the temporal trajectory
of the deformable target. Large annotated imaging databases are exploited to encode
the domain knowledge in shape models and motion models and to learn discrim-
inative image classifiers for the target appearance. The framework robustly fuses
the prior information with traditional tracking approaches based on template match-
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ing and registration. We demonstrate various medical image analysis applications
with focus on cardiology such as 2D auto left heart, catheter detection and tracking,
3D cardiac chambers surface tracking, and 4D complex cardiac structure tracking,
in multiple modalities including Ultrasound (US), cardiac Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), and X-ray fluoroscopy.

1 Introduction

Cardiovascular diseases such as cardiomyopathy and heart failure are the leading
causes of morbidity and mortality, which account for 1 of every 2.9 deathes and
require over 100,000 surgeries in the United States alone every year [22]. To assist
diagnosis and evaluation of the progression of diseases, recent advances in medical
imaging technologies allow cardiologists to capture morphological and functional
information of complex structures, such as heart anatomies, in two, three, and four
dimensional dynamic scans. For instance, in real-time echocardiography unstitched
volumetric data can be captured in a high volume rate and permit quantification of
cardiac strain in a non-invasive manner [10, 12, 40]. Cardiac Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT) allow morphological characteriza-
tion of heart structures with precision [23, 30, 37, 46], and provide a wide topological
field of view with visualization of the heart, its internal morphology, and the sur-
rounding mediastinal structures. The X-ray angiography is the primary modality
in image-guided interventions, such as percutaneous coronary interventions (PCI)
and catheter-based electrical physiology (EP) therapies [38, 41, 42], to precisely
visualize and target the surgical site.

As medical imaging becomes more sophisticated and more central to clinical
decision-making, there is an evolving need to provide objective, quantitative results
for diagnosis, therapy planning, and disease monitoring. However, it remains a time-
consuming task for clinicians to extract comprehensive structural and dynamic infor-
mation from medical imaging. In order to exploit such time-resolved data, fast and
precise image processing tools become a crucial part of the analysis workflow.

One of the challenging problems on visual tracking of deformable objects is
to maintain a representation of target appearance, which is robust enough to cope
with inherent changes due to target movement and/or imaging device movement.
Traditional methods based on template matching have to adapt the model tem-
plate in order to successfully locate and track the target [27, 28]. Without adap-
tation, tracking is reliable only over short periods of time when the appearance
does not change significantly. However, in most applications the target appearance
undergoes considerable changes after a long time period and furthermore, accumu-
lated motion error and rapid visual changes make the model to drift away from the
tracked target. To improve tracking performance, one can also impose object spe-
cific subspace constraints [3, 13] or maintain a statistical representation of the model
[20, 29, 31]. This representation, often modeled as a probability distribution func-
tion, can be determined a priori or ideally computed online. More sophisticated
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Fig. 1 A block diagram of the probabilistic motion estimation framework including the likelihood
measurement and shape prediction processes

approaches, such as adaptive mixture models, have also been proposed to cope with
outliers and sudden appearance changes [20].

Recent progress in discriminative learning, along with availability of large medical
databases with expert annotation of the structures of interest, make a learning-based
approach attractive to achieve robust object detection and tracking in medical imag-
ing. In this chapter, a probabilistic approach is presented to combine learning-based
and conventional approaches to obtain the best of both worlds. As illustrated in Fig. 1,
a set of component-based models are maintained to determine the next position of
the target by combining several sources of information. This approach is a flexi-
ble framework to integrate model information across frames through component-
based object representations. It can be tailored to perform tracking-by-detection
by leveraging domain knowledge encoded in shape models and image based dis-
criminative classifiers, as well as dynamic information encoded in motion models.
Alternatively, it can also be tailored towards traditional methods with template based
matching/registration, such as optical-flow tracking.

Compared to the existing methods, such as image registration [10, 14, 17] and
optical flow [12], this presented framework has the following advantages:

1. Information from multiple cues, such as feature patterns, image gradients, bound-
ary detection, and motion prediction, are fused into a single probabilistic objective
function to improve tracking accuracy and robustness.

2. Expert annotations are exploited to learn discriminative image classifiers as well
as shape and motion models which encode the domain knowledge.

3. Image quality measurements based on image intensities and feature scores are
integrated in a probabilistic framework to handle noise and signal dropouts in the
medical imaging data.

4. Efficient optimization is proposed to achieve high speed performance.
5. This system provides a fully automatic solution to track the deformable targets

and to provide quantitative analysis of the non-rigid motion.
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To demonstrate the performance, we apply this framework in various medical
imaging applications with a focus in cardiology, including 2D heart and device
(e.g., catheter and guidewire) detection and tracking, 3D cardiac chamber surface
tracking in multiple modalities including CT, US, and MRI, and 4D complex cardiac
structure tracking, e.g., on heart valves.

2 A Probabilistic Framework for Model-Based Detection
and Tracking

In this section a unified framework is introduced for fusing motion estimates from
multiple appearance models and fusing a subspace shape model with the system
dynamics and measurements with point-dependent noise. The appearance variability
is modeled by maintaining several models over time, which can be both learned offline
and updated online. This leads to a nonparametric representation of the probability
density function that characterizes the object appearance. Inspired by [7], tracking
is performed by obtaining independently from each model a motion estimate and its
uncertainty through a single probabilistic framework as follows,

arg max
Xt

p(Xt |Z0:t ) = arg max
Xt

p(Zt |Xt )p(Xt |Z0:t−1) (1)

where Z0:t = Z0, . . . , Zt are the image observations from the input image sequence
I0:t = I0, . . . , It . In this framework, an anatomy-indexed mesh model is built to
represent the object of interest. An example of the underlying anatomy representation
is illustrated in Fig. 10. For clarity, we use Xt to denote a concatenation of the mesh
point positions, Xt = [X1, . . . , Xn], which need to be estimated at the current time
instance t , and n is the total number of points in the mesh model.

As illustrated in Fig. 1, the probabilistic framework includes the likelihood estima-
tion and shape prediction processes, which leverages the domain knowledge encoded
in image based discriminative classifiers and shape and motion models to obtain the
final shape estimate. When measurement noise is anisotropic and inhomogeneous,
which is often presented in image sequences of deformable objects, joint fusion of
all information sources becomes critical for achieving robust and accurate tracking
performance.

