
Image-based multiclass boosting and echocardiographic view classification

S. Kevin Zhou†, J.H. Park†, B. Georgescu†, C. Simopoulos‡, J. Otsuki‡, and D. Comaniciu†
†Integrated Data Systems Department, Siemens Corporate Research, Princeton, NJ 08540

‡Ultrasound Division, Siemens Medical Solutions, Mountain View, CA 94039

Abstract

We tackle the problem of automatically classifying car-
diac view for an echocardiographic sequence as a multi-
class object detection. As a solution, we present an image-
based multiclass boosting procedure. In contrast with con-
ventional approaches for multiple object detection that train
multiple binary classifiers, one per object, we learn only
one multiclass classifier using the LogitBoosting algorithm.
To utilize the fact that, in the midst of boosting, one class is
fully separated from the remaining classes, we propose to
learn a tree structure that focuses on the remaining classes
to improve learning efficiency. Further, we accommodate
the large number of background images using a cascade
of boosted multiclass classifiers, which is able to simulta-
neously detect and classify multiple objects while rejecting
the background class quickly. Our experiments on echocar-
diographic view classification demonstrate promising per-
formances of image-based multiclass boosting.

1. Introduction

Echocardiography (or echo in short) is the ultrasound
image of the human heart. It is a commonly used imag-
ing modality to visualize the structure of the heart. Be-
cause the echo is typically viewed as a 2D slice of the 3D
human heart, standard views are captured to better visual-
ize the cardiac structures. For example, in the apical four-
chamber (A4C) view shown in Figure 1(a), all four cavi-
ties, namely left and right ventricles, and left and right atria,
are present. In the apical two-chamber (A2C) view shown
in Figure 1(b), only the left ventricle and the left atrium
are present. However, within one standard cardiac view,
there are a lot of appearance variations due to dependence
on equipment and sonographer, patient difference, etc. To
automate the clinical workflow and facilitate the subsequent
processing tasks such as endocardial wall motion analysis,
it is a must to have an automatic tool that classifies the input
echo sequence into standard cardiac views. In this paper, we
present a multiple object detection approach to solving the
cardiac view classification problem.

(a) (b)
Figure 1. The illustration of (a) apical four-chamber (A4C) and (b)
apical two-chamber (A2C) views. Courtesy of Yale Atlas of Echo.

Detection of multiple objects is challenging. Most of
the existing approaches train a separate binary classifier for
each object against the background and scan the input im-
age for objects. Using different classifiers for different ob-
jects has inherent disadvantages. In training, the training
complexity increases linearly with the number of classes.
In testing, it is very likely that several classifiers fire up at
the same location. Due to the difficulty in comparing re-
sponses among these classifiers, determining the actual ob-
ject needs additional work, such as training pairwise classi-
fiers between two object classes. Also, evaluating multiple
binary classifiers online is a time-consuming process that
thwarts a realtime requirement.

We present an image-based multiclass boosting proce-
dure for object detection. At the core, we train a multiclass
classifier using the LogitBoost algorithm [4] that combines
weak learners into a strong classifier. The weak learners
are associated with the Haar-like local rectangle features
[12, 17] for fast computations. Instead of using the sim-
ple decision stump (or regression stump), we propose the
use of piecewise constant function to enhance the modeling
power of the weak learners.

Often in the midst of multiclass boosting, one class is al-
ready completely classified correctly. Further boosting does
not help too much for that class. To take advantage of this
fact, we propose to train a tree structure by focusing on the
remaining classes to improve learning efficiency. We show
that posterior probabilities can still be computed.

To handle the vexing background class that has numer-
ous examples, we adopt the cascade training procedure [17].

As a result, we achieve a cascade of boosted multiclass
strong classifiers, which is a unified algorithm able to si-
multaneously detect and classify multiple objects while re-
jecting the background class quickly.

The paper is structured as follows. Section 2 reviews the
literature on multiclass classifier and learning-based object
detection approaches. In section 3, we recapitulate the mul-
ticlass LogitBoost algorithm and discuss the image-based
weak learners. In section 4, we present two useful exten-
sions of the multiclass classifier: tree structure for efficient
training and cascade structure for handling the background
class. Section 5 reports the experiments on echocardio-
graphic view classification. We conclude the paper in sec-
tion 6.

