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Abstract. Cardiac MR (CMR) imaging is increasingly accepted as the
gold standard for the evaluation of cardiac anatomy, function and mass.
The multi-plan ability of CMR makes it a well suited modality for eval-
uation of the complex anatomy of the mitral valve (MV). However, the
2D slice-based acquisition paradigm of CMR limits the 4D capabilities
for precise and accurate morphological and pathological analysis due
to long through-put times and protracted study. In this paper we pro-
pose a new CMR protocol for acquiring MR images for 4D MV analysis.
The proposed protocol is optimized regarding the number and spatial
configuration of the 2D CMR slices. Furthermore, we present a learning-
based framework for patient-specific 4D MV segmentation from 2D CMR,
slices (sparse data). The key idea with our Regression-based Surface Re-
construction (RSR) algorithm is the use of available MV models from
other imaging modalities (CT, US) to train a dynamic regression model
which will then be able to infer the incomplete information pertinent to
CMR. Extensive experiments on 200 transesophageal echochardiographic
(TEE) US and 20 cardiac CT sequences are performed to train the re-
gression model and to define the CMR acquisition protocol. With the
proposed acquisition protocol, stack of 6 parallel long-axis (LA) planes,
we acquired CMR patient images and regressed 4D patient-specific MV
model with an accuracy of 1.5 + 0.2 mm and average speed of 1 sec per
volume.

1 Introduction

Cardiac MR imaging emerges as the new gold standard for characterizing cardiac
masses and the evaluation of cardiac function and anatomy. The multi-plan
ability of CMR to acquire tomographic images in any plane, the capabilities
to measure blood flow velocity in all three dimensions within a single slice and
the non ionizing radiation gives it a significant advantage over other imaging
modalities. Clinical studies have already proven that CMR is well suited for
the evaluation of the complex anatomy of MV by comparing MV measurements
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extracted from CMR data with CT and US [1]. Nevertheless, the 2D slice-based
acquisition paradigm of CMR limits the 4D anatomical and functional analysis
of the heart by long throughput times and protracted study which can be utilized
for more accurate and precise morphological and pathological analysis.

Although many works [2-4], mainly based on the seminal contribution of
Cootes et al. [5] on Active Shape Models (ASM), have studied 4D chamber seg-
mentation to overwhelm the 2D limitations of CMR, there is still no established
method to extract 4D anatomical and functional information of the heart valves.
Conti et al. [6] have manually initialized contours of the MV in each of the 18 ra-
dial long-axis 2D CMR slices and used interpolation to obtain a 3D model of the
MV. Nevertheless, this method is characterized with long acquisition time (18
2D slices), manual initialization, a static MV model and therefore not applicable
in clinical practice. On the other hand, 4D aortic and mitral valve estimated
from other imaging modalities like CT and US have been introduced by [7, 8].

Within this paper we propose a novel CMR acquisition protocol for non-
invasive assessment of the mitral valve anatomy and morphology together with
a regression-based method for patient-specific 4D MV model estimation. Based
on extensive experiments on simulated data (Section 3.1) we first defined the
acquisition protocol and optimize it with respect to the number and spatial con-
figuration of the 2D CMR slices resulting in reduced acquisition time and 4D
MYV segmentation error. Second, we defined the segmentation task as a regres-
sion problem (Sec. 2.1) between a full surface and a sparse one extracted from
available 2D MRI slices. We solved the problem by learning additive boosting
regression and its stabilization (Sec. 2.3) - bagging with random feature subspac-
ing (BRFS) from MV models extracted from other imaging modalities (CT, US)
used as a prior knowledge. Furthermore, experiments in Section 3.2 prove the
concept of learning a regression model from one imaging modality and applying
it into another one for 4D MV model estimation.

2 Methods

In order to accurately reconstruct the surface of MV from 2D CMR slices, we in-
troduce a regression-based approach to surface completion. The regression prob-
lem is parameterized with the component of additive boosting regression and
learned so that the most discriminative features are selected. In the training
phase, we consider MV models extracted from CT or TEE US data as a output
(full surface). By knowing the CMR acquisition protocol and imaging plane ori-
entation and location with respect to the MV anatomy, we simulate the sparse
CMR protocol in the corresponding CT or TEE US data and extracte sparse
MYV surface (Sec. 2.4), considers as input (sparse surface). Once, the regression
model is learned, it is utilized to estimate 4D patient-specific MV model from
2D CMR data.



