
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 4, NO. 4, DECEMBER 2000 265

Computer-Assisted Discrimination Among
Malignant Lymphomas and Leukemia

Using Immunophenotyping, Intelligent Image
Repositories, and Telemicroscopy

David J. Foran, Member, IEEE, Dorin Comaniciu, Member, IEEE, Peter Meer, Senior Member, IEEE, and
Lauri A. Goodell

Abstract—The process of discriminating among pathologies
involving peripheral blood, bone marrow, and lymph node has
traditionally begun with subjective morphological assessment
of cellular materials viewed using light microscopy. The subtle
visible differences exhibited by some malignant lymphomas and
leukemia, however, give rise to a significant number of false
negatives during microscopic evaluation by medical technolo-
gists. We have developed a distributed, clinical decision support
prototype for distinguishing among hematologic malignancies.
The system consists of two major components, a distributed
telemicroscopy system and an intelligent image repository. The
hybrid system enables individuals located at disparate clinical and
research sites to engage in interactive consultation and to obtain
computer-assisted decision support. Software, written in JAVA,
allows primary users to control the specimen stage, objective
lens, light levels, and focus of a robotic microscope remotely
while a digital representation of the specimen is continuously
broadcast to all session participants. Primary user status can be
passed as a token. The system features shared graphical pointers,
text messaging capability, and automated database management.
Search engines for the database allow one to automatically identify
and retrieve images, diagnoses, and correlated clinical data of
cases from a “gold standard” database which exhibit spectral and
spatial profiles which are most similar to a given query image.
The system suggests the most likely diagnosis based on majority
logic of the retrieved cases. The system was used to discriminate
among three lymphoproliferative disorders and healthy cells. The
system provided the correct classification in more than 83% of the
cases studied. System performance was evaluated using rigorous
statistical assessment and by comparison with human observers.
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I. INTRODUCTION

Clinical Background

A differential diagnosis affects how aggressively patients are
treated, which medications are appropriate, and what levels of
risk are justified. As new treatments become available, each tar-
geting specific clinical profiles, it has become increasingly im-
portant to distinguish among subclasses of pathologies [1]. Pe-
ripheral blood smears are routinely screened and constituent cel-
lular material differentiated based upon traditional morpholog-
ical characteristics; however, the subtle visible differences ex-
hibited by some malignant lymphomas and leukemia give rise
to a significant number of false negatives during microscopic
evaluation by medical technologists.

Mantle cell lymphoma (MCL) is a recently described entity,
which is often misdiagnosed as chronic lymphocytic leukemia
(CLL) or as follicular center cell lymphoma (FCC). The sig-
nificance of timely, accurate diagnosis of MCL is of extreme
importance since it has a more aggressive clinical course then
CLL or FCC. MCL is considered an intermediate grade lym-
phoma with a 3–5-yr median survival rate [5], [2], [3]. Although
there is an entire spectrum of presentations for this disorder, the
classic morphologic description is a monotonous proliferation
of small to medium sized lymphoid cells with scant cytoplasm,
variably irregular and indented nuclei (sometimes round), dis-
persed chromatin, inconspicuous nucleoli, and scant cytoplasm.
The immunophenotype is CD5 positive B cells which are FMC7
antigen positive with moderately bright surface membrane im-
munoglobulin light chain expression, CD23 negative, and usu-
ally CD10 negative [5]. The lack of CD23 expression differenti-
ates this entity from typical CLL. Confusion between these two
can arise when CLL loses CD23 during disease progression.

Chronic lymphocytic leukemia (CLL) is the most frequent
leukemia in Western countries. It is typically considered indo-
lent and incurable but can sometimes progress to a more ag-
gressive disease [5], [6]. The classic morphologic description
of typical CLL cells is small lymphocytes containing round nu-
clei with coarsely condensed chromatin and scant cytoplasm.
The immunophenotype for CLL is CD5 positive antigen expres-
sion on B cells with CD23 antigen positivity, low-density sur-
face membrane immunoglobulin restricted light chain positivity,
and CD10 negative [5]–[8]. This immunophenotype is consid-
ered to be the diagnostic gold standard for CLL. Evolution to
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an atypical CLL is associated with deviations in immunophe-
notype. Such changes can lead to a misdiagnosis as mantle cell
lymphoma [6], [8].

