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Abstract

Lymph nodes have high clinical relevance but detection
is challenging as they are hard to see due to low contrast
and irregular shape. In this paper, a method for fully au-
tomatic mediastinal lymph node detection in 3-D computed
tomography (CT) images of the chest area is proposed. Dis-
criminative learning is used to detect lymph nodes based on
their appearance. Because lymph nodes can easily be con-
fused with other structures, it is vital to incorporate as much
anatomical knowledge as possible to achieve good detec-
tion rates. Here, a learned prior of the spatial distribution
is proposed to model this knowledge. As atlas matching is
generally inaccurate in the chest area because of anatom-
ical variations, this prior is not learned in the space of a
single atlas, but in the space of multiple ones that are at-
tached to anatomical structures. During test, the priors are
weighted and merged according to spatial distances. Cross-
validation on 54 CT datasets showed that the prior based
detector yields a true positive rate of 52.3% for seven false
positives per volume image, which is about two times better
than without a spatial prior.

1. Introduction

Lymph nodes play an important role in clinical practice,
especially in the mediastinal area. They routinely need to
be considered during oncological examination related to all
kinds of cancer [6, 3], for instance lung cancer [10], where
metastases settle in lymph nodes, but also lymphoma, which
is a cancer of the lymphatic system itself. Furthermore, they
are also relevant in case of inflammation in general.

Cancer causes affected lymph nodes to be enlarged. In
order to assess the progress of the disease and to check
whether treatment is effective, physicians are interested in
statistics like the number of enlarged nodes or the total vol-

Figure 1. Two axial cross sections of CT volumes with expert-
reviewed lymph node annotations (green).

ume of the nodes, but also in the spatial distribution, and
changes over time. Patients are commonly examined using
CT.

Manually counting and measuring lymph nodes in the
images is not only cumbersome but also error prone be-
cause annotations from different human observers and even
from the same human observer vary significantly. In prac-
tice, lymph nodes are not annotated individually because it
would take too much time, though the clinical value would
be high. An automatic detection is however challenging be-
cause lymph nodes have an attenuation coefficient similar
to muscles and vessels and therefore low contrast to sur-
rounding structures. Moreover, their shape and size varies
a lot. Even a human needs days of training to consistently
find lymph nodes in CT volume images. Examples of me-
diastinal lymph nodes are shown in Figure 1.

Up to now, there are few publications on automatic
lymph node detection. In [9], two blob detectors which
are called 3-D Min-DD filter and extended 3-D Min-DD
filter are used in a cascade to detect lymph nodes in ab-
dominal CT data. A Hessian based vessel detector, the CT
Hounsfield units and morphological operations are used to
reduce the number of false positives. In [7], a similar ap-
proach is used to detect lymph nodes in chest CT. Here, the
first 3-D Min-DD filter is replaced with a Hessian based
blob detector. The more expensive extended 3-D Min-DD
filter is used at the second level of the cascade. For segmen-
tation, a model based approach using mass spring models
was proposed in [4]. It was also used for detection by plac-
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ing models on a regular grid over the volume [5]. A lymph
node was assumed at positions where the model fitting con-
verged with a good score.

In this paper, we use discriminative learning techniques
in combination with search space pruning based on [14] to
detect lymph nodes from their appearance. The major con-
tribution of this work is to combine this powerful detector
with anatomical knowledge that is modeled as a spatial prior
probability which is learned from annotated data. As inter-
subject or atlas registration is generally inaccurate because
of variations in the anatomy, we use a mixture of spatial
priors that are attached to different anatomical structures,
which are detected automatically.

The remainder of this paper is structured as follows: Sec-
tion 2 explains the discriminative model used to recognize
lymph nodes from their appearance. In section 3, the spatial
prior model and its integration into the probabilistic detec-
tion framework is discussed. Section 4 presents results and
section 5 concludes the paper.