2.1 Regression-based surface reconstruction (RSR)

In contrast to ASM-based methods, regression-based solutions make no implicit
assumption about multivariate normality of the data. Comparing to simpler
heart anatomies such as the left and right ventricle, the complex structure of MV
exhibits higher variability and mesh point distributions different from normal.
Thus, is more challenging to segment, especially from sparse data and requires
more robust technique.

In regression a solution to the following optimization problem is normally
sought [9]:

R (x) = argminges Y L (y(xn), R(xn)) /N (1)

where S is the set of possible regression functions, L(o, o) is a loss function that
penalizes the deviation of the regressor output R(x,,) from the true output, and
N is the number of available training examples. In our case the reconstruction
task is defined as a regression problem between the full surface model of MV
and the respective sparse data acquired using the proposed CMR protocol:

Ysurface = R (Xsparse)) + € (2)

In our regression problem both for input and output data we focus on shape

information and ignore respective volume data. Thus, the output ysurface is
always a set of m 3D points defining the MV surface:

ysurface = ((Il,yhzl),---,(Im,ym,,zm))T (3)

2.2 Invariant Shape Descriptors

The input, Xsparse, are shape descriptors (SD) describing the cloud of points
belonging to MV in the sparse CMR data. The simplest but reliable solution
is to use the coordinates of known points as input [10]. The obvious drawback
of this solution is the necessity to provide point correspondence, which is not
always feasible, especially for the data with high variability such as MV surface.
A different solution, which we exploit here, is to use angles, distances and areas
between random sampled points as point cloud descriptors [11]:

— A3: Measures the angle between three random points;

— D2: Measure the distance between two random points;

— D3: Measures the square root of the area of the triangle between three
random points;

For the different shape descriptors proposed by [11] we measured feature impor-
tance by analysing the features selected by additive boosting. We have identified
(A3, D2 and D3) to be most informative in our context with the average prob-
ability of occurrence 0.11, 0.07, and 0.13, correspondingly. In addition, all three



types are translation, rotation and scale invariant descriptors which overcome
the necessity of point correspondences. Finally, histogram bins and the four first
normalized central moments describing the histogram distribution are computed
from the descriptors and incorporate in the regression model as input.

2.3 Ensembles of Additive Boosting Regressors

Each component m regression problem R™ is solved by learning using additive
boosting regression (ABR) [12]. In ABR, the weak regressors p; are sequentially
fit to the residuals, starting from the mean 7 and proceeding with the residuals
of the availabe set of weak regressors themselves. In ABR, the output function
is assumed to take a linear form as follows [12]:

R(x) =Y aip(x); pr(x) € S (4)

where p;(x) is a base (weak) learner and T is the number of boosting iterations.

In the spirit of [13] and [9], we use very simple weak regressors as the base
learners. These include simple 1D linear regression (SLR), logistic stumps
(LS) and decision stumps (DS). For SLR, in each boosting iteration a feature
which results in the smallest squared loss with linear regression is added to
the pool of already selected features. Each weak learner is thus a simple linear
regressor of the form (y = S12 + By) where z is the selected shape descriptor
and y is a scalar output coordinate. LS is a simple logistic function on one shape
descriptor x:

y:mazzﬂﬂJrﬂo (5)

Finally, DS is a piecewise linear threshold function where threshold 6 is selected
so that the variance in the subsets of instances produced is minimized. It is
important to note that SLR results in a linear solution overall, while DS and LS
seek for non-linear solutions.

Generalization performance improvement of the underlying regression models
and avoidance of overfitting is achieved by injecting randomization in the input
data and random features sub spacing (BRFS), similar to [14]. In particular,
instead of providing a single model R for the training set X, we generate a set of
models R, each obtained using the same additive regression procedure but on a
random sample of the data, with instances S; obtained using random sampling
with replacement, and a subset of features F; including 50% features randomly
sampled without replacement from the original set. The final solution is then
simply the mean surface for the surfaces obtained with the regressors generated
from the random samples: R = mean; ., (R]").