Follicular center cell lymphoma (FCC) is considered a
low-grade lymphoma within the Working Formulation. The
classic morphologic description of FCC cells is small to
medium sized lymphoid cells with markedly angulated and
cleaved nuclei, coarse chromatin, inconspicuous nucleoli, and
scant cytoplasm. The classic immunophenotype consists of
CD5 negative B cells with positive CD10 expression and mod-
erately bright expression of surface membrane immunoglobulin
light chain expression [5]. FCC has an indolent course and is
usually incurable. The disease often progresses to an aggressive
high-grade large-cell lymphoma. The median survival is 6–8
years [5].

Recent literature ascribes much of the difficulty in rendering
consistent diagnoses to subjective impressions of observers
and shows that, when morphologic cell classification is based
upon computer-aided analysis, objectivity and reproducibility
improve [10]–[13]. One might use subtle changes in measurable
parameters to discover novel diagnostic clues, which are not
normally apparent by human visual inspection. We have divided
the problem of computer-assisted diagnosis into parts, one part
focusing on those aspects in which computers are most adept,
such as gathering data and performing objective low-level
processing of information, and one part concentrating on those
aspects in which humans are best suited, such as complex
reasoning, consideration of interdependencies among findings,
on high level abstractions, and on rendering clinical decisions.
The prototype that we have developed consists of a distributed
telemicroscopy system operating in concert with an intelligent
image database. The system enables consulting physicians and
scientists to engage in interactive telemicroscopy sessions and
to automatically search through databases of consensus-graded
medical cases based upon the visual content of constituent
pathology image records in order to obtain reliable decision
support in detecting and discriminating among hematologic
malignancies.

II. M ETHODS

A. Imaging

Immunophenotyping by flow cytometry was used to confirm
the diagnosis for 19 lymphoproliferative cases [5 mantle cell
lymphoma (MCL), 5 chronic lymphocytic leukemia (CLL),
4 follicular center cell lymphoma (FCC)] and 5 normal
(benign) cases at the Division of Hematopathology, Robert
Wood Johnson University Hospital, New Brunswick, NJ.
Wright stained peripheral blood smears were prepared for
each specimen using standard methods of air drying, fixation
with methanol, and staining with Wright Giemsa solution.
Stained specimens were subsequently examined by a certified
hematopathologist during the course of several sessions using
a Leica microscope, 40x planachromatic objective while lym-
phoid cells and benign lymphocytes were identified, digitized,
and stored to disk in 24-bit TIFF format using interactive
software developed in C . The imaging components of
the system consist of an Intel-based workstation interfaced

to a high-resolution 3–chip Olympus (OLY-750) color video
camera and a Coreco Occulus data acquisition board. The
image database used in the study consisted of 66 MCL, 98
CLL, 38 FCC, and 59 benign cells.

B. Segmentation and Shape Analysis

Segmentation of images was accomplished by mapping
red, green, and blue intensity values of the imaged specimens
into color space and utilizing the fast nonparametric
clustering method developed by Comaniciu and Meer [14]. The

coordinates corresponding to the outer boundary of delin-
eated biological structures within the segmented images served
as input for shape analysis. To avert burdening the recognition
component of the system, the shape analysis module was
developed using a global descriptor in the lowest possible di-
mensional space. While statistical shape theory in general tends
to focus on landmark-based approaches [15], such strategies
would be extremely unreliable in our studies since we deal with
coarsely digitized curves. Since cells in the digitized specimens
exhibit arbitrary locations and orientations, we sought feature
descriptors which were invariant to translation and rotation.
While there are a host of feature measurements that might have
been considered for use in these studies [16]–[19], we chose
to utilize elliptic Fourier descriptors to develop the prototype
system. Fourier invariants have recently proved to be superior
to methods based on autoregression models [20]. Elliptic
Fourier descriptors [21] of a closed curve are given by the
following equations:

where

with the phase shift from the first major axis given by
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Fig. 1. First 16 Fourier coefficients for representative normal, CLL, MCL, and FCC cells.

Fig. 2. Representation of a closed contour by elliptic Fourier descriptors. (a) Input. (b) Series truncated at 16 harmonics. (c) Series truncated to four harmonics.

Fig. 1 shows the first 16 Fourier coefficients for representative
normal, CLL, MCL, and FCC cells.