2. Related literature

In this section, we first briefly review the literature on
multiclass classifier and highlight the advantage of using
boosting. We then review several object detection ap-
proaches that leverage boosting.

2.1. Multiclass classifier

Classifying multiple classes is a long-standing problem
in the literature. Early multiclass classifiers [5] include
CART, K-nearest neighbors, neural network (e.g., multi-
layer perceptron), mixture models, etc. Along another line,
researchers first convert the multiclass classification prob-
lem to several binary classification problems and then com-
bine the binary classifier outputs for a final decision. There
are two common combining rules. The first rule isone vs.
the rest, assuming that one class is separated from the re-
maining classes. The second rule isone vs. one, assuming
that pairwise binary classifiers are learned.

The AdaBoost algorithm [3] proposed by Freund and
Schapire is an influential algorithm that learns a binary clas-
sifier. In [13], Schapire and Singer extended the AdaBoost
algorithm to handle a multiclass problem, the so-called Ad-
aBoost.MH algorithm by reducing multiclass to binary. In
the work of [4], Friedmanet al. presented a multiclass
boosting algorithm where no conversion from multiclass to
binary is necessary.

One distinct approach is the error-correcting output code
(EOCC) proposed by Dietterich and Bakiri [1]. In EOCC,
because each class is assigned a unique binary string which
is computed using binary classifiers, again the multiclass
problem is converted to binary ones.

2.2. Learning-based object detection

Since there is a large body of literature on object detec-
tion, we only review approaches that are learning-based.
Another active line of research on object recognition uses
feature points [7, 11] and/or parts [6, 9].

Viola and Jones [17] proposed a real-time face detection
algorithm. It invoked the AdaBoost algorithm to selectively
combine into a strong committee weak learners based on
Haar-like local rectangle features [12], whose rapid com-
putation is enabled by the use of integral image. Another
contribution is that they introduced the cascade structure
to deal with a rare event detection. In [10], Li and Zhang
proposed the FloatBoost, a variant of the AdaBoost, to ad-
dress multiview face detection. We generalize the Viola and
Jones algorithm [17] to deal with multiple objects by train-
ing a multiclass classifier with the cascade structure. To the
best of our knowledge, it is not clear to us whether such a
generalization to detection of multiple objects is feasible.

Because the strategy of learning different binary classi-
fiers for different objects has the scalability issue as each
classifier is trained and run independently, sharing features
was proposed [15] to overcome this difficulty by enforc-
ing that, during training, the different classifiers maximally
share the same set of features. As a consequence, the per-
formance is improved given the same modeling complexity.
However, in [15], how to deal with the background class is
not demonstrated. The final training outputs are again sep-
arate binary classifiers. In our approach, we directly train a
multiclass classifier using boosting, which implies that fea-
tures are always shared at each round of boosting.

Recently, Tu [16] proposed a probabilistic boosting tree
(PBT), which unifies classification, recognition, clustering
into one treatment. The PBT, which is a binary tree, nat-
urally targets a two-class setting by iteratively learning a
strong classifier at each tree node. The training data are
subsequently parsed into the left and right node at the next
tree level. To deal with a multiclass problem, the author
artificially converted a multiclass problem to a two-class
problem by first finding the optimal feature that divides all
remaining training examples into two parts and then use the
two-class PBT to learn the classifier. We also train a tree
structure but our method is very different from the PBT. We
will detail the differences in section 4.1.

Other than boosting, a general object detection frame
based on support vector machine is presented in [12]. In [8],
convolutional neural network is trained to deal with multi-
ple object classification.

3. Multiclass boosting

Suppose that we have a(J +1)-class classification prob-
lem. Classes{C1, C2, . . . , CJ} stand forJ objects and
classC0 stands for the background class or none-of-the-
above. The training set for the classCj (j = 0, 1, . . . , J) is
denoted by

Sj = {x[j]
1 , x

[j]
2 , . . . , x[j]

nj
}.

