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Abstract. Lymph node detection and measurement is a difficult and
important part of cancer treatment. In this paper we present a robust
and effective learning-based method for the automatic detection of solid
lymph nodes from Computed Tomography data. The contributions of
the paper are the following. First, it presents a learning based approach
to lymph node detection based on Marginal Space Learning. Second, it
presents an efficient MRF-based segmentation method for solid lymph
nodes. Third, it presents two new sets of features, one set self-aligning to
the local gradients and another set based on the segmentation result. An
extensive evaluation on 101 volumes containing 362 lymph nodes shows
that this method obtains a 82.3% detection rate at 1 false positive per
volume, with an average running time of 5-20 seconds per volume.

1 Introduction

Lymph node (LN) analysis is a difficult task and accounts for a significant part
of daily clinical work in Radiology. In particular, automatic lymph node detec-
tion and segmentation is important for cancer staging and treatment monitoring.
Lymph nodes nearby primary cancer regions are routinely assessed by clinicians
to monitor disease progress and effectiveness of the cancer treatment. The as-
sessment is usually based on 3D Computed Tomography (CT) data. When the
cancer treatment is successful, the lymph nodes decrease in size. Since finding the
lymph nodes is time consuming and highly dependent on the observer’s experi-
ence, a system for automatic lymph node detection and measurement is desired.
For follow-up studies, the system could further report the size change for each
major lymph node.

There is a limited amount of work di-

Fig. 1. Diagram of the axillary
lymph node detection system.

rected to automatic lymph node detection [4,
5, 7]. These works target mediastinal [5], ab-
dominal [7] and neck [4] lymph nodes while
our work targets axillary lymph nodes. The
axillary lymph nodes are not nearby airways,
major vessels or organs, so a segmentation of
the vessels, airways or organs is not neces-
sary.

Previous work [5] relied on Hessian-based
blobness measures and other filters for re-
moving lymph node false positives. Our work
comes from a learning perspective, where the appropriate features that discrim-
inate the lymph nodes from the negatives are learned from training examples.



In that respect, our work uses the Marginal Space Learning idea [12] to detect
lymph node center candidates while ignoring the lymph node size or shape.

The idea of coupling segmentation with detection has been recently proposed
in the computer vision literature [8]. Our work also combines segmentation with
object detection, but in a different way.

First, our segmentation method produces

Fig. 2. The lymph nodes are
marked with bounding boxes and
labeled as solid(green) and non-
solid (blue).

a defined object boundary whereas [8] has
a fuzzy boundary. Second, our work is ori-
ented towards detecting 3D lymph nodes,
which have a high degree of shape vari-
ability. In contrast, [8] detects 2D objects
of specific shapes such as cars, cows and
humans. Third, the segmentation is con-
structed differently in our work, using a
Gaussian MRF and gradient descent as op-
posed to [8] where it is constructed in a
greedy way from a number of patches. Fourth,
our work constructs segmentation-based fea-
tures that are used to train a classifier,
whereas [8] obtains a probability from the
segmentation hypotheses by voting.

The diagram of the proposed solid lymph
node detection and segmentation method
is shown in Fig. 1. For speed and accuracy, the axillary regions are extracted
automatically as described in Section 2.1. About 1500 lymph node center candi-
dates per axillary region are generated using a two-stage detector described in
Section 2.3. Each candidate is segmented as described in Section 2.4. Finally, a
verification stage described in Section 2.5 gives the final result.

2 Proposed Method for Solid Lymph Node Detection
and Segmentation

The proposed lymph node detection and segmentation system first detects can-
didate lymph node centers using a learning based approach. Each candidate is
used by a segmentation module to extract a candidate lymph node boundary.
A learning-based verification stage uses features obtained from the data and the
extracted boundary to score the candidates and keep only the best ones.

2.1 Axillary Region Extraction

To constrain the search, the two axillary regions are detected and cropped auto-
matically; the axillary lymph node detection is performed on these two cropped
subvolumes. The axillary subvolumes are obtained by first detecting the lung
tips, with an approach similar to [9]. This can be done very reliably and is not
the object of this paper. Relative to the two lung tip locations (x, y, z), subvol-
umes of size 220× 220× 220 voxels (at 1.5mm resolution) are cropped, with the
upper-left corner at (x + 20, y − 135, z − 131) for the left lung and upper-right
corner at (x− 20, y − 135, z − 131) for the right lung.



