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Robust Real-Time Myocardial Border Tracking for
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Abstract— Ultrasound is a main non-invasive modality for the
assessment of the heart function. Wall tracking from ultrasound
data is, however, inherently difficult due to weak echoes, clutter,
poor signal-to-noise ratio, and signal dropouts. To cope with
these artifacts, pre-trained shape models can be applied to con-
strain the tracking. However, existing methods for incorporating
subspace shape constraints in myocardial border tracking use
only partial information from the model distribution, and do
not exploit spatially varying uncertainties from feature tracking.
In this paper, we propose a complete fusion formulation in the
information space for robust shape tracking, optimally resolving
uncertainties from the system dynamics, heteroscedastic measure-
ment noise, and subspace shape model. We also exploit informa-
tion from the ground truth initialization where this is available.
The new framework is applied for tracking of myocardial
borders in very noisy echocardiography sequences. Numerous
myocardium tracking experiments validate the theory and show
the potential of very accurate wall motion measurements. The
proposed framework outperforms the traditional shape-space-
constrained tracking algorithm by a significant margin. Due to
the optimal fusion of different sources of uncertainties, robust
performance is observed even on the most challenging cases.

Index Terms— myocardial border tracking, subspace con-
straint, motion estimation with uncertainty, heteroscedastic noise,
information fusion, active shape model, model adaptation.

I. INTRODUCTION

THE tracking of the myocardial border is a very active
research area. Model-based deformable templates [1], [2],

[3], Markov random fields [4], optical flow methods [5], [6],
[7], [8], or combinations of above [9], have been applied for
tracking left ventricle (LV) from 2-D image sequences. Jacob
et al. provided a brief recent review in [10]. Other related work
focuses on the tracking, segmentation, or registration of heart
walls in 3D or 2D+T (spatial + time) [11], [12], [13], [14] or
4-D space [15].

It is a common practice to impose model constraints in a
shape tracking framework. Examples include simple models
such as blobs [16] or parameterized ellipses [17], and complex
models such as discriminative templates [18]. In most practical
cases, a subspace model is suitable for shape tracking, since
the number of modes capturing the major shape variations is
limited and usually much smaller than the original number of
feature components used to describe the shape [2], [1].

A straightforward treatment is to project tracked shapes into
a PCA subspace [19], [1]. However, this approach cannot take
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advantage of the measurement uncertainty and is therefore
not complete: In most real-world scenarios, measurement
noise is heteroscedastic in nature (i.e., both anisotropic and
inhomogeneous [20]). A good example is echocardiography
(ultrasound heart images) [21]. Ultrasound is prone to reflec-
tion artifacts, e.g., specular reflectors, such as those that come
from membranes. Because of the single “view direction”, the
perpendicular surface of a specular structure produces strong
echoes, but tilted or “off-axis” surfaces may produce weak
echoes, or no echoes at all (acoustic “drop out”). For an
echocardiogram, the drop-out can occur at the area of the heart
where the tissue surface is parallel to the ultrasound beam (See
Figure 1). Intuitively, a tracking algorithm should weigh less
information from such regions.

Alternatively, one could directly incorporate a PCA shape
space constraint into a Kalman filter-based tracker. In [22],
[23] it is suggested to set the system noise covariance matrix
to be the covariance of a PCA shape model. This treatment has
some limitations. First of all, it does not provide a systematic
and complete fusion of the model information because, for
example, the model mean is discarded. Secondly, it mixes
the uncertainty from system dynamics with the uncertainty
from the statistical shape constraint, while these two can be
conceptually different. For example, we may want to use the
dynamic model to capture different modes of global rigid
motion, while applying a statistical shape model to constrain
the range of shape variations. In other words, the system
dynamic model can be trained specifically to deal with slow
translation or rotation caused by, for example, respiration; and
scale change from the contraction and expansion of the heart.
Finally, existing solutions do not specifically address the issue
of heteroscedastic measurement noise and its influence during
the fusion with other information sources. When measurement
noise is anisotropic and inhomogeneous, joint fusion of all
information sources becomes critical for achieving superior
performance.

In this paper we decouple the uncertainty in system dy-
namics and the statistical shape constraint, and introduce a
unified framework for fusing a subspace shape model with the
system dynamics and the measurements with heteroscedastic
noise. Where available, the generic shape model is strongly
adapted using information given about the current shape. The
subspace model can take the form of a specific subspace
distribution, e.g., a Gaussian, or a simple subspace constraint,
e.g., the eigenspace model [24], [25]. Unlike existing ad
hoc formulations, our framework treats the two cases in a
consistent way, and combines such constraints seamlessly into
the tracking framework.
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Fig. 1. Echocardiography images with area of acoustic drop-out (marked
by the solid ellipse). Local wall motion estimation has covariances (depicted
by dotted ellipses) that reflect heteroscedastic noise.

The new approach calls for reliable estimation of measure-
ment uncertainties, for which we employ a recent robust so-
lution to the motion estimation problem, which also computes
the motion flow uncertainties [26].

In this paper we demonstrate the advantages of the proposed
framework using ultrasound heart sequences. Ultrasound is the
noisiest among common medical imaging modalities such as
MRI or CT. Echocardiography is even worse due to the fast
motion of the heart muscle, and respiratory interferences [21].
With spatially varying noise characteristics, echocardiograms
are the most appropriate data for testing our heteroscedastic
fusion framework.