Elliptic Fourier descriptors were apparently overlooked in the
recent revival of techniques for image content-based indexing,
in spite of having the advantage of preserving topology when
the Fourier series are truncated (Fig. 2).

While the system automatically generates the first 16 har-
monics (64 coefficients) for each delineated contour, there
appears to be no significant loss in performance when truncating
to 10 harmonics (40 coefficients). Consequently, we compare
query contours with reference contours in the database by
computing the Euclidean distance between the corresponding
40-dimensional vectors of Fourier invariants using the following
equation:

C. Multiresolution Texture

Traditionally, discrimination among lymphoproliferative dis-
orders depends upon qualitative visual descriptions of cellular
components such as graininess, chromatin pattern, and promi-
nence of nucleoli. In recognition of this fact, the algorithms in-
clude metrics which provide objective measures of the texture
of the cellular components. The texture assessment module is
based on the multiscale simultaneous autoregressive (MRSAR)
model [22]. It is a second-order noncausal model described by
five parameters at each resolution level. The algorithm applies
a symmetric MRSAR model to the component of
image data. The pixel value at any location is assumed
to linearly depend upon the neighboring pixel values and
an additive independent Gaussian noise term. In the equa-
tion, , is the bias de-
pendent on the mean value of , is the set of neighbors of
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TABLE I
COMPUTED WEIGHTS FOR THEOVERALL DISSIMILARITY METRIC

the pixel at location , and with are the model param-
eters. Due to the symmetry of the model, so that,
for any given neighborhood, four are estimated through least
squares. Thus, the model parameters and the estimation error
define a 5-dimensional feature vector. The MRSAR features are
computed for 5 5, 7 7, and 9 9 neighborhoods which give
rise to a 15-dimensional multiresolution feature vector.

In order to estimate the model parameters, 2121 overlap-
ping windows were used. Windows were offset from one an-
other by two pixels in both the and directions. A multireso-
lution feature vector was generated for each window. The mean
vector and the covariance matrix across all 441 windows
constitute the MRSAR features for that nucleus.

Dissimilarity among textures was represented as the distance
between mulivariate distributions with known mean vectors and
covariance matrices. Mahalanobis distance between MRSAR
feature vectors was used to determine dissimilarity

where is the inverse of the covariance matrix of the
covariance matrix of . For each entry in the database,

was obtained and stored.

D. Area

In these studies, all specimens were digitized at the same
magnification so the nuclear area was computed as the number
of pixels contained within the nucleus. The dissimilarity be-
tween any two nuclei in terms of their areas is therefore

E. Color

The nuclear color is specified as a 3-D vector in
space. Since specimens were prepared and digitized at various
times by various technicians, the colors of the nuclei in the data-
base do not cluster as a function of cell class. Therefore, in the
current stage of development, the color attribute was used to
perform segmentation of the image, but not for discriminating
among cell types.

Interactive computer algorithms were developed in JAVA
to automate image processing and to generate, index, and
store similarity invariant Fourier descriptors [21], measures
for area, chromatic metrics, and multiresolution simultaneous
autoregressive texture metrics [22] for each cell.

F. Overall Similarity Measure and Retrieval Performance

Defining an overall similarity measure for the retrieval
module was relatively challenging since measurements for
shape, texture, color, and area relate to different characteristics.
A relatively simple solution was to express the dissimilarity as
a linear combination of the normalized distances corresponding
to each query attribute. Thus, for three attributes (shape,
texture, and area), , where represents the
relevance of theth attribute and . Color was
not used as a query attribute in this study because of the of the
large variation in chromatic characteristics across specimens
arising from slight differences in staining times and the fact
that images were digitized during various sessions.

For a given database, the optimal weightswere obtained
by employing a downhill simplex method [23] with the objective
function . The optimization criterion is based on the retrieval
matrix defined as having the element equal to the empir-
ical probability of retrieval of class images when the query
belonged to class. The objective function is the trace of the
retrieval matrix expressed as

trace

where is the number of classes.
To ensure a numerically stable optimization procedure, indi-

vidual distances were normalized to the standard deviation cal-
culated relative to the center of each class except for, which
is a Mahalanobis distance and therefore has intrinsic normaliza-
tion.