2.4 Mitral Valve Model Estimation from 2D CMR Slices

The mitral valve, located between the left atrium and the left ventricle, in-
cludes posterior leaflet composed by the posterior leaflet tip, posterior and an-



terior commissures and the postero annular midpoint, anterior leaflet defined
by anterior leaflet tip, the left/right trigone and two commissures, annulus,
free edge. Point distribution model (Fig. 1(left)) is used to represent the mi-
tral valve surfaces Syry in the w and v direction (Sposterior(u,v) = (31,17),

Santerior (’U,, U) = (27, 17))

Annulus and Free Edge detection. Similar to [15] we define our joint con-
text landmark set between the posterior annulus and the free edge landmarks
(PA, PFE) and the anterior leaflet (AA, AFE), respectively (Fig.1(middle)). On
each 2D LAX CMR slice we apply 2D landmark classifiers, trained with PBT
[16] and 2D Haar-like features to detect the annulus and free edge landmarks
independently. From the candidates generated by the detectors we select the top
M candidates for the annulus detection and the top N candidates for the free
edge detection. In the second stage the joint context is build from all possible
candidates’ pairs <annulus plane, free edge plane>. In the final stage a context
operator C' is applied to compute Haar-like features from the set of all possi-
ble candidates used to train a joint context classifier for MV landmark detection.

Mitral valve contour estimation. From previously detected landmarks we
initialize the contours, parameterized by 17 discrete points, as a straight line and
search for edges along the normals. However, this method is not sufficient for
accurate contour estimation and therefore further manual refinement is usually
required.

Regression-based full 4D MYV surface reconstruction. In this step shape
descriptors - SD are computed from the landmarks and contours detected from
the 2D CMR slices in each cardiac frame (t) and incorporated into the trained
regression model as input. As a result, full dynamic MV model is estimated in
the 2D MRI slices(Fig.1(right)).

Syvv = R(SD(landmarks, contours)) (6)

Fig. 1. Left: MV model. Middle: MV landmarks and contours. Right: MV model re-
gressed into the patient-specific CMR anatomy



3 Experimental Setting and Results

3.1 MRI Acquisition Protocol Definition

CMR scanner (1.5T) with phased-array receiver coil and breath-hold acquisition
was used to acquire cine images for MV function analysis. Full cardiac cycle was
covered by using a retrospectively/prospectively gated ECG signal. Data were
collected during a breath-hold (8 heart beats, slice thickness 4.5 mm, echo time
1.39 ms, pixel bandwidth 925 Hz, matrix 208 x 124, excitation angle 59°, field
of view 276mm-340mm).

Fig. 2. Mitral valve acquisition protocol. Left: three-chamber view. Middle: four-
chamber view. Right: short-axis view

The mitral valve imaging plane was defined by acquiring four-chamber, three-
chamber and short-axis view in the diastolic phase of the cardiac cycle (see Fig.
2). Initial orientation of the imaging plane is given by the short-axis view, where
the plane passes through the MV commissures. Subsequently, parallel slices were
defined perpendicular to the MV annulus in the four- and three-chamber views.

In order to find the best trade-off between MV segmentation error and acqui-
sition time the CMR imaging protocol was defined based on simulated data. The
imaging plane was placed as illustrated in Fig. 2 in 200 US TEE studies and used
to obtain sparse images. To make the simulation more realistic we add noise to
the plane location and orientation. The regression-based surface reconstruction
method as introduced in Section 2.1 and Section 2.4 was applied to segment the
MYV from the simulated sparse images in the end-diastolic (ED) and end-systolic
(ES) phase of the cardiac cycle.

Based on the experiments from the simulated data (see Table 1) a stack of
6 parallel LA planes results in best trade-off between MV segmentation error
and acquisition time (4.86 min for very experienced user). A protocol with 6
radial LA planes was also considered as an option. However, due to the long
acquisition planning time, the complicated plane settings and the plane miss-
registration characteristic for this acquisition protocol, we found that a stack of
parallel planes is more appropriate for MV segmentation.