Below when describing the boosting algorithm, the training
set for each classes are pooled together to form a big train-

ing set{x1, x2, . . . , xN}, whereN =
∑J

j=0 nj . The class
label for each data pointxi is represented by aJ + 1 vector

y∗i = [y∗i0, y
∗
i1, . . . , y

∗
iJ]. (1)

If the true label forxi is c, then

y∗ij = [j == c] = { 1 if j = c
0 otherwise

. (2)

where[π] is an indicator function of the predicateπ. If π
holds, then[π] = 1; otherwise,[π] = 0.

3.1. LogitBoost algorithm

We adopt the multiclass version of the influential boost-
ing algorithm proposed by Friedmanet al. [4], the so-called
LogitBoost algorithm. The output of the LogitBoost al-
gorithm is a set of(J + 1) learned response functions
{Fj(x); j = 0, 1, . . . , J}; eachFj(x) is a linear combi-
nation of the set of weak learners, thereby implying that the
Fj(x) functions automatically share features [15]. Figure
2 illustrates the LogitBoost algorithm, which fits an addi-
tive symmetric logistic model to achieve maximum likeli-
hood using adaptive quasi-Newton steps, whereas the Ad-
aBoost.MH algorithm essentially uses the one against the
rest rule by fitting(J + 1) uncoupled additive logistic mod-
els. See [4] for detailed justification. The final classification
result is determined as

j = arg max
j=0,1,...,J

Fj(x). (3)

One advantage of using the LogitBoost algorithm is that
it naturally provides a way to calculate the posterior distri-
bution of class label:

pj(x) =
exp(Fj(x))∑J

k=0 exp(Fk(x))
=

exp(F ′j(x))

1 +
∑J

k=1 exp(F ′k(x))
,

(4)
whereF ′j(x) = Fj(x)− F0(x).

The key of the LogitBoost algorithm is the step (∆) in
Figure 2. Mathematically, it solves the following optimiza-
tion problem:

fmj = arg min
f∈F

N∑

i=1

wij |zij − f(xi)|2, (7)

whereF is a dictionary set.

3.2. Dictionary set

The dictionary set is a structural component in boost-
ing since it determines the space where the output classifier
function resides. We use the piecewise constant functions
as the elements of the dictionary set. A piecewise constant

LogitBoost (J + 1 classes)

1. Start with weightswij = 1/N , i = 1, 2, . . . , N , j =
0, 1, . . . , J , Fj(x) = 0, andpj(x) = 1/(J + 1) ∀j.

2. Repeat form = 1, 2, ..., M :

• Repeat forj = 0, 1, . . . , J :

– Compute working responses and weights in the
jth class

zij =
y∗ij − pj(xi)

pj(xi)(1− pj(xi))
; (5)

wij = pj(xi)(1− pj(xi)). (6)

– (∆) Fit the functionfmj(x) by a weighted least-
squares regression ofzij to xi with weightswij .

• Setfmj(x) ← J
J+1

(fmj(x) − 1
J+1

PJ
k=0 fmk(x)),

andFj(x) ← Fj(x) + fmj(x).

• Updatepj(x) ∝ exp(Fj(x)).

3. Output the classifierarg maxj Fj(x).

Figure 2. The LogitBoost algorithm [4].

Figure 3. Five types of the Haar-like rectangle filters

function that is associated with a feature function quantizes
the feature response in a piecewise fashion,

f(x) =
K∑

k=1

ak [h(x) ∈ Rk]; Rk = (θk−1, θk]. (8)

where[.] is an indicator function,h(x) is the feature (re-
sponse) function, and{Rk; k = 1, . . . , K} are the intervals
that divide the entire real line withθ0 = −∞ andθK = ∞.

We use a linear featureh(x) = g ⊗ x, whereg defines
the feature and⊗ denotes a convolution. Since every func-
tion in the dictionary set is associated with a unique feature,
this step allows boosting to operate as an oracle that selects
the most relevant visual features. We follow [12, 17] to use
the local rectangle features whose responses can be rapidly
evaluated through the mean of integral image. Refer to [17]
for details on how to rapidly compute the local rectangle
features. Theg function that defines the feature is parame-
terized asg = gr,c,w,h,t where(r, c) is the rectangle center,
(w, h) is the rectangle size, andt is the feature type. Figure
3 shows five feature types. In sum, the piecewise constant
function is in the following formf(x) = f(x; r, c, w, h, t).
The intervalsRk for each rectangle feature are empirically
determined beforehand. One way is to find the minimum
and maximum responses for the rectangle feature and then
uniformly divide them intoK intervals.