The paper is organized as follows: The new shape tracking
formulation using complete fusion is introduced in Section III.
Section IV discusses shape model adaptation within this
framework. Our robust motion computation algorithm along
with measurement uncertainty estimation is presented in Sec-
tion V. Section VI presents experiments on shape tracking
for cardiac ultrasound. We discuss related work and future
directions in Sections II and VIII.

II. RELATED WORK

In this section, we discuss related work on tracking with
subspace model constraints and heteroscedastic noise.

If the measurement is affected by heteroscedastic noise,
an orthogonal projection into the constraining subspace is
not only unjustified, but also very damaging in terms of
information loss [27]. It can only be justified for the special
case when the noise is both isotropic and homogeneous.

However, most existing work on subspace-constrained
tracking did not take into account the heteroscedastic noise
in the measurements [28], [24]. In the “Point Distribution
Model” or “Active Shape Model” [19], [2], [1], a PCA-based
subspace shape model is derived based on training shapes with
landmark point correspondence. At detection time, a model
is perturbed to create synthetic images for matching against
the testing image at a candidate location. Measurement noise

was not modeled in this process. Even when heteroscedastic
noise characteristics are available, the fusion with the subspace
model constraint is not complete in the existing tracking
frameworks [29], [30], [22], [10]. The model mean is discarded
in the formulation of [30], [31]; while in [29] a rather ad
hoc thresholding (proposed in [1]) is applied so that the
measurement mean is confined to a hyper-ellipsoid constraint
defined by the model covariance. This operation did not even
fuse information from measurement uncertainty.

Measurement uncertainty has been exploited for tracking
and motion estimation in different contexts. However, none of
these have put all relevant information sources into a unified
fusion formulation. Jepson, Fleet and El-Maraghi [32] used a
Gaussian distribution to adaptively model the appearance of
the object of interest (face in their case), which is learned
using the EM algorithm. As in our case, local uncertainty is
captured in the covariance matrix. However, they do not use
subspace models for information fusion. A rank-constrained
flow estimation formulation was proposed by Bregler et al.
[33]. They use constraints from both rigid and non-rigid
motion represented by basis-shapes. Although occlusion is
addressed, measurement uncertainty in general is not optimally
exploited. Both Brand [27] and Irani [34] use measurement
uncertainties, but they did not provide a complete fusion-based
tracking framework that combines all the information sources
including the system dynamics and the initial input. In fact,
we could adopt these low-rank constrained approaches in our
flow estimation sub-module.

Leedan, Matei, and Meer [35], [36] applied heteroscedastic
regression for fitting ellipses and fundamental matrices. The
fitting is achieved in the original space with parameterized
models. In our formulation, we avoid the parameterization of
shape variations — it can be very complicated and highly
nonlinear. Instead, we build subspace probabilistic models
through PCA and obtain closed-form solutions on both the
mean and covariance of the fitted data. Although simple,
this model works fine in our experiments, especially with
our proposed SA-PCA model (Section IV). However, this
model may be too simplistic for other applications, and more
sophisticated nonlinear models may be needed (e.g., [37],
[38]).

Robust model matching [39], [40] relying on M-estimators
or RANSAC has been applied to limit or eliminate the
influence of data components that are outliers with respect
to the model. Again, the locally (in space or time) varying
uncertainties are not exploited in these frameworks.

There is much research work done in medical domain that
tracks heart motion using various techniques (e.g., [5], [41],
[42], [22], [43], [44], [45]). However, they did not address the
issue of heteroscedastic noise and its fusion with other infor-
mation sources. Jacob et al. [10] apply a two-step approach
to impose a shape space constraint in a Kalman filtering
framework. The shape space is a linearly transformed affine
subspace or eigen-subspace. However, the projection into the
shape space is orthogonal, without taking into account the
heteroscedastic noise of the measurement. Another difference
is that they train a model for every sequence using several
contours from an expert user, while we will only use one initial
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contour to start the tracker because a generic shape model is
trained across patients (but updated for the current patient).

III. SUBSPACE FUSION-BASED SHAPE TRACKING

Throughout this paper, we represent shapes by control or
landmark points, assuming correspondence. These points are
fitted by splines before shown to the user. The analysis is based
on the vectors formed by concatenating the coordinates of
all control points [10], [19]. For more implementation details,
please refer to Section VI.

A typical tracking framework fuses information from the
prediction defined by a dynamic process and from noisy
measurements. When applied to shape tracking, additional
global constraints are necessary to stabilize the overall shape
in a feasible range. Some existing frameworks have addressed
this issue by projecting the tracked shape or the driving noise
process of the dynamic system into an eigenshape space [10],
[29], [2], [30]. However, such treatments failed to exploit
the heteroscedastic measurement noise during projection [19],
or did not fully exploit the model distribution (as a result,
the projection can be arbitrarily far from the model mean in
the subspace). We propose in this section a complete fusion
framework that addresses these shortcomings.