2.1 Learning-Based Appearance and Shape Models

Given recent advances in medical imaging devices, large databases become avail-
able with expert annotation of the structures of interest. Figure 2 shows examples of
annotated 2D ultrasound images. This information can be exploited to learn domain
knowledge, encoded in the form of shape models and discriminative image classifiers
for target appearance.
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Fig. 2 Examples of 2D ultrasound images with the endocardium boundaries annotated by clinical
experts. The images are captured in the apical four chamber view. The annotated endocardium
boundaries are highlighted in the green color
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Fig. 3 Diagram for learning-based object detection and non-rigid deformation estimation
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Fig. 4 An example showing the basic idea of a learning-based 3D object detection method: a the
parameter space is quantized into a large number of discrete hypotheses and the classifier is used to
select the best hypotheses in exhaustive search. b A few hypotheses of the left ventricle (represented
as boxes) embedded in an ultrasound image. The red box shows the ground truth and the yellow
boxes show only a few hypotheses
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In the presented framework, we apply a learning-based approach for object local-
ization, using marginal space learning (MSL) [46] and the probabilistic boosting-tree
(PBT) [33], as illustrated in Fig. 3. Unlike the gradient based search in deformable
models or active appearance models (AAM) [9], the full object parameter space is
quantized into a large number of hypotheses and the best ones are selected by the
image-based classifiers trained in this framework. Figure 4 shows the basic idea of
learning-based model estimation in this section.

More specifically, to detect the model pose θ for a target object we need to solve
for the similarity transformation, including translation, orientation, and scale, i.e.,

θ =
{

T d , Rd , Sd
}

(2)

where T d , Rd , Sd are the position, orientation and scale parameters in the d dimen-
sional input data, respectively. Therefore, the object localization can be formulated
as a classification problem which estimates θ(t) for each time step t from the corre-
sponding image I (t). The probability p(θ(t)|I (t)) is modeled by a learned detector
D, which evaluates and scores a large number of hypotheses for θ(t). D is trained
using the Probabilistic Boosting Tree (PBT) [33] based on positive and negative
samples extracted from the ground-truth annotations. For fast computation, efficient
3D Haar wavelet [35] and steerable features [46] can be extracted at each sampling
point based on the intensity and gradient from the training data.

The object localization task is then performed by scanning the trained detector
D exhaustively over all hypotheses to find the most plausible values for θ in an
input data. As the number of hypotheses to be tested increases exponentially with
the dimensionality of the search space, a sequential scan in the corresponding trans-
formation parameters might be computationally unfeasible. For example, to find a
3D similarity transform, suppose each dimension in θ(t) is discretized to n values,
the total number of hypotheses is n9 and even for a small n = 15 it becomes extreme
3.98e+10. To overcome this limitation, we apply a marginal space search (MSL)
strategy [46], which groups the original parameter space into subsets of increasing
marginal spaces:

Σ1 = (T d),Σ2 = (T d , Rd),Σ3 = (T d , Rd , Sd).

Consequently, the target posterior probability can be expressed as:

p(θt |It ) = p(T d |It )p(Rd |T d , It )p(Sd |Rd , T d , It ). (3)

We train a series of detectors that estimate parameters at a number of sequential
stages in the order of complexity, i.e., Σ1,Σ2,Σ3. Different stages utilize different
features computed from the input data. Multiple hypotheses are maintained between
stages, which quickly removes false hypotheses at the earlier stages while propagates
the right hypothesis to the final stage. Only one hypothesis is selected as the final
detection result.
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With the object pose estimated, we align the mean shape (an average model of
all annotations) with data to get an initial estimate of the object shape. To capture
the true anatomical morphology of the target object (e.g., LV myocardium), we
deform the mean shape by searching the boundary for each vertex of the model.
The boundary hypotheses are taken along the normal directions at each vertex of
the mean model. Detection is achieved using a boundary detector using PBT with
steerable features [33, 46]. The detected boundaries are constrained by project-
ing the detected model onto a shape subspace obtained by the annotated dataset.
As defined in Eq. (1), the shape vectors are formed by concatenating the coordi-
nates of all control points [8, 19]. Thus, the shape space can be constructed using
Procrustes analysis and principal component analysis (PCA) [11]. Although more
sophisticated representations, such as local affine models [26, 47], can also be applied
to constrain shape deformations, we choose the global PCA shape model due to its
efficiency during online detection. In particular, the nonrigid deformation has three
steps as shown in Fig. 3. First we estimate the deformation of control points which
are selected based on image characteristics. The thin-plate-spline (TPS) model [4]
is then used to warp the initial mesh toward the refined control points for better
alignment. Last, the normal mesh points are deformed to fit the image boundary.

2.2 Motion Manifold Learning

Motion characteristics of an anatomical structure encodes morphological and func-
tional properties of the object, which are important in clinical diagnosis and can
be used to constrain the deformable tracking process. To obtain these motion char-
acteristics from the pre-annotated databases, we use manifold learning to extract a
compact form of the dynamic information [43].

Given a set of training sequences, we first resample a cardiac cycle of each
sequence to a fixed number F (typically F = 16) of frames through temporal inter-
polation, and construct motion vectors M = {m0, . . . , mi , . . . , mn} with mi ∈ Rm ,
where m = N f ×d × F , N f is the number of annotation points, and d represents the
dimensionality of the input data. Generalized Procrustes analysis (GPA) is then used
to align all resampled motion vectors to remove the similarity transformation, includ-
ing translation, rotation and scaling [11]. Because the actual number of constraints
that control the LV motion are much less than its original dimensionality, the aligned
3D shape vectors lie on a low-dimensional manifold, where geodesic distance has to
be used to measure the similarities. This property can be exploited by unsupervised
manifold learning to discover the nonlinear degrees of freedom that underlie com-
plex natural observations [32]. Figure 5a shows two annotated LV motion sequences.
Figure 5b shows several LV motion representations in a low-dimensional manifold.
An interesting but expected observation is illustrated in Fig. 5b. The LV motion is
almost periodic because one cycle of heart beat starts from ED and returns to ED.