2. Appearance based detection
As we are especially interested in the size and location,

we want to find axis aligned bounding boxes of the lymph
nodes. The boxes b are parameterized by their center t and
size s:

b = (t, s) = (tx, ty, tz, sx, sy, sz) (1)

We use a multi-stage system of probabilistic boosting tree
(PBT) classifiers [12]. These are binary decision trees with
a strong Ada-Boost classifier at each node. In the first de-
tection stage, a PBT classifier is trained with 3-D Haar-like
features to learn the probability

p(m = 1|T (t)) (2)

of whether there is a lymph node model instance at a given
position t, which has similarities to the face detector pro-
posed by Viola and Jones [13]. Here, T denotes the Haar-
feature vector extracted at position t. Haar features are used
because they can be computed very efficiently so that it is
even possible to search all positions in the volume exhaus-
tively.

Given the output from the classifier, a set of position can-
didates CT1 = {t1, . . . , t|CT1|} is generated. If a fixed
threshold θ is used and we select all t that satisfy p(m =
1|T (t)) > θ, we run into the problem that lots of candi-
dates are generated at lymph nodes which are clearly visi-
ble, but we don’t get any candidates at lymph nodes which
are hard to see. To overcome this, we use a technique pro-
posed in [2]. First, a probability map is generated from the
classifier output. This map is blurred using a Gaussian fil-
ter with a standard deviation of 1.5mm, and local maxima
in the probability map are selected as candidates. An ex-
ample of candidates extracted from the blurred probability

Figure 2. Local maxima of the probability map generated by the
detector are used as position candidates. Note that this is a 2-D
slice of a 3-D volume and points that look like local optima in 2-D
are not necessarily local optima in 3-D.

map can be seen in Figure 2 along with the CT image data
it was generated from.

Now, another PBT classifier is used to examine the posi-
tion candidates in the set CT1 and to reject false positives,
resulting in a set CT2 of candidates. The negative exam-
ples for the training phase of this classifier are generated
by scanning images using the first classifier and collecting
false positives.

So far, the size of the lymph nodes had not been taken
into account. The classifiers for translation are trained with
data of different sizes. We follow the idea of marginal space
learning proposed in [14]: Instead of directly searching a
high dimensional search space, which here consists of po-
sition t and size s parameters, candidates of position are
generated using a detector that is trained on a margin of the
search space, which is spanned by t in this case. A second
detector trained to learn the probability p(m = 1|S(t, s))
of a lymph node at a given position with a given size then
only needs to consider the position candidates CT2, lead-
ing to an enormous speedup. Here, S(t, s) denote so-called
steerable features [14] evaluated at position t and size s.
These are simple features like the intensity, the gradient and
nonlinear combinations evaluated on a regular grid of size
7× 7× 7, scaled and translated according to s and t.

The number of tree levels and the number of weak clas-
sifiers per Ada-Boost node are parameters of the PBT that
allow to control overfitting. Here, we used trees with two
levels and 20 weak classifiers per node.

3. Spatial prior
Up to now, only the image itself was used for detection

and we did not exploit available prior knowledge. In partic-
ular, lymph nodes

• always lie in fat tissue, so space inside any organ can
be excluded.

• In the remaining area, lymph nodes are not distributed
equally. Instead, it is for instance much more likely to
observe lymph nodes below the aortic arch and close
to the trachea.



3.1. Automatic landmark detection and organ seg-
mentation

In this work, this knowledge is represented as a spatial
distribution of lymph nodes that is learned with respect to
anatomical structures.

We automatically find a set of 20 salient anatomical land-
marks, that are mostly but not exclusively in the chest area
and can be detected robustly. The detection method used
here is described in [11]. Examples of landmarks are the bi-
furcation of the trachea, the bottom tip of the shoulder blade
left and right, the topmost point of the aortic arch and the
topmost point of the lung left and right.

Besides the landmarks, a number of different organs are
segmented. The lungs and the trachea are detected using
simple thresholding followed by a morphological opening
operation. The four heart chambers are segmented by fit-
ting a model described in [14]. The esophagus is segmented
using the approach of [8]. It is of special interest as it is of-
ten surrounded by lymph nodes, but at the same time can be
confused with lymphatic tissue. All segmentation methods
do not require user interaction.

3.2. Binary mask

We are looking for a spatial prior probability p(m = 1|t)
of observing a lymph node at a given location. A model for
this prior is proposed that consists of three parts: The first
part is a binary mask

B(t) =
{

0 if t is inside an organ
1 else (3)

that labels regions which cannot contain lymph nodes with 0
and other regions with 1. The lungs, the trachea, the esoph-
agus and the heart are excluded, i. e. labeled with zero in the
mask.