A. Kalman Filter as Fusion in the Information Space

For a Kalman filter, the measurement update equation has
the following form [46], [47]:

xk+1|k+1 = xk+1|k + K(zk+1 − Hxk+1|k) (1)

where

K = Pk+1|kHT (HPk+1|kHT + R)−1 (2)

Pk+1|k+1 = (I− KH)Pk+1|k (3)

Pk+1|k = SPk|kST + Q (4)

Here P is the state covariance, H is the measurement matrix,
S is the system matrix, and xi|j is the state estimate at
time i given the state at time j. The measurement model is
zk = Hxk + rk, where rk represents measurement noise with
covariance R. The system/process model is xk+1 = Sxk+qk,
where qk represents system noise with covariance Q.

Kalman filter has many other forms, one of which being
the information filter [47]. The information space is the space
obtained by multiplying a vector by its corresponding infor-
mation matrix, which is, in the Gaussian case, the inverse of
the error covariance matrix. Information filter propagates the
information state instead of the original state (see Appendix
for derivation):

xk+1|k+1 =

(P−1
k+1|k + HT R−1H)−1(P−1

k+1|kxk+1|k + HT R−1zk+1)
(5)

For the special case where H is a square matrix and admits
an inverse, we can see Eq. (5) in a strict information fusion

form, namely, the fusion of prediction and measurement in the
information space:

xk+1|k+1 =

(P−1
k+1|k + R−1

x )−1
[
P−1

k+1|kxk+1|k + R−1
x xz,k+1

] (6)

where Rx = H−1R(H−1)T and xz,k+1 = H−1zk+1.

B. Static Subspace Model Fusion

Let us now turn our attention to the problem of information
fusion with one of the sources in a subspace. We will derive
in the sequel a unified way for incorporating subspace (model)
constraints using information fusion.

Given two noisy measurements of the same n-dimensional
variable x, each characterized by a multidimensional Gaus-
sian distribution, N (x1,C1) and N (x2,C2), the maximum
likelihood estimate of x is the point with the minimal sum
of Mahalanobis distances, D2(x,xi,Ci), i = 1, 2, to the two
centroids, i.e., x∗ = argmin d2 with

d2 =D2(x,x1,C1) + D2(x,x2,C2)

=(x − x1)T C−1
1 (x − x1) + (x − x2)T C−1

2 (x − x2)
(7)

Taking derivative with respect to x and setting it to zero, we
get the best linear unbiased estimate (BLUE) of x ([48], [49]):

x∗ = C(C−1
1 x1 + C−1

2 x2) (8)

C = (C−1
1 + C−1

2 )−1 (9)

Now, assume that one of the Gaussians is in a subspace
of dimension p, e.g., C2 is singular. With the singular value
decomposition of C2 = UΛUT , where U = [u1,u2, . . .,un],
with ui’s orthonormal and Λ = diag{λ1, λ2, . . ., λp, 0, . . ., 0},
we rewrite Mahalanobis distance to x2 in Eq. (7) in the
canonical form:

D2(x,x2,C2) = (x − x2)T C−1
2 (x − x2)

=
n∑

i=1

λ−1
i [UT (x − x2)]2

(10)

When λi tends to 0, D2(x,x2,C2) goes to infinity, unless
UT

0 x = 0, where U0 = [up+1,up+2, . . .,un]. Here we have
assumed, without loss of generality, that the subspace passes
through the origin of the original space. Since x2 resides in
the subspace, U0

T x2 = 0. As a result, we only need to retain
in Eq. (10) those terms corresponding to a non-zero λ i :

dm,2 =
p∑

i=1

λ−1
i [UT

p (x − x2)]2 ≡ (x − x2)T C+
2 (x − x2)

(11)
where C+

2 is the pseudoinverse of C2([50], p. 49), and Up =
[u1,u2, . . .,up].

Taking into account that U0
T x = 0, x can be expressed in

another form to reflect this constraint:

x = UUT x = U([Up|U0]T x) = U
[

y
0

]
= Upy (12)
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where y is a 1×p vector. Eq. (7) now takes the following
general form:

d2 =(Upy − x1)T C−1
1 (Upy − x1)+

(Upy − x2)T C+
2 (Upy − x2)

(13)

Taking derivative with respect to y yields the fusion estimator
for the subspace:

y∗ = Cy∗UT
p (C−1

1 x1 + C+
2 x2) (14)

Cy∗ = [UT
p (C−1

1 + C+
2 )Up]−1 (15)

Equivalent expressions can be obtained in the original space:

x∗ = Upy∗ = Cx∗(C−1
1 x1 + C+

2 x2) (16)

Cx∗ = UpCy∗UT
p (17)

It can be shown that Cx∗ and Cy∗ are the corresponding
covariance matrices for x∗ and y∗ (see Appendix). Notice
that this solution is not a simple generalization of Eq. (8) by
substituting pseudoinverses for regular inverses, which will not
constrain x∗ to be in the subspace.