Given the whole set of 3D training shape vectors M , we apply ISOMAP [32] to
find a mapping � which represents mi in the low-dimensions as mi = �(vi ) + ui ,
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(b)(a)

Fig. 5 Examples of manifold embedding for heart motion patterns. a Two left ventricle surface
mesh sequences. b 11 sequences embedded in a 2D subspace. Note the end diastolic (ED) phase
has larger volumes and represented as stars in (b), while the end systolic (ES) phase has smaller
volumes and represented as squares in (b)

i = 1, . . . , n, where ui ∈ Rm is the sampling noise and vi ∈ Rq denotes the original
ith shape mi in the low-dimensional manifold. In the prediction step, the motion
prior (state model) p(Xt |Xt−1) is computed using the learned motion modes [43].

3 2D Motion Tracking

Accurate and robust tracking of 2D motion of deformable objects is an important
topic in medical imaging. In this section, we apply the probabilistic framework to
2D non-rigid motion estimation in various medical imaging modalities, such as 2D
ultrasound in Sect. 3.1 and X-ray fluoroscopy in Sect. 3.2.

3.1 Endocardium Contour Tracking in 2D
Echocardiography

Automatic myocardial wall motion tracking in ultrasound images is an important
step in analysis of the heart function, such as computing the left ventricle (LV) cavity
volume and ejection fraction (EF). This task is difficult due to image noise as well
as fast motion of the heart muscle and respiratory interferences. Figure 6 illustrates
the difficulties of the tracking task due to signal drop-out, poor signal-to-noise ratio
or significant appearance changes. Notice that the endocardium is not always on the
strongest edge. Sometimes it manifests itself only by a faint line; sometimes it is
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Fig. 6 Two tracking examples in rows, with five snapshots per sequence. The top row shows the
apical four chamber view, which is along the long axis of the left ventricle and passes through the
apex tip and the mitral valve. The bottom row shows the short axis view, which is perpendicular to
the long axis of the left ventricle

completely invisible or buried in heavy noise; sometimes it will cut through the root
of the papillary muscles where no edge is present.

To handle occlusions and appearance variations in 2D visual tracking, we apply the
learning-based fusion framework presented in Sect. 2, by exploiting expert annotation
of the structure of interest in large databases. More specifically, the appearance and
shape models are learned by a two-step approach [16]. The first step is to learn
a discriminative function between the appearance of the object of interest and the
background. The second step is to learn the discriminative features that best associates
the shapes to different appearances of the object, and to infer the most likely shape.
Consequently, several representatives for the 2D appearance model are maintained to
obtain a robust estimate of the target object [15]. When a new image is available, the
location x̂i j and its uncertainty Ĉi j are estimated for each model. Thus, the current
location x̂ can be computed in an iterative manner, e.g., using the Variable-Bandwidth
Density-based Fusion (VBDF) method [6]. The optimization process yields a hill-
climbing procedure which converges to a stationary point of the underlying density.

To demonstrate the performance of the learning-based fusion method, we apply
and evaluate the above framework to track heart contours using very noisy echocar-
diography data. The tracker was implemented in C++ and is running at about 20
frames per second on a single 2GHz Pentium 4 PC. Our data were selected by a
cardiologist to represent normals as well as various types of cardiomyopathies, with
sequences varying in length from 18 to 90 frames. Both training and test data were
traced by experts, and confirmed by one cardiologist. We used both apical two-
or four-chamber views (open contour with 17 control points) and parasternal short
axis views (closed contour with 18 control points) for training and testing. PCA
is performed and the original dimensionality of 34 and 36 is reduced to 7 and 8,
respectively. For the appearance models we maintain 20 templates to capture the
appearance variability.
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All Cases Most Difficult Cases

Methods MSSD MSSD MAD MAD MSSD MSSD MAD MAD
Flow 38.1 82.9 4.3 3.6 147.9 325.0 8.8 8.2

FlowShapeSpace 24.7 35.5 3.8 2.4 106.0 181.2 7.9 6.3

Fusion 8.3 14.3 1.7 1.6 25.8 34.8 4.1 2.8

(c)

Fusion
Flow Shape Space
Flow

Fig. 7 Comparison experiments: mean distances (a Mean sum of squared distance (MSSD) [1],
b Mean absolute distance (MAD) [24]) between tracked points and the ground truth. c Shows the
error analysis “All Cases” and “Most Difficult Cases”. The learning-based fusion method (“Fusion”)
significantly outperforms others, with lower average distances and lower standard deviations for
such distances

For systematic evaluation, we use a set of 32 echocardiogram sequences outside
of the training set for testing, with 18 parasternal short-axis (PS) views and 14 apical
two- or four-chamber (AC) views, all with expert-annotated ground-truth contours.
Figure 6 shows snapshots from two tracked sequences. Figure 7 reports performance
comparison to other existing methods. The learning-based fusion method (“Fusion”)
is compared with a tracking algorithm without shape constraint (“Flow”) or with the
same tracker with orthogonal PCA shape space constraints (“FlowShapeSpace”).

It should be noted that our results are not indicative for border localization accu-
racies, but rather for motion tracking performances given an initial contour. We have
set our goal to track control points on the endocardium, with anisotropic confidence
estimated at each point at any given time step by using multiple appearance models,
and exploit this information when consulting a prior shape model as a constraint.
Our framework is general and can be applied to other modalities, including the 2D
X-ray fluoroscopy demonstrated in the next section.

3.2 2D Device Tracking in Fluoroscopy

During interventions a medical device might undergo non-rigid deformation due
to patients’ breathing and cardiac motions, and such 3D motions are complicated
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(b)(a)

Fig. 8 Examples of coronary sinus (CS) catheters and the tracking results in 2D X-ray fluoroscopy.
a CS catheters in 2D X-ray fluoroscopic images, which exhibit various appearance and shapes
as well as low visibility in different contexts. For clarity the catheter tip and the most proximal
electrode (PCS) are highlighted by cyan and red arrows, respectively. b Catheter tracking results
in four different sequences. Cyan, yellow, and red circles indicate the catheter tip, intermediate
electrodes, and PCSs, respectively

when being projected onto the 2D fluoroscopy. Furthermore, in fluoroscopy there
exist severe image artifacts and other wire-like structures. Figure 8a shows several
examples of catheters in 2D X-ray fluoroscopy.To tackle the above challenges, the
tracking is formalized in the probabilistic inference framework introduced in Sect. 2,
to maximize the posterior probability of a tracked target object, i.e.,