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

10

15

20

Figure 4. The fitting of a piecewise constant function.

Equation (7) now becomes

fmj = arg min
r,c,w,h,t

N∑

i=1

wij |zij − f(xi; r, c, w, h, t)|2. (9)

For a given configuration(r, c, w, h, t), the optimal values
of a are computed as

ak =
∑N

i=1 wijzij [(g ⊗ xi) ∈ Rk]∑N
i=1 wij [(g ⊗ xi) ∈ Rk]

. (10)

Figure 4 illustrates fitting the piecewise constant function to
a set of unweighted data points. In the step (∆) of Figure 2,
the most relevant feature with the smallest error is singled
out to maximally reduce the classification error.

In the literature, simple binary regression stumps are
used [17, 15]. However, it is easy to show that the piece-
wise constant function combines multiple binary regression
stumps, therefore enhancing the modeling capability of the
weak learners and consequently improving training speed.

4. Extensions

In this section, we address two useful extensions of the
multiclass boosting algorithm. In the first extension, we
show how to learn a tree structure which improves effi-
ciency in both training and testing. In the second extension,
we propose to train a cascade structure to deal with the vex-
ing background class that has numerous examples.

4.1. Tree structure

Empirical evidence tells that often, in the midst of boost-
ing a multiclass classifier, one class (or several classes) has
been completely separated from the remaining ones and fur-
ther boosting yields no additional improvement in terms of
the classification accuracy. This fact can be utilized for effi-
cient training. To this end, we propose to train a tree struc-
ture.

Figure 5 gives a simple example to illustrate the tree
training. Suppose we are given a 3-class problem (C1, C2,
andC3). After several boosting iterations, we find that the
classC1 has been classified correctly. We stop training and
store the output functions as{F1,j(x); j = 1, 2, 3}, which
forms the first layer of the tree that merges the classesC2

andC3. Next, for the second layer of the tree, we continue
to train a binary classifier that separatesC2 andC3 and store
the output functions as{F2,j(x); j = 2, 3}.

To calculate the posterior probability of the class label,
we first computer the posterior probability for each tree
layer. For example, for the first layer, we compute

p1(1|x) =
exp(F1,1(x))∑3

j=1 exp(F1,j(x))
; p1(2, 3|x) = 1−p1(1|x).

(11)
For the second layer, we compute

p2(2|x) =
exp(F2,2(x))∑3

j=2 exp(F2,j(x))
; p2(3|x) = 1− p2(2|x).

(12)
Finally, the overall posterior probabilities are

p(1|x) = p1(1|x); p(2|x) = p1(2, 3|x)p2(2|x); (13)

p(3|x) = p1(2, 3|x)p2(3|x). (14)

It is easy to verify that
∑3

j=1(j|x) = 1.
Generalizing the above 3-class example to an arbitrary

multiclass problem is easy. The main idea is to repeat a
‘divide-and-merge’ strategy. For a merged class, we learn
a multiclass classifier to divide them. After the classifier is
learned, we separate those ‘easy’ classes from the remain-
ing classes that are merged into one class. Similarly, the
posterior calculation can be carried out.

The proposed tree structure is very different from the
multiclass PBT algorithm [16]. First, when ‘dividing’ at
each tree node, the PBT first converts a multiclass task to
a binary one based on an optimal feature and then invokes
boosting to learn a binary classifier; whereas we never per-
form such a conversion and always learn a truly multiclass
classifier. Second, there is no ‘merging’ operation in the
PBT. The samples are always divided till there is no further
ambiguity, leading to a risk of overfitting. Since we operate
at a class level (rather than a sample level as in the PBT),
we seldom overfit.