When only the subspace constraint is valid, without as-
suming any model distribution in the subspace, the solution
becomes (by setting λi to ∞):

y∗ = Cy∗UT
p C−1

1 x1 (18)

Cy∗ = (UT
p C−1

1 Up)−1 (19)

When only the subspace (defined by Up) is considered, and
the covariance C1 = cI is isotropic, we have

y∗ = (c−1UT
p IUp)−1UT

p (cI)−1x1 = UT
p x1 (20)

Cy∗ = cIp (21)

This is the orthogonal projection used in the literature as
subspace model constraint [24], [28]

Figure 2 depicts the difference among three sub-
space constraining approaches, namely, orthogonal projection
(Eq. (20)), non-orthogonal projection (Eq. (18)), and non-
orthogonal projection with fusion (Eq. (14)), synthetically us-
ing a three-dimensional feature space with a two-dimensional
subspace model.

C. Tracking Shapes through Subspace Fusion

Applying the subspace fusion formula, Eq. (14) and (15),
on the Kalman fusion result of Eq. (5) (In general H is not
invertible; otherwise, Eq. (6) can be used.) and a subspace
Gaussian source N (x2,C2), we obtain a complete fusion
framework:

xk+1|k+1 =

Pk+1|k+1((SPk|kST + Q)+xk+1|k + HT R−1zk+1 + C+
2 x2)
(22)

Pk+1|k+1 =

Up[UT
p ((SPk|kST + Q)+ + HT R−1H + C+

2 )Up]−1UT
p

(23)

where we have assumed, without loss of generality, that the
system noise covariance Q can be contained in the subspace.

Fig. 2. Comparing orthogonal projection (yo), non-orthogonal projection
(y1), and non-orthogonal projection with fusion (y∗). Here x1 is the input
vector with a covariance matrix, y2 is the model mean in the subspace.

Observe the symmetry of the solution which combines all the
available knowledge in the information space. These equations
provide a unified fusion of the system dynamics, a subspace
model, and measurement noise information. They completely
represent the various uncertainties that affect the tracking
system.

Compared to a PCA shape space representation [30], [22],
the above formulation uses not only the model subspace
(the eigenvectors), but also the actual model distribution, in
a unified fusion framework. On the other hand, if only a
subspace constraint is desired, we can simply apply the special
case of Eq. (18) and (19) on Eq. (5), and the resulting fusion
is still within the same analytical framework. The traditional
subspace constraining technique of orthogonal projection into
the eigenspace will discard information carried in the het-
eroscedastic noise of the measurements.

IV. STRONGLY-ADAPTED-PCA MODEL

For endocardium (the inner layer of the heart muscle)
tracking, the use of a statistical shape model learned from
a large pool of training samples to guide the contours from
a specific heart is problematic. Theoretically, what we really
need is the statistical shape model of the current heart instead
of a generic heart. Therefore, there is a strong motivation for
us to adapt the generic model toward what is known for the
current case. A natural choice is to use the initial contour
(manual or through automatic detection) to adapt the existing
PCA model.

Naturally, incremental PCA (IPCA) [51] comes into the
picture, but this strategy is not strongly adapted toward the
current case and is often too weak (we will elaborate more
in the sequel). We apply a strongly-adapted-PCA (SA-PCA)
model as follows:

We assume that the PCA model (excluding the current case)
and the initialized contour for the current case jointly represent
the variations of the current case, but with relative energy, or
representative power, being α and (1 − α), respectively, with
0 < α < 1. In other words, a portion of the shape variations
of the current case is captured by the generic model, while
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the rest is captured in the direction of the initial contour in
the model space.

The PCA model has its mean, eigenvalue matrix, and
eigenvector matrix, denoted by xm, Λ, and U, respectively. If
the original full covariance matrix C is stored (this would be
the case when the original dimensionality is not forbiddingly
high), the adapted mean and covariance matrix are simply the
weighted sum of the two contributing sources:

xm,new = αxm + (1 − α)x (24)

Cnew =α(C + (xm − xm,new)(xm − xm,new)T )

+ (1 − α)(x − xm,new)(x − xm,new)T

=αC + α(1 − α)(x − xm)(x − xm)T

(25)

Eigenanalysis can be performed on Cnew to obtain the new
subspace model.

In the case that C is not stored but only {xm,Λ,U} is
available in the subspace, through straight algebraic manip-
ulations we can arrive at the adapted eigenanalysis results
{xm,new, Λnew, Unew} as follows: The initial contour x has
a subspace component as xs = UT xd, where xd = x − xm,
and a residual vector as xr = (x − xm) − Uxs. Let xru be
the normalized version of xr with norm 1 (or zero if xr is
zero norm). The adapted eigenvector matrix that represents the
combined energy will have the following form:

Unew = [U,xru]R (26)

R and Λnew will be the solutions to the following eigen-
analysis problem:(

α

[
Λ 0
0T 0

]
+ α(1 − α)

[
xsxT

s erxs

erxT
s e2

r

])
R = RΛnew

(27)
where er = xT

ru(x − xm) is the residual energy.
The above formulas are extensions of IPCA or eigenspace

merging formula of [51], with tunable energy ratios between
the new data and the old data. These become equivalent to
IPCA if we set α to be the fraction of points in the model
versus the total number of points. Typically, this will be a
number very close to 1 since the number of contours in the
training set is usually large. With α set at a smaller value (we
use 0.5), the PCA model is strongly adapted toward the current
case, hence the name.