2.2 Axillary Lymph Node Annotation

All axillary lymph nodes of size at least 10mm have been annotated in the 101
volumes by placing bounding boxes around them, as shown in Figure 2. The
lymph nodes are labeled as solid or non-solid depending whether they have a
homogeneous interior or not. Enlarged lymph nodes with a solid interior are of
particular clinical interest since they are believed to have a higher probability of
being malignant than lymph nodes that for example have a fatty core.

2.3 Candidate Lymph Node Detection

Lymph node center candidates are detected in the ax-

Fig. 3. Self aligning
features are com-
puted along 14 di-
rections relative to
candidate position.

illary subvolumes ignoring the lymph node size, in the
spirit of Marginal Space Learning [12]. Marginal Space
Learning is an object detection technique where object
candidates are first detected in a subspace where many
object parameters (e.g. size, orientation, etc) are ignored.
The candidates are refined by searching for the missing
parameters using appropriate detectors.

The LN candidates are detected in two stages. The
initial set of LN center candidates are all 3D voxels in
the axillary subvolumes with intensity in the interval [-
100,200]HU. Then, these candidates are evaluated using a
fast detector based on Haar features followed by a second
detector based on self-aligning gradient features. These
two types of features are described below.

1. Haar-Based Features. The first stage of lymph

Fig. 4. In each di-
rection, local gradi-
ent maxima above
different thresholds
τj are found.

node detection is a trained cascade classifiers trained using
92,000 3D Haar features [10].

2. Self-Aligning Features. The following is a set of
features self-aligned to high gradients. The features are
computed based on rays casted in 14 directions in 3D
space from each candidate location. These 14 directions
are (±1, 0, 0), (0,±1, 0), (0, 0,±1), and also (±1,±1,±1).
Of the 14 directions, 10 are shown in Fig. 3.

In each direction di, 1 ≤ i ≤ 14, local maxima of the
gradient above each of 10 thresholds τj = 10j, 1 ≤ j ≤ 10 (see Figure 4), are
found at three scales sk = 1/2k, 1 ≤ k ≤ 3. Based on them, the following features
are evaluated:
– Each of the 24 types of features types (gradient magnitude, angle, intensity

value, etc) described in [12] at each of the first three local maxima for each
di, τj , sk.

– Each of the 24 types of features types computed half way between the can-
didate location and each of the first three local maxima, for each di, τj , sk.

– The distance to each of the first three local maxima for each di, τj , sk.
– The differences between distances to the corresponding first three local max-

ima in any combination of two different directions di, dj for each τk, sl.



This way about 64,000 features are obtained.
The best 1500 candidates above a threshold are kept for each axillary sub-

volume. An example of detected candidates is shown in Figure 8 (left). For each
candidate location, a segmentation is obtained as described below.

2.4 Candidate Lymph Node Segmentation

The segmentation algorithm is specially designed for

Fig. 5. Triangula-
tion of a sphere us-
ing 162 vertices and
320 triangles

detecting clinically highly relevant solid lymph nodes. The
solid lymph nodes have a blob-like shape that can be de-
scribed by using a radial function r : S2 → R defined
on the sphere in 3D, representing the distance from the
lymph node center to the boundary in all directions. In
this work, the sphere has been discretized using a trian-
gulation with 162 vertices, 480 edges and 320 triangles, as
shown in Figure 5. Example of lymph node segmentations
with this sphere triangulation are shown in Fig. 8. This
representation is similar to the shape representation in [3].

Each of the 162 sphere vertices represents a direc-

Fig. 6. Measure-
ments yi are found
for each direction
di as the most
probable boundary
location.

tion di. Given a candidate lymph node location C ob-
tained by the candidate detector described in Section 2.3,
a segmentation using this location as the center is deter-
mined by the radii ri, i = 1, ..., N for all directions di,
where N = 162 in our case. These radii form a vector
r = (r1, ..., rN ).

The lymph nodes exhibit high shape variability, mak-
ing it difficult to describe them using generative mod-
els such as PCA. To find the segmentation vector r we
adopt an approach similar to the Active Shape Models
[2], but using a Gaussian MRF shape prior instead of a
PCA model, a robust data cost and gradient optimization.