4.2. Cascade structure

The cascade structure that corresponds to a degenerate
decision tree is introduced to perform learning under a rare
event scenario. Such a scenario presents an unbalanced na-
ture of data samples. The background class has numerous
samples because all data points not belonging to the object
classes belong to it.

Figure 5. The tree structure of a boosted multiclass classifier.

Figure 6. The cascade of boosted multiclass classifiers.

To effectively examine more background examples, only
those background examples that pass the early stages of the
cascade are used for training the current stage. This idea
is the same as negative bootstrapping in the neural network
literature. However, the learned strong classifier for each
stage has to be adjusted in order to reach a desired detection
rate. In [17], this is done by changing the strong classifier
threshold.

We follow [17] to train a cascade of boosted multi-
class classifiers as shown in Figure 6. The examples for
the background class fed to the first stage are randomly
cropped. To train a cascade of boosted multiclass clas-
sifiers, we must make sure that the training examples for
class{C1, C2, . . . , CJ} can succeed the available stages.
To achieve this, we decide to change the response function
Fj(x). One simple solution is to add a constant shiftT0

to the output function of the background class,F0(x). The
value ofT0 is chosen to guarantee the desired detection rate.
Note that here the concept of the detection rate is applied to
all classes except the background class.

Suppose that the desired rate is1−α, we chooseT0 such
that

Fi(x) ≥ F0(x) + T0; x ∈ Si = {x[i]
1 , x

[i]
2 , . . . , x[i]

ni
} (15)

must be valid forb(∑J
j=1 nj) ∗ (1 − α) + 0.5c times. In

other words,T0 is theα percentile of the values{F ′j(x) =
Fj(x)− F0(x); x ∈ Sj , j = 1, 2, . . . , J}.

It should be emphasized that the tree and cascade struc-
tures are two different concepts. The tree structure is a
multiclass classifier, while the cascades consists of several
stages of multiclass classifiers. In practice, the two struc-
tures can be combined to achieve better efficiency.

The use of cascade during online detection of object is
illustrated as follows. Given an image, we want to find the
instances of the objects of interest in it. This is achieved
via an exhaustive scanning of the image. A windowW that
defines a region of interest slides in the space of(x, y, θ, s),
where(x, y), θ, ands are the center, orientation, and scale
of the window, respectively. Only the windows that pass
all stages of the cascade are subject to final classification.
Denote the set of all these windows byW:

W = {W |p(n)
0 (W) < max

j=1,...,J
p
(n)
j (W); n = 1, ..., Ncas}.

(16)
wherep

(n)
j is the posterior probability ofW being classj

when the boosted multiclass classifier for thenth cascade is
used andNcas is the number of stages in the cascade.

In the case where multiple objects are present in the
scene, we can simply classify each window in the above
set, assign it a class label and post-process those windows
with severe overlapping. In the case when only one final
decision is needed, such as cardiac view classification,ad
hocfusion strategies such as majority voting can be used.

5. Echocardiographic view classification

In this section, we present details of our automatic sys-
tem of echocardiographic view classification (EVC), where
an echocardiographic video in a DICOM format is clas-
sified into three classes, namely the A4C and A2C view
along with the background class, using the learned cascade
of multiclass strong classifiers. The reason why we chose
A2C and A4C views for our experiments is that these two
views are commonly used clinically, and they are very sim-
ilar to each other and hard to discriminate. Therefore, it is
enough to show a proof of concept. In the future, we plan
to add more views and use the same procedure for classifi-
cation.

The EVC system takes an echo video as input but infers
the view label based on an image classification approach
without considering temporal information to reduce com-
putation time toward a real-time requirement. Only the
end-diastolic (ED) frame is used for classification. The ED
frame is characterized by the fact that the heart is mostly
dilated. Also, the ED frame index is directly coded in the
DICOM header.

The overview of the EVC system is depicted in Figure 7.
It consists of three modules: 1) training data collection, 2)
multiclass boosting training, and 3) online view classifica-
tion. During online classification, the system only analyzes
the ED frame given an echocardiographic video sequence,
and classifies the ED frame into one of the trained views by
combining the results of all scanned subwindows. The clas-
sification result of the ED frame represents the final view of
the echocardiographic video sequence.