Contours from the current heart are more likely to resemble
the initial contour of the same heart than those contours in
the generic training set, especially if the current heart has
an irregular shape that is not represented in the training set.
Figure 3 shows a comparison of IPCA and SA-PCA. This
parasternal short axis view has an irregular shape (with an
upper concave part). The incremental PCA model, taking in
the initial contour (Figure 3a) but with a very small weight
(< 0.01%), fails to capture the concave nature of the current
shape; and has constrained the contours to a typical circular
shape (Figure 3b). SA-PCA yields a contour that fits much
better to the true borders (Figure 3c).

With SA-PCA, our framework now incorporates four infor-
mation sources: the system dynamic, measurement, subspace
model, and the initial contour. This last addition is especially

useful for periodic shape deformations such as the cardiac
motion.

V. ESTIMATING MOTION

To measure the motion of each of the control points we
use an adaptation of the frame-to-frame motion estimation
algorithm described in [26], which has been shown to be
very competitive in terms of performance evaluation using
standard sequences. We present in the sequel a summary of
the algorithm. For more details, see [26].

The main idea is that the motion in a certain neighborhood
can be robustly estimated as the most significant mode of
some initial motion estimates, expressed by mean vectors and
associated covariance matrices. The most significant mode of
the underlying multimodal density function of initial estimates
is detected by mode tracking across scales. We first perform
mode detection at a large scale, while in the next stages the
analysis scale is gradually reduced and the mode detection is
performed again. At each scale the mode detection algorithm
is initialized with the convergence location from the previous
scale. The underlying mechanism for mode detection relies on
the variable-bandwidth mean shift [52].

To be more explicit, assume a constant velocity model and
denote by (ẑi,Ri), i = 1 . . . n the initial motion estimates
computed at each spatial coordinate of a neighborhood of
dimension n = M × M . The initial estimates are derived
through the traditional Least Squares [53] with some upper
bound on the covariance eigenvalues to avoid instabilities, or
through Biased Least Squares [54], [55].

Using the robust fusion framework, we determine the lo-
cation ẑm of the most significant mode in the 2-dimensional
velocity space by performing mode tracking across scales. At
the mode location, the following equations are valid

ẑm = R(ẑm)
n∑

i=1

ωi(ẑm)R−1
i ẑi (28)

R(ẑm) =

(
n∑

i=1

ωi(ẑm)R−1
i

)−1

(29)

where the weights are given by

ωi(ẑm) =
1

|Ri|1/2 exp
(
− 1

2D2 (ẑm, ẑi,Ri)
)

∑n
i=1

1

|Ri|1/2 exp
(
− 1

2D2 (ẑm, ẑi,Ri)
) (30)

Equations (28) and (29) define the estimate of the local motion
vector. The procedure is robust and can accommodate multiple
apparent motions, since it relies on the multiscale computation
of the mode of initial estimates.

In the current work, for each control point we compute
initial estimates using 17 × 17 windows and fuse the results
on n = 5 × 5 neighborhoods. A pyramid of three levels is
employed with covariance propagation across levels. Figure 4
depicts the uncertainty calculated at the bottom of the pyramid
for the contour points.

To avoid error accumulation from frame to frame, the
motion is always computed with reference to the neighborhood
of the control point in the first frame of the sequence (i.e., the



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. ?, NO. ?, ??? 2004 7

(a) (b) (c)

Fig. 3. SAPCA versus incremental PCA. (a) is the initial contour; (b) is the 5th contour tracked and constrained using an incremental PCA model [51]; (c)
is the same frame tracked and constrained using an adaptive PCA model with α = 0.5.

Fig. 4. The 95% confidence ellipses corresponding to the local measurement uncertainty. Frames sampled from Case #6, #25, and #32.

current frame is always compared to a model extracted from
the first frame). Since we update the location of the model at
each frame, the motion estimation process always starts with
a good initialization. The overall procedure is suitable for the
tracking of periodic sequences such as the heart ultrasound
data. It resembles a template-based tracker that benefits from
the fast computation of frame-to-frame motion.

VI. EXPERIMENTS AND ANALYSIS

In this section we will apply and evaluate the new frame-
work to track heart contours using very noisy echocardiogra-
phy data. The tracker was implemented in C++ and is running
at about 20 frames per second on a single 2GHz Pentium 4 PC.
Our data were selected by a cardiologist to represent normals
as well as various types and stages of cardiomyopathies,
with sequences varying in length from 18 frames to 90
frames. All data were collected by Siemens Acuson machines
(Sequoia model), using tissue harmonic imaging. The images
are through all parts of the heart cycle. Both training and test
data were traced by experts, and confirmed by one cardiologist.

A. Implementation

We use manually traced contours of the endocardium in
echocardiography images as the training set. Both apical two-

or four-chamber views (open contour with 17 control points)
and parasternal short axis views (closed contour with 18
control points) are trained and tested. Apical and short axis
views are trained separately using contours outside the test
set. The tracing is done by either adjusting generic contour
templates or drawing a new contour using the mouse. In the
latter case, the contour is drawn with a pre-defined starting
point based on anatomy so that landmark points can be
automatically assigned. Typical landmarks are the apex, the
papillary muscles, and the basal end of the septum. We number
the control points in clockwise order, with the first point from
the mid inferior region for the short axis views and from the
basal septal/inferior region for apical views. Furthermore, the
mid-point (the 9th point) for the apical view is assigned at the
apex. Our system automatically places the other points equally
on the contour based on arc length of the fitted spline.