X̂t = arg max
Xt

p(Xt |Z0:t ) = arg max
Xt

p(Zt |Xt )p(Xt |Xt−1)p(Xt−1|Z0:t−1) (4)

The above formula essentially combines two parts: the likelihood term, P(Zt |Xt ),
which is computed as combination of detection probability and template match-
ing score and the transition term, P(Xt |Xt−1), which captures the motion smooth-
ness. To maximize tracking robustness, the likelihood term P(Zt |Xt ) is estimated
by learning-based part detectors and appearance-based template matching as
follows:

P(Zt |Xt ) = pd(Zt |Xt )pd + pa(Zt |Xt )pa (5)

where pd(Zt |Xt ) and pa(Zt |Xt ) represents the learning-based and appearance-
based measurement models respectively, and pd and pa are corresponding pri-
ors for the two types of measurement models. In particular, the learning-based
measurement model is trained using the probabilistic boosting tree (PBT) [33].
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The two measurement models in Eq. (5) can be defined in the following manner
as in [38],

pd(Zt |Xt ) ∝ e f (Zt ,Xt )

e− f (Zt ,Xt ) + e f (Zt ,Xt )
, where f (Zt , Xt ) =

∑
k

αk Hk(Zt , Xt )

pa(Zt |Xt ) ∝ exp

{
−

∑
X′

t ∈S(Xt )
|ρ(Zt (X′

t ) − I 0(X′
t ); σa)|2

2σ 2
a

}
(6)

A good empirical choice for pd and pa proposed in [42] is pd = 1 − λ and
pa = λ, with the weighting parameter λ defined as:

λ = 1

1 + e− f (T s
o ,D(Xt ))

, f (T s
o , D(Xt )) = cov(T s

o , D(Xt ))

σ (T s
o ) · σ(D(Xt ))

, (7)

where cov(T s
o , D(Xt )) is the intensity cross-correlation between the catheter model

template T s
o and the image band expanded by Xt . σ(T s

o ) and σ(D(Xt )) are the
intensity variance.

Moreover, foreground and background structures in fluoroscopy are constantly
changing and moving. In order to cope with it dynamically, the catheter model is
updated online by:

T s
o,t = (1 − ϕw)T s

o,t−1 + ϕw D(Xt ), i f p(Zt |Xt ) > ϕt (8)

where T s
o,t represents the model template in frame t. D(Xt ) is the model obtained at

frame t based on the output Xt . ϕw and ϕt are typically set as 0.1 and 0.4 respectively
in the experiments.

The tracking algorithm is evaluated on a large database including 1073 sequences
collected from Electrophysiology (EP) Afib procedures. The image resolutions vary
from 1024 × 1024 to 1440 × 1440 with pixel spacing between 0.154 and 0.183 mm.
The test sequences cover a variety of interventional conditions, including low image
contrast and contrast injection. Some example frames in the test set are displayed in
Fig. 8b.

Quantitative evaluation of the tracking accuracy is reported in Table 1. While
the tracking power of the proposed algorithm comes from the robust and efficient
measurement models and information fusion, we illustrate and compare the impact of
other important components in Table 1 as well. DON is the method by setting λ = 0 in
Eq. (5), which essentially only considers the detection term; ADD is the method using
Eq. (5); ARO is ADD with online template update. ARO is the final complete version
of our algorithm. During comparison, the number of detected electrode candidates
per frame is set as 15 and all other settings are exactly the same. We have tried
other options of fusing detection probability and template matching score, such as
multiplication of the two terms in Eq. (5). The effectiveness of Eq. (5) is validated
through our batch evaluation on 1000+ sequences.



Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach 221

Table 1 CS catheter tracking performance

Mean Median p85 p90 p95 p98

DON 1.16 0.66 0.98 1.12 1.67 4.26
ADD 0.91 0.45 0.72 0.86 1.56 4.45
ADR 0.78 0.48 0.72 0.81 1.10 2.40
ARO 0.76 0.50 0.73 0.82 1.04 2.14

The frame errors are in millimeter (mm) and computed at mean, median, percentile 85th (p85), 90th
(p90), 95th (p95) and 98th (p98). Although tracking catheters in real fluoroscopic sequences is a
non-trivial task, our algorithm turns out to be very robust against different challenging scenarios
and has an error less than 2 mm in 97.8 % of the total evaluated frames. The last row shows the best
performance including all essential components

...

3D Image Data Detection Motion Tracking Quantitative Analysis

Fig. 9 Diagram of our learning-based 3D detection and tracking framework

4 3D Motion Tracking

To extract dynamic information of anatomical structures from volumetric time-
resolved data, such as US, CT, and MRI, a robust tracking system is needed to
estimate the 3D non-rigid deformation of the target object. Based on the proba-
bilistic framework introduced in Sect. 2, we present an learning-based detection and
tracking approach which includes the following main steps, automatic initialization,
dense motion tracking, and 3D measurement computation as illustrated in Fig. 9.
We apply and evaluate the presented framework to estimate 3D motion in various
modalities, including 3D myocardial mechanics on volume ultrasound in Sect. 4.3,
quantification of cardiac flow volume on volume Doppler in Sect. 4.4, joint delin-
eation of left and right ventricles in cardiac MRI in Sect. 4.5, and four chamber
tracking in cardiac CT in Sect. 4.6.