Given the candidate location C, the most likely lymph

Fig. 7. The seg-
mentation uses a
robust cost and a
Gaussian MRF to
obtain a smooth
result that fits most
of the yi.

node boundary locations yi, i = 1, ..., 162 are found in each
direction di as

yi = arg min
r∈(0,Rmax)

|I(C)− I(C + (r + 1)di)| > 50 (1)

From the measurement vector y = (y1, . . . , y162), the
segmentation r is obtained by minimizing the following
energy function

E(r) = α
∑

i

ρ(ri − yi) +
∑

i

1
2|∂i|

∑
j∈∂i

(ri − rj)2 (2)

where ρ(x) = ln(1 + x2/2) and ∂i are the neighbors of i
on the sphere mesh.

The first term is the data term, while the second term
is the Gaussian MRF prior. If a measurement yi does not
exist, its corresponding term is removed from the data term of eq. (2).



Using a robust cost function ensures that any sporadic outliers in the mea-
surements yi are ignored. This is illustrated in Figure 7.

Minimization is done by gradient descent, starting with r = y as initializa-
tion. The energy gradient can be computed analytically, obtaining the update
iteration:

ri ← ri − η
(
α

ri − yi

1 + (ri − yi)2/2
+ ri −

∑
j∈∂i rj

|∂i|

)
(3)

In practice, we use η = 0.1 and 1000 gradient update iterations, while α = 1.6.
Other segmentation methods such as [3, 6, 11] could possibly be used, but

they lack a robust data term, making them prone to oversegmentations in low
gradient locations.

Fig. 8. Left: Detected candidates. middle, right: Detected lymph nodes. right: The
method can also handle lymph node conglomerates.

2.5 Final Lymph Node Verification
For each of the candidate lymph node centers obtained using the Candidate
detector from Section 2.3, a segmentation with 162 vertices is obtained as de-
scribed in Section 2.4. The segmentation is used to obtain more informative
features for the final evaluation of the lymph node candidates. From the seg-
mentation, a bounding box is extracted for each lymph node. Candidates whose
second largest bounding box size is less than 9mm are automatically rejected.

The following features are computed from the segmentation result
– Each of the 24 features types (gradient magnitude, angle, intensity value, etc)

from [12] are computed at the 162 segmentation vertices. For each feature
type, the 162 values are sorted in decreasing order.

– For each of the 24 feature types, the 81 sums of feature values at the pairs
of opposite vertices are computed and sorted in decreasing order.

– The 81 diameters (distances between opposite vertices relative to the segmen-
tation center) are sorted in decreasing order. For each diameter the following
features are computed:
1. The size of each diameter.
2. Asymmetry of each diameter, i.e. the ratio of the larger radius over the

smaller radius.
3. The ratio of the i-th sorted diameter and the j-th diameter for all 1 ≤
i < j ≤ 81.



4. For each of the 24 feature types, the max or min of the feature values at
the two diameter ends.

5. For each of the 24 feature types, the max or min of the feature values
half way to the diameter ends.

In total there are about 17,000 features.
The classifier assigns a score pi to each candidate i, a higher score meaning a

higher likelihood to be a lymph node. All candidates with classifier score below
a threshold τ are automatically removed. On the remaining candidates, a non-
maximum suppression scheme is implemented as follows:

Algorithm 1 Non-maximal Suppression
Input: Candidates ci = (xi, yi, zi) with scores pi > τ and bounding boxes bi.
Output: Set D of detected lymph nodes.

1: Find the candidate ci with highest score pi.
2: if ci exists then initialize D = {i} else D = ∅, stop.
3: for n = 2 to Nmax do
4: Remove candidates cj inside any box bi, i ∈ D.
5: Find remaining candidate cj of highest score p.
6: if cj exists then add j to detected set: D ← D ∪ {j} else stop.
7: end for

The algorithm repeats adding the remaining candidate of highest score and
removing all candidates close to it. In practice, we chose Nmax = 25 so on each
axillary region, a maximum of 25 lymph nodes are detected.

Two examples of detected and segmented lymph nodes are shown in red
in Figure 8(middle and right). The method can detect parts of lymph node
conglomerates as shown in Figure 8(right).

Training details. The parameters of the three classifiers are given in Table
1. For comparison, a Random Forest [1] classifier with 50 trees was also trained
on the same features.