The algorithm can tolerate some variability on the location
of the landmark points, partly due to the application of SA-
PCA.

The training contours are aligned using the iterative Pro-
crustes analysis approach proposed by Cootes and Taylor [19]
to cancel out global translation, rotation and scaling. PCA is
then performed and the original dimensionality of 34 and 36 is
reduced to 7 and 8, respectively. Figure 5 shows the dominant
eigenshapes (without splining) for the two views along with
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Fig. 5. The dominant eigenshapes for: (a) Apical views; (b) Short axis views.
The dashed curve is the model mean.

their model means trained on about 200 contours for each
view. The training set consists of sequences from 11 subjects,
some of which have different degrees of cardiomyopathy.

In this paper we use a simple 0th order dynamic model
to impose a temporal smoothness constraint 1. We employ a
diagonal matrix to model the uncertainty in system dynamics,
and set the relative confidence of this model empirically .

In practice, we perform alignment on the training shapes
before the PCA, hence, at each frame the learned shape model,
{x2,C2} in Section III-B, needs to be aligned to the fusion
result {x̃, C̃} from the measurement and the dynamic model.
We adopt the optimal transformation To which minimizes a
weighted sum-of-squares measure of point difference subject
to translation, rotation and scaling ([56], p. 102), with the
weighting matrix being C̃−1. The system transforms the model
mean as well as the model covariance using To before the final
fusion.

B. Echocardiogram Tracking

For systematic evaluation, we use a set of 32 echocardio-
gram sequences outside of the training set for testing, with 18
parasternal short-axis (PS) views and 14 apical two- or four-
chamber (AC) views, all with expert-annotated ground-truth
contours.

Figure 6 shows snapshots from two tracked sequences.
Notice that the endocardium is not always on the strongest
edge. Sometimes it manifests itself only by a faint line;
sometimes it is completely invisible or buried in heavy noise;
sometimes it will cut through the root of the papillary muscles
where no edge is present. Our multiscale measurement process
follows whatever patterns the initial contour is attached to,
with varying levels of confidence. This is shown in Figure 4.
Notice the strong anisotropy and inhomogeneity associated
with the measurement uncertainty. The full exploitation of this
information resulted in robust tracking over high noise and
drop-out regions. Figure 7 shows frames from four sequences
(first row), along with ground-truth contours (second row),
and our tracking results (last row). The difference is barely
noticeable even in the drop-out regions.

When the measurement process makes a large error in a
drop-out or high-noise region, the corresponding localization
uncertainty is usually higher as well, because of the lack

1Possible extensions include the constant-velocity model or sinusoidal
dynamic model which captures the periodic expansion and contraction of the
heart

of trackable patterns. In such cases, our fusion will correct
the error to a larger extent than the effect of an orthogonal
projection into the shape space. An example is shown in
Figure 8. The fusion will not correct the error completely,
but note that this correction step is accumulative so that the
overall effect at a later frame in a long sequence can be very
significant.

To compare performance of different methods, we need
proper distance measures. We use both a Mean Sum of
Squared Distance (MSSD) (cf. [45]) and a Mean Absolute
Distance (MAD) (cf. [43]). For the tracked sequence S i with m
frames/contours, {c1, c2, ..., cm}, where each contour cj has n
points {(xj,1, yj,1), (xj,2, yj,2), ..., (xj,n, yj,n)}, the distances
of Si from the ground truth sequence S 0

i are

MSSDi =
1
m

m∑
j=1

MSSDi,j

=
1
m

m∑
j=1

1
n

n∑
k=1

((xj,k − x0
j,k)2 + (yj,k − y0

j,k)2)

(31)

MADi =
1
m

m∑
j=1

MADi,j

=
1
m

m∑
j=1

1
n

n∑
k=1

√
(xj,k − x0

j,k)2 + (yj,k − y0
j,k)2

(32)

The overall performance measure for a particular method
is the averaged distance on the whole test set of l sequences:
MSSD = 1

l

∑l
i=1 MSSDi and MAD = 1

l

∑l
i=1 MADi.

These measures do not give higher weights to longer se-
quences. We also record the standard deviation of the two
distances for each frame and average the results for each
sequence first, and then across sequences. A critical difference
between our distance measures and those of [45] or [43] is that
we have the point correspondence through tracking, and we
want to measure the performance of these correspondences.
In [45], [43], no correspondence is assumed and the nearest
point from the other contour is taking as the corresponding
point–As a result, motion component along the tangent of
the contour cannot be evaluated. In reality, global or regional
tangent motion are common during a cardiac cycle, and they
reveal crucial information regarding cardiac function.

With the same MADs, a contour with impulsive errors has
a higher MSSD than one with uniform errors. We test the
performance of our approach under both measures. Our fusion
framework is compared to three methods. The first method is
a tracker based on our optical flow algorithm without shape
constraint (“Flow”) [26]. The second method is the same
tracker but adding orthogonal PCA shape space constraints
(“FlowShapeSpace”) (cf. [31], [19], [23]). The third is “Flow-
ShapeSpace” using our SA-PCA model (“FlowSAPCA”)–we
show the best empirical performance by tuning α values.
Figure 9, 10 and Table I show the comparison using the
two distance measures. Our proposed method (“Proposed”)
significantly outperforms others, with lower average distances
and lower standard deviations for such distances. Figure 12
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Fig. 6. Two tracking examples in rows, with 5 snapshots per sequence. Shown on the first row are Frame 1, 10, 15, 20 and 25 from Case #24 with 25
frames, and on the second row are Frame 1, 8, 12, 16 and 20 from Case #17 with 20 frames.