3.3. Global prior

The second part is a global soft prior

G(t) ∈ [0, 1] (4)

which is learned in the space of a reference patient. Non-
rigid inter subject registration is used to map segmented
lymph nodes from a set of test patients to the reference pa-
tient, where they are averaged. The segmentations are bi-
nary masks, and thus G(t) is the spatial probability of lym-
phatic tissue. The learned prior is blurred with a Gaussian
filter with a standard deviation of 12mm which is necessary
because of limited training data.

The registration is based on the set of 20 landmarks. If
a landmark is not detected, e. g. because it is not visible in
the image, it is omitted. A thin-plate splines (TPS) trans-
formation [1] is created from the detected landmarks and

Figure 3. Heart and esophagus model fitted to a CT volume.

the reference landmarks and used for the warping. During
training, the transformation maps from the reference space
to the current image, and for the testing phase, it maps into
the other direction.

3.4. Organ-specific local prior

The disadvantage of the global prior G is the lim-
ited accuracy which stems from inter-subject variations of
anatomy and from missing landmarks on points or surfaces
of interest. In general, the problem of finding a transfor-
mation f that maps from one image to another is ill-posed
if certain points or regions, like for instance a gap between
two organs, only exist in one, or if the relative position of
two structures, e.g. the esophagus and the trachea, is dif-
ferent in the two images. This is a problem all atlas based
techniques have to cope with.

In this work, a solution to this problem is proposed which
is based on a mixture of spatially weighted priors. In addi-
tion to the landmark based global prior G, a set of local pri-
ors Li, i = 1 . . .M is introduced. We already have the heart
and the esophagus available, which are represented as trian-
gular meshes. For the heart, the four chambers are treated
like separate organs. The vertices of these meshes can be
used as landmarks for a TPS based registration like in case
of the global prior G. If they were simply added to the
existing set of landmarks, however, the resulting TPS trans-
formation would easily become rugged and produce folds
or become inaccurate if it was constrained to be smooth
because of the problems described above. Here, each seg-
mented organ is associated with a prior Li. It is learned in
the space of the organ’s mean shape, which is generated by
averaging the points of a set of training shapes that were
aligned by a generalized Procrustes analysis. Each local
prior Li is trained like the global, but now the vertices of
the organ mesh serve as landmarks for the TPS transforma-
tion. In the testing phase, the final local prior L(t) for a test
volume is the sum of the local priors, weighted with wi(t)



according to the minimum distance di(t) of t to the surface
of organ i:

L(t) =
1

Z(t)

M∑
i=1

Li(t)wi(t) (5)

Z(t) =
M∑
i=1

wi(t) (6)

wi(t) =

{
(di(t)−θ)2

θ2 if di(t) < θ
0 else.

(7)

Here, θ denotes the maximal distance from the organ sur-
face up to that the corresponding prior still has support. In
the experiments, θ was set to 25mm. The weight wi de-
creases with increasing distance because the TPS transfor-
mation is only accurate close to the surface.

3.5. Final prior and integration into detector

Now the binary mask B, the global prior G and the local
prior L are merged into a final prior probability p(m = 1|t)
of observing a lymph node at position t. It is modelled as

p(m = 1|t) = B(t) (wmax(t)L(t) + (1− wmax(t))G(t))
(8)

where wmax is the maximum weight

wmax(t) = max (w1(t), . . . , wM (t)) . (9)

During position detection, we are finally interested in the
probability

p(m = 1|T , t) (10)

of whether there is a lymph node at a given position t, with
a given feature vector T . With Bayes’ rule, (10) can be
reformulated as

p(m = 1|T , t) =
p(T , t|m = 1)p(m = 1)

p(T , t)
. (11)

For simplification, we assume that the feature vector T is
statistically independent from the position t. This is an ap-
proximation as T obviously depends on t, but t determines
T only for a certain image. The assumption is justified by
the fact that the spatial prior clearly improves the perfor-
mance as we will see, which means that T does not contain
much information about t.