Table 1. Training details for the three classifiers.

Classifier Features Type # Weak TPR FPR

1 Haar AdaBoost cascade 20,50 98% 1%
2 self-aligning AdaBoost cascade 30,90,270 94% 0.7− 1%
3 segmentation-based AdaBoost 27

3 Experimental Validation

The experiments are performed on a dataset containing 101 CT volumes. All
volumes have been converted to 1.5mm isotropic voxel size. In the 101 volumes,
a total of 362 solid lymph nodes and 323 non-solid lymph nodes have been found
and annotated.

Out of the 101 cases, the region extraction failed only on the left side of one
patient that actually had the left lung removed.

The experimental results below are based on a six-fold cross-validation. The
CT volumes were divided into six disjoint sets. For each fold, the union of five
of the sets was used to train the three classifiers and the remaining set was used
for evaluation. Training all three classifiers for each fold took about five hours.



Evaluation Methodology. Since the solid lymph nodes are often very sim-
ilar and difficult to distinguish from the non-solid ones, we adopted the following
evaluation measure for the detection results. A solid lymph node is considered
detected if there exists a detection with the center inside the lymph node bound-
ing box. A detection is considered false positive if its center is not inside any
annotated solid or non-solid lymph node. Thus any detection on a non-solid
lymph node is neither considered a positive nor a negative.

Results. Using this evaluation measure, we obtained the ROC curves shown
in Figure 9. The solid black curve represents the ROC curve of the system
with the verification step having 27 Adaboost classifiers while the interrupted
red curve being the ROC of the system with the verification step trained as
a Random Forest with 50 trees. For comparison, we show in green color the
ROC curve of the LN candidate detector. Thus, the verification step based on
segmentation has a great impact on the overall performance of the system.

We also evaluated a system in which

Fig. 9. Detection results with six-
fold cross-validation on 101 volumes
containing 362 lymph nodes.

the segmentation and verification steps
are removed and replaced with a lymph
node detector that searches the scale of
the lymph node bounding box. This de-
tector is trained using steerable features,
as described in [12]. For each of the lymph
node candidates, this detector searches
890 combinations of the three lymph node
sizes and reports the bounding box of high-
est score above a threshold. Non-maximal
suppression as described in Algorithm 1 is
used to further reduce the number of de-
tections. The results using this “scale de-
tector” are shown as a dotted blue curve
in Figure 9. This shows that the segmentation-based detector has a much bet-
ter performance than the scale detector. An added benefit is the fact that the
segmentation based detector is about 5 times faster than the scale detector.

Table 2. Detection results and comparison with other methods.

Method Target Area # cases Size of nodes TPR FP/vol PPV Time/vol

Ours Axillary 101 > 10.0mm 82.3% 1.0 74.9% 5-20sec
Feuerstein [5] Mediastinum 5 > 1.5mm 82.1% 113.4 13.3% 1-6min
Kitasaka [7] Abdomen 5 > 5.0mm 57.0% 58 30.3% 2-3h
Dornheim [4] Neck 1 > 8.0mm 100% - 76.3% 17min

A comparison with other lymph node detection methods present in the lit-
erature is shown in Table 2. Our method achieves a detection rate of 82.3% at 1
false positive per volume, i.e. a 74.9% Positive Predictive Value. This compares
favorably with the previous work [5, 7]. Dornheim[4] obtains better detection
rate but is evaluated on a single volume, which cannot be considered anywhere
close to a thorough evaluation. Moreover, our method is also the fastest, because
of the use of the lymph node center detector that ignores the lymph node size
and shape and eliminates millions of expensive verifications.



4 Conclusion and Future Work

In this paper, we presented a novel method for automated lymph node analysis
based on integrating segmentation with a learning-based detector.

While we address the more restricted problem of solid axillary lymph node
detection, we obtain better results with a more thorough evaluation (101 cases
compared to 5 cases in [5, 7]). At the same time, the proposed method is faster
than any of the other existing lymph node detection methods.

In the axillary region, there are no airways or intestines to segment. Neverthe-
less, a vessel segmentation could further improve the accuracy of our approach.

In the future, we plan to study the improvement brought by using more
than one segmentation at each candidate location. We also plan to use the pro-
posed method for segmenting abdominal and mediastinal lymph nodes and also
different types of lesions.
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