(a) (b) (c) (d)

Fig. 7. Four more tracking examples in columns. First row shows the images, second row are the expert-drawn contours for the image directly above, and
the third row shows our tracking results. On the last contour we also show the uncertainty ellipses.
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(a) (b) (c) (d)

Fig. 8. Comparison of orthogonal projection with our proposed fusion approach in handling measurement errors (Frame 15 from Case #11). (a) the expert-
drawn contour; (b) the un-constrained flow results; (c) the constrained flow using orthogonal projection into the SA-PCA eigenshape space; and (d) the contour
by our fusion framework along with the instantaneous uncertainty ellipses used during the fusion. Notice the strong correction our method brought over the
local measurement errors.
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Fig. 12. The sensitivity of the proposed method to different values of α,
which is the energy ratio of the original PCA model in the SA-PCA model.

shows the sensitivity of the proposed approach regarding the
values of α, which is the energy ratio of the original PCA
model in the SA-PCA model. It shows that for a wide range
of α values, the proposed framework outperforms the other
methods. The optimal value for α depends on the datasets
and is 0.49 in our case.

These distances are based on the unit of pixels displayed
on the screen. As references for understanding these results:
the full echocardiogram image is displayed at a size of about
640 × 480 pixels. It should be noted that our results are not
indicative for border localization accuracies, but rather for
motion tracking performances given an initial contour.

In Figure 11, we show the averaged distances (in terms of
MSSD) for different control points for the two views. Notice
that the errors are not uniform across control points, especially
those from the “Flow” approach: for apical views, the high-
error regions are along the lateral wall and around the apex;
while for short axis views, errors are larger on the upper left
and upper right around mid septal and mid anterior regions.
This is in agreement with the typical drop-out regions in
these two views (cf. Figure 4 and 8). The proposed approach
corrected such large errors completely.

It is worth pointing out that our proposed method performs
relatively well even on the noisiest cases. (See the last four
columns in Table I).

VII. DISCUSSIONS

We have set our goal to track control points on the endo-
cardium, with anisotropic confidence estimated at each point
at any given time step, and exploit this information when
consulting a prior shape model as a constraint. However, we
should point out that this goal may not be achievable for
some sequences due to the nature of echocardiography and
the way it is taken: The heart is moving in 3D while 2D
echocardiography captures only a slice of the heart which
may change from frame to frame. To make things worse, the
heart also has a small twisting motion around the apex during
systole. Therefore, our goal of tracking point correspondences
can only be achieved to a certain degree. In our dataset, the
3D motion of the heart is not significant and the tracking is
reasonable for most cases..

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a joint information fusion framework
to track shapes under heteroscedastic noise with a probabilistic
subspace model constraint. The major contributions of our
work are three-fold: first, we formulate the tracking framework
as an information fusion problem to take into account full
information from the subspace model, where the model mean
is retained; secondly, we estimate and exploit uncertainties
from the optical-flow during the shape model constraining
process, which weighs more on flows with high confidence
while discounts flows estimated from uncertain areas such
as drop-out regions; finally, we propose a model adaptation
technique that uses the initial contour to update a PCA model,
so that a generic shape model can be applied to constrain
the tracking of myocardial borders of a specific shape. This
approach has been shown to perform robustly even on difficult
ultrasound heart images with spatially varying noise.

Our framework is general and can be applied to other
modalities. Future potential applications include tracking in
MR, perfusion, and extensions to tracking using 3-D or 4-D
data.
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Fig. 9. Mean distances between tracked points and the ground truth location for 32 test sequences. (a) Mean Sum of Squared Distances (MSSDi); (b) Mean
Absolute Distance (MADi). The test sequences are sorted by the ascending order of the MSSD of “Flow”.
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Fig. 10. The error histograms based on (I) MSSD, and (II) MAD, for the four approaches: (a) Flow; (b) FlowShapeSpace; (c) FlowSAPCA; and (d) Proposed.

TABLE I

PERFORMANCE OF PROPOSED METHOD. THE “MOST DIFFICULT CASES” CONSIST OF THE LAST THREE CASES IN FIGURE 9A. THESE ARE THE MOST

DIFFICULT CASES FOR “FLOW”.)