Now (11) may be transformed into

p(m = 1|T , t) =
p(T |m = 1)p(t|m = 1)p(m = 1)

p(T )p(t)
(12)

=
p(m = 1|T )p(m = 1|t)

p(m = 1)
, (13)
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Figure 4. ROC curve comparing the performance of the proposed
prior based method to the performance of only using the classifier
output.

which is proportional to the product of (2) and (8) and is
used as final translation detection score. A blurred map of
this score is visualized in Figure 2 (right).

Similarly, if also scale is incorporated and we’re inter-
ested in the probability of having a lymph node at a given
position t with features T and S, it can be expressed as

p(m = 1|S,T , t) =
p(m = 1|S)p(m = 1|T )p(m = 1|t)

p2(m = 1)
(14)

under the assumption that the steerable features S are sta-
tistically independent from the Haar-like features T and po-
sition t. This probability serves as final detection score.
Based on it, a set CTS of translation and scale candidates
is generated. The best 400 candidates are spatially clus-
tered and merged to generate the lymph node detections.
Hierarchical clustering is used with a maximum distance of
12mm.

4. Results
In order to train the discriminative model and the spa-

tial prior, 54 CT volume images of patients suffering from
lymphoma were collected. The inter-slice spacing was
1mm, and the voxel spacing within an axial slice was in
the range of 0.7mm to 0.9mm. All datasets were resam-
pled to isotropic 1× 1× 1mm3 resolution. The mediastinal
lymph nodes were manually segmented, and the segmenta-
tions were reviewed by an experienced radiologist. In total,
1086 lymph nodes were annotated.

The detection performance was evaluated using three-
fold cross-validation. For each fold, both the spatial prior
and the classifiers were trained on the training data and eval-
uated on the test data. The classifiers were only trained
on lymph nodes that have a minimum size of 10mm in at
least two dimensions. Smaller lymph nodes are usually not



Method Body region TP criterion num. vol. size/mm TP FP FN TPR FP per vol.
Kitasaka et al. [9] Abdomen overlap 5 > 5.0 126 290 95 57.0% 58

Feuerstein et al. [7] Mediastinum overlap 5 > 1.5 87 567 19 82.1% 113
This method Mediastinum overlap 54 >10.0 174 157 92 65.4% 2.9
Dornheim [5] Neck unknown 1 > 8.0 29 9 0 100% 9
This method Mediastinum in box 54 >10.0 117 157 149 44.0% 2.9
This method Mediastinum in box 54 >10.0 139 379 127 52.3% 7.0

Intra-observer var. Mediastinum in box 10 >10.0 23 8 19 54.8% 0.8
Table 1. Detection results compared to state of the art methods and to the intra-observer variability. In the top and bottom three rows,
a ground truth lymph node is considered as detected if it overlaps with a detection, and if the center of a detection falls within the tight
bounding box of the lymph node, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Examples of detection results on unseen data, shown in 2-D, with (even columns) and without (odd columns) ground truth
segmentation in green. The confidence p(m = 1|S, T , t) of a detection is color coded. Violet means lowest, turquoise is medium and
green is high confidence. (a-d): The lymph node were detected. There are false positives, but the true positives have higher confidence.
(e-f): Examples of false negatives.

pathologic [3] and were therefore neglected. The set of
manual segmentations contained six huge cases with a size

exceeding 5cm which were mostly not single nodes but a
cluster of lymph nodes which were densely packed so that



Figure 5. Detection results on unseen data shown in 3-D along
with ground truth segmentations in green.

Figure 6. Two manual segmentations from the same person.

axial sagittal coronal
Figure 8. Final prior computed for a test volume.

the boundaries become invisible. Such cases were removed
from the training set in order not to distract the detector
with few extreme examples. Among the segmented lymph
nodes, 266 were used for training. In order to achieve a
better generalization and to avoid overfitting, the training
data was mirrored by all three coordinate planes, resulting
in 23 = 8 times more training examples. For testing, only
the original data was used.

During test, two different criterions were used to sepa-
rate true positives (TP) from false positives (FP). In the first
case, a manually segmented lymph node is considered as
detected if there is overlap between the segmentation and

the detection. This criterion was used in [9] and [7] ac-
cording to the authors. Here, it is called “overlap”. This
error measure is however a suboptimal choice because a
single huge detection covering the whole volume would re-
sult in a true positive rate (TPR) of 100% with zero FP, al-
though the detection is obviously meaningless. Therefore,
we measured the performance also with a second criterion
called “in box”, which considers a lymph node as detected
if the center of a detected box is inside the tight axis-aligned
bounding box of the lymph node. A lymph node was con-
sidered as false negative (FN) if its size was at least 10mm
and it was not detected.