4.1 Unified 3D Anatomical Model

To facilitate comprehensive motion estimation and anatomical measurements, an
anatomically indexed heart model used in this chapter is illustrated in Fig. 10. The
mesh model for the right atrium is shown in Fig. 10b. The left atrium is represented
by an open mesh separated by the mitral valve, shown in Fig. 10c. The right ven-
tricle has a more complicated shape and is represented by an open mesh shown in
Fig. 10d. Figure 10e shows the left ventricle including both epicardium (magenta)
and endocardium (green). The detailed anatomical models can be found in [46].
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(a)

(b) (c)

(d) (e)

Fig. 10 The anatomically indexed heart model for comprehensive motion estimation and quan-
titative measurements. a The unified heart model with all four chambers. b The mesh model for
the right atrium (RA). c The mesh model for the left atrium (LA). d The mesh model for the right
ventricle (RV). e The mesh model for the left ventricle (LV), with green for the LV endocardium
and magenta for the LV epicardium

4.2 Learning-Based Detection and Motion Estimation

In order to obtain precise morphological and functional quantification, dense tracking
of the cardiac motion is required to establish the inter-frame correspondences for
each point on the 3D mesh in Sect. 4.1. To initialize the tracking process, we fit
the 3D model automatically in the starting frame (typically the end-systole or end-
diastole cardiac phase), using the learning-based detection in Sect. 2.1. Then, we
fuse information from multiple cues into the probabilistic framework introduced in
Sect. 2, i.e.,

arg max
Xt

p(Xt |Z0:t ) = arg max
Xt

p(Zt |Xt )︸ ︷︷ ︸
likelihood

∫
p(Xt |Xt−1)︸ ︷︷ ︸

prediction

p(Xt−1|Z0:t−1) (9)

where Z0:t = Z0, . . . , Zt are the measurements from the input image sequence
I0:t = I0, . . . , It . For clarity, we use Xt to denote a concatenation of the mesh point
positions, Xt = [X1, . . . , Xn], which need to be estimated at the current time instant
t and n is the total number of points in the mesh model.

To maximize the accuracy and robustness of the tracking performance, the likeli-
hood term p(Zt |Xt ) is computed from both boundary detection and image template
matching as proposed in [39, 40], p(Zt |Xt ) = (1 − λk)p(yb|Xt ) + λk p(Tt |Xt ),

where Tt is the image pattern template and λk is the weighting coefficient of the
matching term. The first term p(yb|Xt ) is the posterior distribution of the endo-
cardial boundary learned in Sect. 2.1, using the steerable features and the prob-
abilistic boosting-tree (PBT) [33]. The second term p(Tt |Xt ) is obtained by a
logistic function, 1

1+e−‖It (Xt )−Tt ‖2 , based on image matching: ‖It (Xt ) − Tt‖2 =
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Table 2 In-vitro experiments on both (a) rotation and (b) displacement data

(a) Rotation (degrees) 10 15 20 25 (b) Displacement (mm) 0.82 1.29 2.02
Estimation 9.3 13.5 18.1 21.8 Estimation 0.9 1.54 2.31
Accuracy (%) 93 90 91 87 Accuracy (%) 90 81 91

The ground-truth motion was generated by a rotation device and a water pump controlling the
stroke volume. Two crystals were implanted in the apical and middle regions of the left ventricle
respectively to measure the myocardial movement. The displacements in (b) were computed based
on a 30 mm reference length. Our tracking results are consistent with the ground-truth measurements
on both rotation and displacement data

∑
i, j,k(It (Xt + (i, j, k)) − Tt (i, j, k))2, where i, j , and k are the pixel-wise shift

in the x, y, and z directions, respectively. λk is computed based on the feature mea-
sure as follows,

λk = 1

1 + e− f c(It (Xt ),Tt )
, f c(It (Xt ), Tt ) = cov(It (Xt ), Tt )

σ (It (Xt ))σ (Tt )
(10)

cov(It (Xt ), Tt ) is the intensity covariance between the image block It (Xt ) centered
at Xt and the image template Tt . σ 2(It (Xt )) and σ 2(Tt ) are the intensity variance of
the image block It (Xt ) and the image template Tt , respectively. In our experiments,
the typical image block size is 11 × 11 × 11 voxels, while the typical search range
is 7 × 7 × 7 voxels. To handle the temporal image variation, the image template Tt

is also updated online using the image intensities It (Xt−1) from the previous frame
t − 1.

The prediction term in Eq. (9), p(Xt |Xt−1), is the transition probability function
p̂(Xt |Xt−1) learned directly from the training data set, as explained in Sect. 2.2.

4.3 Myocardial Mechanics on Volume Echocardiography
Data

Global and regional cardiac deformation provides important information on myocar-
dial (dys-)function in a variety of clinical settings. Given the recent progress on real-
time ultrasound imaging, unstitched volumetric data can be captured at a high volume
rate, which allows to quantify cardiac strain in a non-invasive manner. In this section,
we demonstrate the performance of the automatic detection and tracking method as
well as the myocardial mechanics estimation. In our experiments, high frame-rate
3D+t ultrasound sequences were acquired by a Siemens SC2000 system with the
average volume size of 200 × 200 × 140 voxels. The average spatial resolution is
1 mm in the x , y, and z directions, and the average temporal resolution is 44 frames
per second.

In Vitro Study: To evaluate the accuracy of the automatic tracking method, we
performed an in vitro experiment on animals. The ground-truth motion was generated
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Table 3 Comparison of the longitudinal strain estimation between the deformable tracking method
and the crystal measurements in the in vitro study

Longitudinal strain (%) 2.63 4.11 6.68
Estimation (%) 3.43 5.19 8.25
Difference (%) 0.8 1.08 1.57

The two crystals were implanted in the apical and middle regions of the left ventricle, such that
the longitudinal Lagrangian strain can be computed based on the displacement as the ground-truth
measurement in the top row. The estimation results in the middle row are computed from the 3D
strain tensor using our method. The low difference values in the bottom row show clearly that the
estimation from the deformable tracking method is consistent with the clinical measurements

Table 4 Performance analysis on a large data set including 503 3D+t ultrasound sequences

Measure(mm) Training (239) Testing (264) Training (434) Testing (69)

Mean/std 2.21/1.57 2.68/2.63 2.26/1.42 2.64/2.23

In the first experiment, the data set was evenly split into a training set with 239 sequences and a
testing set with the remaining 264 sequences, while in the second experiment the training set (434)
and the testing set (69) were not balanced. The error measurements were computed as the average
point distance between the estimated mesh and the ground-truth annotations by experts on both the
end-diastolic and end-systolic frames. The consistent evaluation results demonstrate the robustness
of the learning-based detection and tracking method

by a rotation device and a water pump controlling the stroke volume. Two crystals
were implanted in the apical and middle regions of the left ventricle, respectively,
to measure the myocardial movement. Table 2 reports the error analysis on four
volumetric ultrasound sequences acquired with 10, 15, 20, and 25 rotation degrees,
respectively, and three sequences with different stroke volumes.