An iterative search was performed to find the optimal
weights. Starting with all weights equal and their sum equal to
1, the objective function is computed for the first eight retrievals
(closest matches) over the entire database. The weights are
modified and the procedure is repeated until convergence is
achieved. Table I shows the weights computed over the entire
database. It corresponds to a global maximum, ,
for the objective function.

The overall dissimilarity metric between two nuclei is de-
fined as a linear combination of the normalized distances cor-
responding to each visual attribute. The weights are obtained
off-line by optimizing the probability of correct classification
over the entire database. In order to gain a realistic estimate of
system performance for the prototypical system at the present
stage of development, a ten-fold cross-validated classification
[24] was implemented by randomized splitting of the data into
10 approximately equal test sets, each containing about 9 CLL,
3 FCC, 6 MCL, and 5 NORMAL cases. For theth test set,
its complement was used to obtain the optimal weights using
the downhill simplex method [25]. The confusion matrix of
the resulting classifier was then computed over theth test set
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Fig. 3. The user interface of the decision support component of the system. The upper left-hand corner shows a digitized specimen containing an unidentifiable
cell. The center panels show a snapshot of the system as spectral, spatial, and texture attributes of the nucleus are generated. The bottom eight panels show images
that have been retrieved from the “ground truth” consensus-graded database because their profiles most closely match that of the unidentified cell.Across the top
of the iconized images are three letter representations of the diagnostic class of the retrieved image.

using the first seven retrievals from the database. The class al-
location of the test image was defined by the relative majority
of the retrieved classes. In case of a tie, the “no decision” (NO
DEC) category was incremented. The elements of the cross-val-
idated confusion matrix were defined as the average of the 10
trials. The correct class is that of the row labels, while the al-
located class is that of the column labels. The confusion matrix
was computed using

for and

G. User Interface

Fig. 3 shows a snapshot of an interactive query session as it
is being conducted using the prototypical decision support ap-
proach. The system features both audio and graphic command
interfaces to the search engine. A fusion agent interprets the
commands, calls the appropriate method, and provides voice
feedback to the user. The system currently employs a speech rec-
ognizer engine with finite-state grammar and a restricted task-
specific vocabulary. Voice recognition is speaker-independent.

The decision support component of the system has been
integrated with a network-based distributed telemiscroscopy
system. The integrated system has a client–server platform-in-
dependent architecture implemented in Java (Fig. 4).

The image server for the telemicroscopy system consists of an
Intel-based Pentium II, 450-MHz computer equipped with 144
MB of RAM and Flashpoint image acquisition card. The server
allows multiple users to log into the system. The first user to
log into the system is designated as primary. A Java-based mi-
crocontroller was developed on the server side to process and
service commands issued by the clients. The system enables pri-
mary users to remotely control the specimen stage, light levels,
objective lens, and focus of a robotic microscope (Olympus
AX70). The system also allows one to change the resolution
and rate at which images are digitized dynamically. Primary
user status can be passed as a token among participants. The
system features shared graphical pointers and text messaging
capability. The client component was designed to enable indi-
viduals located at remote clinical and research sites to access the
database at the server site through local- and wide-area network
communications.

The client I/O module allows one to load query images from
local and remote microscopes and computers. The system then
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Fig. 4. Architecture of the integrated decision support and telemicroscopy system.

TABLE II
CONFUSIONMATRIX: PROTOTYPESYSTEM

performs automated color segmentation and feature extraction.
A query vector is automatically generated from the feature mea-
surements and submitted to the server. Search engines for the
database automatically identify and retrieve images, diagnoses,
and correlated clinical data of cases from a “gold standard” data-
base which exhibit spectral and spatial profiles which are most
similar to the query image from the undiagnosed case. Based on
majority logic of the retrieved data, the client communicates the
suggested classification to the user.

The indexing module of the software allows users to access
both local and remote databases. When logged into a remote
database, the user is categorized as belonging to either the
SEARCHER, INDEXER, or INTEGRATOR/REVIEWER
group. Individuals belonging to the SEARCHER group can
review and process local and remote images and can query and
search remote databases. Users from the INDEXER group are
able to populate the databases with new images and correlated
diagnoses. Members of the INTEGRATOR/REVIEWER group
are able to review entries and initiate computation of weighting
factors, to accommodate any new image entries. The INTE-

GRATOR/REVIEWER group can add new users to the system
and assign privilege levels. All users have full accessibility to
search, index, and integrate their own local databases.