The performance of the detectors considerably depends
on how the negative training examples are selected. Instead
of randomly sampling images, the position samples for the
first detector in the chain were drawn only from the regions
of the binary mask B labeled with one. This avoids con-
fusing the detector with data it won’t ever see in the testing
phase.

A ROC curve of the detection performance is shown in
Figure 4. For example, we get a TPR of 22.6% with 4.0
FP per volume on average for the “in box” error measure
if we only rely on the score of the classifiers. If also the
spatial prior is used, we get a TPR of 46.6% with 3.8 TP
per volume, which is more than two times better. The fig-
ure also shows the results of the prior based method for the
“overlap” error measure.

In Table 1, the detection performance is compared to
state of the art methods and to the performance of a human
observer. In [9], a TPR of 57% was reported for abdomi-
nal lymph nodes, but with 58 false alarms per volume. In
[7], 82.1% of mediastinal lymph node were detected with
113 FP per volume. When the same “overlap” error mea-
sure was used, the method proposed here detected 65.4%
of the lymph nodes with only 2.9 FP per volume. In [5],
a TPR of 100% is reported with 9 FP, but it was evalu-
ated on a single volume image only, and regions of interest
were selected manually. The comparability with [9, 7, 5] is
however limited because of different minimum sizes above
which missed lymph nodes are counted as false negatives,
different datasets and annotations, the “overlap” error mea-
sure and partially different body regions.

In order to compare the automatic detection results with
the performance of a human, we did an experiment on the
intra-human observer variability. Ten of the CT volumes
were annotated a second time by the same person a few
months later. The first segmentations served as ground
truth, and the second ones were considered as detections.
TPR and FP were measured in the same way as for the au-
tomatic detection. The TPR was 54.8% with 0.8 false pos-
itives per volume on average. While 0.8 FP is very low,
a TPR of 54.8% shows that finding lymph nodes in CT is
quite challenging also for humans. Figure 6 shows the first



Landmark detection heart and esophagus segmentation prior computation detection total
5.86 20.7 66.3 42.0 134.8

Table 2. Computation time in seconds for the different steps of the proposed method.

and the second segmentations for one of the ten datasets.
In Figure 8, orthogonal cross-sections of the final spatial

prior (8) for a test volume are shown. The location of lymph
nodes is highly constrained by the prior. It was learned that
lymph nodes are more likely close to the trachea, especially
close to its bifurcation, and also close to the esophagus,
which is in fact true as these are natural gateways to the
body.

Figure 7 shows some detection examples. In general,
the detection score, which is color coded, reflects well the
quality of the detection. False positives are mostly struc-
tures that look similar to lymph nodes like vessels, or some-
times they are at locations where lymph nodes are common.
One reason for this behavior is the spatial prior, and another
reason is that the detectors also learned common surround-
ing structures of lymph nodes. The technique of generating
more training data by mirroring helps to lower this effect.
Figure 5 shows detection results in 3-D.

The computational requirements were measured for a
volume of size 183 × 179 × 251 voxel with a voxel spac-
ing of 1 × 1 × 1 mm3. The results are shown in Table 2.
Including landmark detection and segmentation of the heart
and the esophagus, lymph node detection takes 2min 15s on
a 2.2GHz dual core processor. The method of [7] takes 1-
6min, in [5], a computation time of 17min is reported, and
the method of [9] takes 2-3h.

5. Discussion

This work presents a method for fully automatic detec-
tion of mediastinal lymph nodes, which is a challenging
problem due to low contrast to surrounding structures and
clutter. In contrast to prior work, we heavily rely on prior
anatomical knowledge, which is modelled as a spatial prior
probability and learned from annotated data. To handle
anatomical variations, a mixture of local and global priors
is proposed, which are non-rigidly attached to segmented
organs and landmarks. This is combined with a powerful
detector. Evaluation on 54 CT volume images showed com-
petitive results and the advantage of a prior based approach.
The method can easily be adapted to other regions of the
body, and also to other node-like structures and lesions, for
example tumor metastases.
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