Figure 7. The overview of the EVC system

(a) (b) (c) (d)

Figure 8. Procedure of template image cropping. (a) A4C ED
frame. (b) LV contour and bounding box. (c) Template bounding
box along with LV bounding box. (d) Cropped template image.

5.1. Training data collection

We used 391 A2C sequences and 466 A4C sequences for
collecting training data. We first designed template layouts
for the two views, which highlight their characteristic struc-
tures. The template is designed based on the left ventricle
(LV) orientation and size. Specifically, for the A4C view,
the template contains all four chambers; while for the A2C
view, the template contains both chambers. We manually
annotated the LV endocardium to align the data and reduce
the appearance variation. Given a training video sequence
and its LV annotation, a template image is cropped accord-
ing to the template layout and rescaled to a canonical size.
The template cropping procedure is shown in Figure 8.

Given a video sequence, training images are collected
from five frames, i.e., theED − 2 frame toED + 2 frame
Further, we collected additional positives by perturbing the
template bounding box by a small amount around its center
and in its width, height, and angle. Negative training images
are collected outside the perturbing range for positives.

5.2. Multiclass boosting training

We employed Haar-like local rectangle features used in
[12, 17]. The Haar-like local rectangle filters provide local
high frequency components in various directions and res-
olutions. Figure 3 shows five types of the filters we used,
where the output of the filters is a scalar value by subtract-
ing the sum of the intensity values in the white rectangle(s)
from that of the grey rectangle(s). The output value indi-

A2C A4C Missed
A2C 31/34=91.2% 3/34=8.8% 0/34=0%
A4C 3/48=6.2% 43/48=89.6% 2/48=4.2%

Table 1. Detection and Classification results for the test data

cates the magnitude of a high frequency of the local region.
We can generate a very large number of filters by varying
the type, location, and size of the filter.

We trained a cascade of two multiclass classifiers, fol-
lowing the principles presented in section 3 and 4. For each
stage of the cascade, we further trained a tree structure (as
in 4.1) if applicable. To train the first cascade, we randomly
selected twice as many negative samples as the positives.
To train the second cascade, we followed the bootstrapping
procedure in section 4.2.

5.3. View classification and results

We used 34 A2C sequences and 48 A4C sequences for
experiments of detection and classification of cardiac views.
Given a sequence, we performed exhaustive search from the
left-top corner to the right-bottom corner by changing the
width, height, and angle. This exhaustive search approach
may yield multiple results of detection and classification,
especially around the correct view location. We employed a
multiple hypotheses fusion approach based on majority vot-
ing. If the EVC system yields multiple hypotheses (classi-
fication results), the number of classification results of each
view is computed and the final view is determined accord-
ing to the maximum number of view classification results. If
the numbers are the same, we employed a simple tie-break
rule based on the mean of all the posterior probabilities the
classifier provides.

The detection and classification results are shown in Ta-
ble 1. There are 31 out of 34 A2C sequences correctly clas-
sified and 3 sequences misclassified as A4C. In the case of
A4C, there are 43 out of 48 sequences detected and clas-
sified correctly, 3 sequences misclassified as A2C, and 2
sequences failed in classification as any of the two views.
Figure 9 illustrates some of the misclassified examples. As
shown in the figure, these misclassified ones are very chal-
lenging even for human discrimination if only the ED frame
is presented. In terms of speed, on average, our system runs
almost in real time at a PC with a 2GHz CPU and a 2GB
memory, consuming about 1.5s to classify a sequence which
typically contains a full cardiac cycle with about 30 frames.

5.4. Discussion

To the best of our knowledge, the only relevant work that
attempted to recognize the cardiac views is [2] where the
constellation model of the cavities is used. The authors of
[2] used the gray-level symmetric axis transform [14] to de-
tect a cardiac chamber, assuming that there exists a distinct

(a) Three A2C examples misclassified to A4C

(b) Three A4C examples misclassified to A2C

Figure 9. Misclassified examples

cavity in the image for each chamber of the heart. While this
assumption in general holds for the A4C view, it is invalid
for the A2C view. After the chambers are detected, they
modeled the constellation of the parts using the Markov ran-
dom field to capture both appearances and spatial relation-
ships of the chambers. The support vector machine clas-
sifier (SVM) is used for view classification, based on the
energy vector extracted from the Markov model.