Furthermore, to evaluate the results of our myocardial strain estimation, we com-
pare them against the crystal measurements for the same subjects in the in vitro
study. The ground-truth longitudinal Lagrangian strain can be computed based on
the displacement reported in Table 2b. Table 3 reports the comparison between the
estimated strain values and the ones from crystal measurements.

In Vivo Study: To evaluate the robustness of the learning-based detection and tracking
method, we tested it on a large data set including 503 volumetric ultrasound sequences
from human subjects. The data set was randomly split into a training set and a testing
set, where the training set was used to learn the detectors in Sect. 2.1 and the prior
distributions in Sect. 2.2, while the testing set reflected the performance for unseen
data. The results on both the training and testing sets are reported in Table 4.

Comparison Study: Finally to demonstrate the advantage of the learning-based
fusion framework, we compared this method against tracking by 3D optical flow
and tracking by detection. The accuracy is measured by the point-to-mesh error [43]
reported in Table 5 for all three methods.
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Table 5 Comparison between the 3D optical flow, tracking by detection, and learning-based fusion
methods

Error (mm) Mean Std Median Min Max

3D optical flow 2.68 1.28 2.39 0.94 10.38
Tracking by detection 1.61 1.24 1.31 0.59 9.89
Learning-based fusion 1.28 1.11 1.03 0.38 9.80

The point-to-mesh errors are measured in millimeters. The learning-based fusion method achieved
the best accuracy among compared to the other two approaches

4.4 Flow Quantification on 3D Volume Color Doppler
Data

The quantification of flow volume is important for evaluation of patients with car-
diac dysfunction and cardiovascular disease. However, accurate flow quantification
remains a significant challenge for cardiologists [21]. In this section, we apply our
automatic tracking framework in cardiac flow volume quantification using instanta-
neous 3D+t ultrasound data.

To evaluate the performance of the learning-based fusion method, a set of 3D full-
volume ultrasound sequences were acquired by a Siemens SC2000 scanner with an
average volume rate of 15 vps at the Ohio State University Medical Center. Twenty-
two subjects with normal valves were enrolled with the Institutional Review Board
(IRB) approval.

Table 6 reports the comparison between the expert measurements using 2D pulsed
wave (PW) Doppler and the flow volumes estimated by our method. The LV stroke
volume (LVSV) was very close to the volume from LVOT-PW (70.1 ± 20.8 ml,
69.7±16.7 ml) with good correlation (r = 0.78). 3D LV inflow and outflow volumes
(73.6 ± 16.3 ml, 67.6 ± 14.6 ml) were correlated well with LVSV and LVOT-PW
respectively (r = 0.77, 0.91).

4.5 Joint Delineation of LV and RV in Cardiac
MRI Sequences

Cardiac Magnetic Resonance Imaging (MRI) is now an established, although still
rapidly advancing, technique providing information on morphology and function
of the cardiovascular system. A typical cardiac MR scan to examine the LV/RV
morphology and function contains a short axis stack, which consists of image slices
captured at the different positions along the short axis of heart chambers (e.g., the
LV). These image slices can be aligned using the physical coordinates (location and
orientation) recorded during acquisition. A 3D volume is reconstructed from this
stack of aligned image slices. If each image slice is captured in a time sequence and
synchronized to each other, a 3D volume sequence is obtained, which is used for
3D chamber segmentation and dynamics extraction in our system. In this section,
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Table 6 Flow volume quantification on 22 normal patients

Measure (ml) Mean STD

(a) LVOT-PW 69.7 16.7
LVSV 70.1 20.8
3D CD mitral inflow 73.6 16.3
3D CD LVOT outflow 67.6 14.6
Measure 1 Measure 2 Correlation p-value
(b) LVOT-PW LVSV 0.78 <0.001
3D CD mitral inflow LVSV 0.77 <0.001
3D CD LVOT outflow LVOT-PW 0.91 <0.001

(a) Flow measure comparison. The first row shows the LVOT outflow volume measured by a clinical
expert using 2D pulsed wave (PW) Doppler. The second row is the estimated LV stroke volume
using the delineated LV endocardial boundary on the volumetric b-mode ultrasound data. The last
two rows are the de-aliased mitral inflow and LVOT outflow based on the sampled volumetric color
Doppler data by our method. (b) Correlation and statistical significance testing of flow measure
on 22 normal patients between (1) the LVOT outflow volume measured using 2D pulsed wave
(PW) Doppler and the estimated LV stroke volume; (2) the LVOT and the de-aliased Mitral inflow
by our method; and (3) the LVOT-PW and the LVOT outflow by our method. The estimated flow
volumes are consistent between all four measurements and close to the expert measurements, which
demonstrates the accuracy and robustness of the learning-based fusion method

(a)

(b) (c)

Fig. 11 Models of LV/RV fitted to a 3D reconstructed cardiac MRI volume sequence. a Estimated
3D model. b Volume measurement across time computed based on the fitted models. C 2D views
of frame 1, 11, 21 of a single heartbeat cycle (25 frames in total)

we apply the probabilistic framework from Sect. 4.2 to detect the joint LV and RV
model and estimate the dynamic motion and quantitative measurements, as illustrated
in Fig. 11.
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Table 7 Point-to-mesh distance measurements obtained by a 4-fold cross validation

Measure (mm) Mean Std Median

LV endocardium 2.95 4.85 1.84
LV epicardium 3.23 3.94 2.12
RV main 2.99 1.18 2.66

We collected 100 reconstructed volumes from 70 patients with left ventricles anno-
tated, among which 93 reconstructed volumes from 63 patients were also annotated
on right ventricles. Volumes were selected to cover a large range of dynamic heart
motion, including both end diastole and end systole. The original short-axis stack
images have an average in-plane resolution of 1.35 mm, and the distance between
slices is around 10 mm.

A 4-fold cross-validation scheme was applied for evaluation. The entire dataset
was randomly partitioned into four quarters. For each fold evaluation, three quarters
were combined for training and the remaining one was used as unseen data for testing.
This procedure was repeated four times so that each volume has been used once for
testing. For each segmented mesh, the distance from each vertex to the groundtruth
mesh (manual annotation) was computed as point-to-mesh distance. The average
distance from all vertices of the segmented mesh was used as the measurement.
Three major components, i.e., LV endocardium, LV epicardium, and RV main cavity
as illustrated in Fig. 10d, e, were considered in our evaluation as listed in Table 7.
Automatic delineation examples are provided in Fig. 11. On average, it took about 3 s
to segment both the LV and RV from a single volume (e.g, 256×256×70 voxels),
and about 40 s to fully extract dynamics of the entire sequence (typically 20 frames)
on a duo core 2.8 GHz CPU.