All Cases Most Difficult Cases
Methods MSSD σ̄MSSD MAD σ̄MAD MSSD σ̄MSSD MAD σ̄MAD

Flow 38.1 82.9 4.3 3.6 147.9 325.0 8.8 8.2
FlowShapeSpace 24.7 35.5 3.8 2.4 106.0 181.2 7.9 6.3
FlowSAPCA 17.5 21.7 3.1 1.9 78.8 98.6 7.1 4.7
Proposed 8.3 14.3 1.7 1.6 25.8 34.8 4.1 2.8
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Fig. 11. Averaged MSSD for different control points. (a) Apical 2- or 4-chamber views; (b) Parasternal short axis views. It shows that for apical views, the
high-error regions are along the lateral wall and around the apex; while for short axis views, errors are larger on the left and right around mid septal and mid
anterior regions.
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APPENDIX I
KALMAN FILTER AS INFORMATION FILTER

We first rewrite Pk+1|k+1 in Eq. (3) as follows:

Pk+1|k+1 = (I − KH)Pk+1|k
=(Pk+1|k − Pk+1|kHT (HPk+1|kHT + R)−1HPk+1|k)

(A.1)

It can be shown that

P−1
k+1|k+1 =P−1

k+1|k + HT R−1H (A.2)

because (we drop the subscripts for simplicity):

[P − PHT (HPHT + R)−1HP][P−1 + HT R−1H]

= I + PHT [R−1 − (HPHT + R)−1(I + HPHT R−1)]H
= I

(A.3)

We can now rewrite xk+1|k+1 of Eq. (1):

xk+1|k+1

= (I − KH)Pk+1|k(P−1
k+1|kxk+1|k+

P−1
k+1|k(I − KH)−1Kzk+1)

= Pk+1|k+1(P−1
k+1|kxk+1|k + P−1

k+1|k(I − KH)−1K︸ ︷︷ ︸ zk+1)

(A.4)

The under-braced term in the parenthesis can be simplified
as follows:

P−1
k+1|k(I − KH)−1K

=
[
(K−1Pk+1|k − HPk+1|k

]−1

=
[
[Pk+1|kHT (HPk+1|kHT + R)−1]−1Pk+1|k − HPk+1|k

]−1

= HT R−1

(A.5)

Finally we obtain:

xk+1|k+1 = Pk+1|k+1(P
−1
k+1|kxk+1|k +HT R−1zk+1) (A.6)

APPENDIX II
PROOF THAT EQ. (15) AND (17) ARE COVARIANCE

MATRICES

According to Eq. (14), we estimate the covariance of y ∗:

E[y∗y∗T ] =

Cy∗UT
p (C−1

1 E[x1xT
1 ]C−1

1 + C+
2 E[x2xT

2 ]C+
2 )UpCy∗

(B.1)

Since
E[xixT

i ] = Ci, (B.2)

C+
2 C2 = UpUT

p , (B.3)

UT
p Up = I (B.4)

We have

E[y∗y∗T ] =Cy∗UT
p (C−1

1 + UpUT
p C+

2 )UpCy∗

=Cy∗UT
p (C−1

1 + C+
2 )UpCy∗

=Cy∗C−1
y∗ Cy∗

=Cy∗

(B.5)

And subsequently, for x∗ we have

E[x∗x∗T ] = E[Upy∗y∗T UT
p ] = UpCy∗UT

p (B.6)
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[43] I. Mikić, S. Krucinski, and J. D. Thomas, “Segmentation and tracking
in echocardiographic sequences: Active contours guided by optical flow
estimates,” IEEE Trans. Medical Imaging, vol. 17, no. 2, pp. 274–284,
1998.

[44] M. Sühling, M. Arigovindan, P. Hunziker, and M. Unser, “Motion anal-
ysis of echocardiograms using a local-affine, spatio-temporal model,”

in Proc. IEEE Int’l Symp. on Biomedical Imaging: Macro to Nano
(ISBI’02), Washington DC, 2002, pp. 573–576.

[45] Y. Akgul and C. Kambhamettu, “A coarse-to-fine deformable contour
optimization framework,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 25, no. 2, pp. 174–186, 2003.

[46] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the Am. Soc. of Mechanical Eng., D, Journal
of Basic Engineering, vol. 82, pp. 35–45, 1960.

[47] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and
Practice. Prentice Hall, 1993.

[48] Y. Bar-Shalom and L. Campo, “The effect of the common process noise
on the two-sensor fused track covariance,” IEEE Trans. Aero. Elect.
Syst., vol. AES-22, no. 22, pp. 803–805, 1986.

[49] X. Li, Y. Zhu, and C. Han, “Unified optimal linear estimation fusion -
part i: Unified models and fusion rules,” in Proc. of 3rd Intl. Conf. on
Information Fusion, Paris, France, 2000, pp. MoC2–10–MoC2–17.

[50] L. L. Scharf, Statistical Signal Processing. Addison Wesley, Reading,
MA, 1991.

[51] P. Hall, D. Marshall, and R. Martin, “Merging and splitting eigenspace
models,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 9, pp.
1042–1048, 2000.

[52] D. Comaniciu, “An algorithm for data-driven bandwidth selection,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 25, no. 2, pp. 281–288, 2003.

[53] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. DARPA Imaging and
Understanding Workshop, 1981, pp. 121–130.

[54] A. Hoerl and R. Kennard, “Ridge regression: Biased estimation for
nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[55] D. W. Marquardt, “Generalized inverses, ridge regression, biased linear
estimation, and nonlinear estimation,” Technometrics, vol. 12, no. 3, pp.
591–612, 1970.

[56] T. Cootes and C. Taylor, “Statistical models for appearance for com-
puter vision,” 2001, unpublished manuscript. Available at http://
www.wiau.man.ac.uk/∼bim/Models/app model.ps.gz.