No. Planes 2 3 4 5 6 7 8 9 10

ED 6.7+1.1/5.6+1.0/4.4+£0.9/3.5+0.68(3.1£1.1{2.6 £1.0{2.3 £1.0|2.1 +1.0{1.8 = 0.86

ES 29+1.2(26+2222+15{21+1.421+£1.2/123£1.6/2.5+2.3|2.1+1.1|1.94+1.0

Table 1. MRI Protocol definition

3.2 Mitral Valve Surface Reconstruction

The proposed framework for personalized 4d MV model estimation in sparse data
was evaluated on a large set of simulated data (200 US TEE and 20 cardiac CT
sequences) and on 2 prospectively and retrospectively ECG gated CMR studies
acquired according to our protocol as introduced in Section 3.1. Each volume in
the data set is associated with annotation, manually generated by experts, which
is considered as ground truth. A mesh-to-mesh error was used for the evaluation
of all presented results for the ED phase which is considered to be the most
difficulted phase for model estimation (valve is opened).

Intra and inter modality accuracy of our RSR method with respect to differ-
ent weak learners was evaluated. The inter modality accuracy was evaluated by
training the regression model on images simulated from US TEE data and tested
on simulated sparse images from CT data. For the intra modality accuracy a 3-
fold cross validation was used to divide the US TEE data set into training (used
to train the regression model) and test data (used to evaluate the reconstruction
error).

Table 2 summarizes the patient-specific MV surface reconstruction error from
incomplete data for the best CMR plane configuration protocol: stack of 6 par-
allel planes. We also show how different types of weak learners(simple 1D linear
regression - SLR, logistic stump - LS and decision stump - DS) influence the
reconstruction error and how this error can be reduce by incorporating all three
weak learners into the framework of bagging with random feature sub-sampling
(BRFS). Each additive boosting regression model includes 100 weak regressors
with 0.2 shrinkage. For BRFS, 10 bootstrap samples of examples were gener-
ated, each with 10 random feature subsets including 50% original descriptors
(resulting in 100 additive boosting regression models to combine).

mm SLR LS DS BRFS mm SLR LS DS BRFS
no noise [1.7£0.7(1.8 +0.9(2.1 £ 0.9(1.6 &+ 0.4|| no noise [2.2+0.6(2.5+0.6/2.9 £1.0(/1.6 + 0.6
2mm noise|1.8 £0.4({1.9 + 0.7|2.3 £ 1.5(1.8 + 0.7||2mm noise|2.6 £ 1.2|2.5 + 0.7{3.1 £1.0(/1.8 = 0.8
3mm noise|2.0 £ 0.6{1.9 + 0.5(3.0 £ 3.1{1.9 + 0.5||3mm noise|3.0 £ 1.3|3.5 + 1.0{3.8 £ 0.9(2.3 = 0.5
Table 2. Left: Intra modality RSR accuracy (US). Right: Inter modality RSR accu-
racy (Train on US, reconstruct in CT)

With the results of the inter modality accuracy and the clinical studies which
prove the compactness of the MV anatomy between different imaging modali-
ties[1], we have shown that a regression model can be learned from one imaging



modality (US) and used to estimated a patient-specific MV model in other imag-
ing modality (CT). Finally, the regression model was learned offline with BRFS
on all available US and CT data (1295 3D volumes) and evaluate on the CMR
studies acquired according to the proposed protocol. A surface reconstruction
error of 1.54+0.2 mm was achieved within 1 sec per volume for the retrospectively
and prospectively ECG gated CMR studies. Figure 3 illustrates the estimated
MYV models for the ED and ES phase of the cardiac cycle for the CMR studies.

Fig. 3. Examples of the estimated MV model in the ED and ES phase for the prospec-
tively and retrospectively acquired CMR studies

4 Conclusion

This paper presents a novel CMR, acquisition protocol for fast non-invasive 4D
anatomy and function assessment of the mitral valve. A regression-based surface
reconstruction (RSR) method, designed according to the protocol, is used to
learn from the existing MV models in US and CT data and applied to estimate
patient-specific 4D MV model from sparse CMR data. With our protocol and
method we overcame some of the CMR limitations: long through-put time, pro-
tracted study, 2D function and anatomy analysis. Furthermore, a 4D model of
the MV can be utilized to extract more accurate morphological and pathologi-
cal information over the cardiac cycle. Extensive experiments on simulated (CT
and US) data have proven our concept of learning a regression model from one
modality (US) and applying it on other one (CT) for 4D MV surface reconstruc-
tion. Following this concept we learn the RSR algorithm on all available CT and
US data and demonstrate a reconstruction accuracy of 1.5+0.2 within 1 sec pro
volume for the CMR studies.
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