4.6 Four Chamber Tracking in Cardiac CT Data

The 3D tracking framework presented in Sect. 4.2 is generic and can be extended to
different modalities. In this section we also apply it to tracking all four chambers of
the heart, including left ventricle (LV), right ventricle (RV), left atrium (LA), and
right atrium (RA), in cardiac Computed Tomography (CT) data, collected from 27
institutes over the world using Siemens Somatom Sensation and Definition scanners.
The imaging protocols are heterogeneous with different capture ranges and resolu-
tions. A volume may contain 80 to 350 slices, while the size of each slice is the
same with 512×512 pixels. The resolution inside a slice is isotropic and varies from
0.28 to 0.74 mm for different volumes. The ED detector and boundary classifier were
trained on 323 static cardiac CT volumes from 137 patients with various cardiovas-
cular diseases. The cardiac motion model was trained on additional 20 sequences
(each with ten frames).

During the tracking stage, the learning-based fusion in Sect. 4.2 is applied to cal-
culate the motion displacements. Figure 12 shows the detection and tracking results
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12 Examples of heart chamber detection and tracking in 3D CT data. The heart chambers are
highlighted in green for the LV endocardium, magenta for the LV epicardium, cyan for the LA,
brown for the RV, and blue for the RA. The top row shows example tracking results on a dynamic
3D sequence with 10 frames. Four frames (1, 2, 3, and 6) are shown in a,b,c,d, respectively. The
bottom row includes more results on various CT volumes in our dataset

Table 8 The ejection fraction (EF) estimation accuracy for six dynamic sequences in our dataset

Patient Patient Patient Patient Patient Patient Mean Standard
#1 #2 #3 #4 #5 #6 error deviation

Ground truth (%) 68.7 49.7 45.8 62.9 47.4 38.9 2.3 1.6
Estimation (%) 66.8 51.8 42.8 64.4 42.3 38.5

of 3D cardiac CT four chambers (LV-epicardium, LV-endocardium, LA, RV, and RA)
in CT volumes. Furthermore, given the tracking result, we can calculate the ejection
fraction (EF) as, EF = (VE D − VE S)/VE D , where VE D and VE S are the vol-
ume measures of the end-diastolic (ED) and end-systolic (ES) phases, respectively.
Table 8 reports the EF estimation accuracy for six CT sequences. The estimated EFs
are close to the ground truth with a mean error of 2.3 %.

5 4D Trajectory Spectrum Tracking

To extend discriminative learning algorithms for time dependent four-dimensional
problems, trajectory-based features have increasingly attracted attention in motion
analysis and recognition [36]. It has been shown that the inherent representative
power of both shape and trajectory projections of non-rigid motion are equal, but the
representation in the trajectory space can significantly reduce the number of para-
meters to be optimized [2]. This duality has been exploited in motion reconstruction
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and segmentation [44], structure from motion [2]. In particular, for periodic motion,
frequency domain analysis shows promising results in motion estimation and recog-
nition [5, 25]. Although the compact parameterization and duality property are crucial
in the context of learning-based object detection and motion estimation, this synergy
has not been fully exploited yet.

In this section, we extend the learning-based model estimation in Sect. 2 to the
trajectory spectrum learning (TSL) with local-spatio-temporal (LST) features [18].
It includes three main steps: (1) global location and rigid motion estimation which
is obtained by the learning-based model fitting technique presented in Sect. 2.1, (2)
non-rigid landmark motion estimation using the trajectory spectrum learning (TSL)
with local-spatio-temporal (LST) features [18], and (3) non-rigid shape estimation
in the same learning-based fusion framework as in Sect. 4.2.

Based on the determined global location and rigid motion from Sect. 2.1, a trajec-
tory spectrum learning algorithm is applied to estimate the non-linear valve move-
ments from volumetric sequences [18]. The objective is to find for each landmark
j its trajectory aj, with the maximum posterior probability from a series of vol-
umes I , given the rigid motion θ . In particular, a trajectory aj can be uniquely
represented by the concatenation of its discrete Fourier transform (DFT) coeffi-
cients, sj = [sj(0), . . . , sj(n − 1)], obtained through the DFT equation, sj( f ) =∑n−1

t=0 aj(t)e
− j2π t f

n , where sj( f ) ∈ C
3 is the frequency spectrum of the x , y, and z

components of the trajectory aj(t), and f = 0, 1, . . . , n − 1. Therefore, instead of
estimating the motion trajectory directly, we apply discriminative learning to detect
the spectrum sj in the frequency domain by optimizing the following equation:

arg maxsj p(sj|I, θ) = arg maxsj p(sj(0), . . . , sj(n − 1)|
I (0), . . . , I (n − 1), θ(0), . . . , θ(n − 1))

(11)

Inspired by the MSL approach [46], we efficiently perform trajectory spectrum
learning and detection in DFT subspaces with gradually increased dimensionality.
The intuition is to perform a spectral coarse-to-fine motion estimation, where the
detection of coarse level motion (low frequency) is incrementally refined with high
frequency components representing fine deformations. More specifically, to obtain
object localization and motion estimation in unseen volumetric sequences, the motion
parameters are searched in the marginalized spaces Σ0, . . . , Σr−1 using the trained
spectrum detectors D0, . . . , Dr−1. Starting from an initial zero-spectrum, we incre-
mentally estimate the magnitude and phase of each frequency component s(k). At
the stage k, the corresponding robust classifier Dk is exhaustively scanned over the
potential candidates. The probability of a candidate Ck is computed by the following
objective function from the inversed DFT (IDFT):

p(Ck) =
n−1∏
t=0

Dk(IDFT(Ck), I, t) (12)
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(a)

(d)(c)(b) (e)

(f) (g) (g) (i)

Fig. 13 Examples of estimated patient-specific models from CT and TEE data: a healthy valves
from three different cardiac phases in the four chamber view. Pathologic valves with b bicuspid
aortic valve, c aortic root dilation and regurgitation, d moderate aortic stenosis, e mitral stenosis,
f mitral prolapse, g bicuspid aortic valve with prolapsing leaflets, h aortic stenosis with severe
calcification and i dilated aortic root

where t = 0, . . . , n − 1 is the time instance (frame index). After each step k, the top
50 trajectory candidates with high probability values are preserved for the next step
k + 1. The procedure is repeated until a final set of trajectory candidates Cr−1 are
computed. The final trajectory is reported as the average of all elements in Cr−1.