III. RESULTS

The confusion matrix of the prototype is shown in Table II.
The performance of the system was later compared with three
classes of individuals: those in training (resident, fellow), those
who perform screening of specimens for detecting abnormali-
ties (technicians), and those responsible for rendering the dif-
ferential diagnosis (e.g., certified hematopathologist). Each of
the participants in the study were shown one digitized specimen
at a time on a high-resolution screen with no other distractor dis-
played. They were asked to classify the cell as belonging to one
of five classes: mantle cell lymphoma, follicular cell lymphoma,
chronic lymphocytic leukemia, normal, or other. The confusion
matrix showing the results of five human observers is shown in
Table III.
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TABLE III
CONFUSIONMATRIX: HUMAN OBSERVERS

IV. DISCUSSION

Mantle cell lymphoma is a recently described entity which is
often misdiagnosed as chronic lymphocytic leukemia or follic-
ular center cell lymphoma. The significance of timely, accurate
diagnosis of MCL is of extreme importance since it has a more
aggressive clinical course then CLL or FCC. Peripheral blood
specimens of admitted patients are routinely scanned by an au-
tomated complete blood count (CBC) device. If the CBC flags a
specimen as suspicious, the cellular materials are reviewed by a
medical technologist. Based upon a subjective morphologic in-
spection of the constituent cells, a determination is made as to
whether the cells are benign. If atypical cells are detected, the
slide is forwarded to a pathologist for review. The potential for
missed abnormal cells in this screening process is significant.
The system that we have developed enables individuals to make
decisions based upon the collective “digital experience” of past
consensus-graded cases and objective, reproducible image met-
rics which may be too subtle for detection by unassisted, visual
inspection.

Table I and Table II show that human performance is similar
to that of the computer-based system for FCC and NORMAL
cases, but in terms of the probability of correct decision (the
bolded diagonals) and probability of false negatives (the
NORMAL column), human performance is worse than that of
the machine for CLL and MCL cases. The data also suggest
that, for both human observers and for the computer-based
system, classifying CLL and MCL cells is relatively more dif-

ficult than classifying FCC cells. While the statistics presented
here suggest that the clinical decision support system can out
perform human observers, it must be stressed that in an actual
clinical setting human experts utilizes a tremendous amount
of ancillary patient data in conjunction with the clinical cues
which are inferred from the pathology specimens. It is not
standard practice for these individuals to base a diagnosis on
a single cell.

In the past few years, several telepathology systems that
feature remote control of a robotic micoscope have been devel-
oped [26]. These systems are typically passive, however, in that
they focus on remote access and the associated image transfer
technology. The system described here offers a fully automated
indexing and database management interface for recording
salient visual and clinical information and provides clinical
decision support for screening for hematologic malignancies
and for computer-assisted diagnosis. With the addition of
temporal data, the system might be used as a tool for staging,
disease management, and clinical outcome studies.

V. FUTURE WORK

In order to facilitate the expansion of ground truth databases,
a two-phase (immunofluorescence and light) imaging method-
ology for in situ immunophenotyping, cell selection, and digiti-
zation is being developed. One of the most important improve-
ments that will be made to the system is the modification of the
decision support module in order to allow “open set” inputs from



272 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 4, NO. 4, DECEMBER 2000

digitized specimens. This will require the construction of rejec-
tion regions for cells which do not belong to the predefined dis-
ease class sets. For example, in the prototype problem domain,
when a digital specimen containing the spectrum of normal red
blood cells, platelettes, etc., is presented, the system should au-
tomatically reject any nonsalient components. The next-gener-
ation system will feature an automatic mode in which the entire
specimen can be systematically scanned by the robotic micro-
scope. In the automated mode, the system will record the spa-
tial coordinates of each cell that exhibits a suspicious spectral
and spatial profile. A summary of the cellular composition of
the specimen and statistically most likely diagnosis will then be
reported to the technician. The system will allow for system-
atic review of any cells that were categorized as malignant. The
expanded database and next-generation platform will be used
for iterative experimentation in order to determine the preferred
properties of the query that maximize the accuracy of differen-
tial diagnosis, and to establish objective criteria for improved
screening. A long-term goal for this research is to explore the
potential use of the computer-based decision support strategy
in a broader range of biomedical applications.
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