Our approach is very different from [2]. While a three-
stage approach is presented in [2], we proposed a one-
shot solution built on the machine learning and appearance-
based object detection literature. One main drawback of
[2] is that its performance heavily depends on the chamber
detector, which has no guarantee of localizing the parts cor-
rectly. Our approach, instead, explicitly encodes the part
structure into template design and searches the desired part
structure in running time. In fact, one byproduct of our ap-
proach is accurate localization of the chambers.

In experiments, a small database was used in [2], with
15 echo videos of normal cases and six videos of abnormal
cases. Four experimental settings were evaluated and ac-
curacies ranging from54% to 88% were reported using the
leave-one-out scheme. It is hard to predict how their perfor-
mance scales to a large database. We used a large database:
training uses 391 A2C and 466 A4C videos and testing uses
34 A2C and 48 A4C sequences. We achieved an overall
accuracy of90.2%. Also there is no computational speed
reported in [2]; while we run almost in real time. Presum-
ably, computation in [2] cannot be close to real time because
fitting a Markov random field model is slow.

6. Conclusions

We proposed a multiclass boosting procedure for si-
multaneous detection of multiple objects and successfully
applied it to automatic view classification of echocardio-
graphic sequences. The image-based multiclass boosting is
a one-shot solution that possesses many promising proper-

ties such as the tree structure for efficient training, the cas-
cade training to deal with rare event detection, and always
sharing local feature across the classifier outputs. In future,
we plan to (i) increase the number of views in the EVC
system and (ii) evaluate the proposed multiclass boosting
method to detect generic objects.

References

[1] T. Dietterich and G. Bakiri. Solving multiclass learning prob-
lem via error-correcting output codes.Journal of Artificial
Intelligence, 2:263–286, 1995.

[2] S. Ebadollahi, S. Chang, and H. Wu. Automatic view recog-
nition inechocardiogram videos using parts-based represen-
tation. InCVPR, pages 2–9, 2004.

[3] Y. Freund and R. Schapire. A decision-theoretic generaliza-
tion of online leaning and an application to boosting.Journal
of Computer and System Sciences, 5(1):119.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Additive logis-
tic regression: a statistical view of boosting.Ann. Statist.,
28(2):337–407, 2000.

[5] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of
Statistical Learning. Springer, 2001.

[6] S. Krempp, D. Geman, and Y. Amit. Sequential learning
of reusable parts for object detection.Technical report, CS
Johns Hopkins Univ., 2002.

[7] S. Lazebnik, C. Schmid, and J. Ponce. Affine-invariant local
descriptors and neighborhood statistics for texture recogni-
tion. In ICCV, 2003.

[8] Y. LeCun, F. Huang, and L. Bottou. Learning methods for
generic object recognition with invariance to pose and light-
ing. In CVPR, 2004.

[9] F. Li, R. Fergus, and P. Perona. A bayesian approach to un-
supervised one-shot learning of object categories. InICCV,
2003.

[10] S. Li and Z. Zhang. Floatboosting learning and statistical
face detection.PAMI, 26(9), 2004.

[11] D. Lowe. Object recognition from local scale-invariant fea-
tures. InICCV, 1999.

[12] C. Papageorgiou, M. Oren, and T. Poggio. A general frame-
work for object detection. InICCV, 1998.

[13] R. Schapire and Y. Singer. Improved boosting using
confidence-rated predictions.Machine Learning, 37(3):297–
336, 1999.

[14] H. Tagare, F. Vos, C. Jaffe, and J. Duncan. Arrangement :
A spatial relation between parts fo evaluating similarity of
tomograhic section.PAMI, 17:880–893, 1995.

[15] A. Torralba, K. Murphy, and W. Freeman. Sharing features:
efficient boosting procedures for multiclass object detection.
In CVPR, 2004.

[16] Z. Tu. Probabilistic boosting-tree: Learning discriminative
models for classification, recognition, and clustering. In
ICCV, 2005.

[17] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. InCVPR, pages 511–518, 2001.