Furthermore, to improve learning performance, a Local-Spatial-Temporal (LST)
feature is used to incorporate both the spatial and temporal context, by aligning
contextual spatial features in time [18]:

F4D(θ(t), T |I, s) = τ(F3D(I, θ(t + i ∗ s)), i = −T, . . . , T ) (13)

Three-dimensional F3D() features extract simple gradient and intensity information
from steerable pattern spatially align with θ(t) as defined in Eq. (2). The final value
of a Local-Spatial-Temporal (LST) feature is the result of time integration using a set
of linear kernels τ , which weight spatial features F3D() according to their distance



Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach 231

Table 9 Errors for each estimation stage in TEE and CT

Measure (mm) TEE Mean Std. Median 80 % CT Mean Std. Median 80 %

Global location and rigid motion 6.95 4.12 5.96 8.72 8.09 3.32 7.57 10.4
Non-rigid landmark motion 3.78 1.55 3.43 4.85 2.93 1.36 2.59 3.38
Comprehensive aortic-mitral 1.54 1.17 1.16 1.78 1.36 0.93 1.30 1.53

The “80 %” column represents the 80th percentile of the error values

from the current frame t . A simple example for τ , also used in our implementation, is
the uniform kernel over the interval [−T, T ], τ = 1/(2T +1)

∑T
i=−T (F3D(I, θ(t +

i ∗ s)). For this choice of τ , each F3D contributes equally to the F4D .
To demonstrate the performance of the 4D trajectory spectrum tracking method,

we test it on a large and comprehensive data set. More specifically, 690 CT and
1516 TEE volumes were acquired from 134 patients affected by various cardio-
vascular diseases such as, bicuspid aortic valve, dilated aortic root, stenotic aor-
tic/mitral, regurgitant aortic/mitral as well as prolapsed valves. Example images
are shown in Fig. 13. The electrocardiogram (ECG) gated cardiac CT sequences
include ten volumes per cardiac cycle, where each volume contains 80–350 slices
with 512 × 512 pixels. The in-slice resolution is isotropic and varies between 0.28
to 1.00 mm with a slice thickness from 0.4 to 2.0 mm. TEE data includes an equal
amount of rotational (3–5◦) and matrix array acquisitions. A complete cardiac cycle
is captured in a series of 7–39 volumes, depending on the patient’s heart beat rate
and scanning protocol. Image resolution and size vary for the TEE data set from 0.6
to 1 mm and 136 × 128 × 112 to 160 × 160 × 120 voxels, respectively.

The performance evaluation was conducted using 3-fold cross-validation in the
similar manner as in Sect. 4.5. Table 9 summarizes the model estimation perfor-
mance averaged over the three evaluation runs. On a standard PC with a quad-core
3.2 GHz processor and 2.0 GB memory, the total computation time for the three
estimation stages is 4.8 s per volume (approximately 120 s for an average length vol-
ume sequence). Figure 13 shows estimation results on various pathologies for both
valves and imaging modalities. Furthermore, we compare the 4D trajectory spec-
trum tracking method to traditional tracking methods, such as optical flow [12] and
tracking-by-detection [45], and report the results in Fig. 14.

Given the tracking results, we can compute quantitative measurements and eval-
uate them against manual expert measurements. Table 10 shows the accuracy for
the Ventriculoarterial Junction, Valsava Sinuses and Sinotubular Junction aortic root
diameters as well as for Annular Circumference, Annular-Posterior Diameter and
Anterolateral-Posteromedial Diameter of the mitral valve. From a subset of 19 TEE
patients, we computed measurements of the aortic-mitral complex and compared
those to literature reported values [34]. Distances between the centroids of the aortic
and mitral annulae as well as interannular angles were computed. The latter is the
angle between the vectors, which point from the highest point of the anterior mitral
annulus to the aortic and mitral annular centroids respectively. The mean interannular
angle and interannular centroid distance were 137.0±12.2 and 26.5±4.2, respectively
compared to 136.2±12.6 and 25.0±3.2 reported in the literature [34].
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(a) (b)

Fig. 14 Error comparison between the optical flow, tracking-by-detection and our trajectory-
spectrum approach distributed over (a) time and (b) detected anatomical landmarks. The curve
in black shows the performance of our approach, which has the lowest error among all
three methods

Table 10 System-precision for various measurements of the aortic-mitral apparatus

Mean STD

Ventriculoarterial junct. � (mm) 1.37 0.17
Valsava sinuses � (mm) 1.66 0.43

Sinotubular junct. � (mm) 0.98 0.29
Annular ∨ (mm) 8.46 3.0

Annular-posterior � (mm) 3.25 2.19
Anterolateral–posteromedial � (mm) 5.09 3.7

� diameter, ∨ circumferential length

6 Conclusions

This chapter presented a probabilistic framework for fast and accurate detection and
tracking of deformable objects, with various applications in the medical imaging
field. To handle shape and appearance variations in visual tracking, a set of offline
and online component-based models are maintained to obtain multiple estimates of
the target object, which allows us to combine several sources of information, includ-
ing domain knowledge encoded in image-based discriminative classifiers, domain
knowledge encoded in shape models and motion models, and traditional tracking
with template-based matching/registration. The model estimation is automatically
performed by applying robust and efficient learning-based algorithms on 2D, 3D and
4D data in various modalities, including US, CT, MRI and X-ray fluoroscopy. Valida-
tion experiments on clinical datasets demonstrated the good accuracy and robustness
of the presented framework and showed a strong inter-modality and inter-subject
correlation for a comprehensive set of model-based measurements. The resulting
patient-specific model provides precise morphological and functional quantification
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of the anatomies to be analyzed, which is a prerequisite during the entire clinical
workflow including diagnosis, therapy-planning, surgery or percutaneous interven-
tion as well as patient monitoring and follow-up.
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