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ABSTRACT

In this paper, we present a method of using the needle detec-
tion and tracking to compensate breathing motion in 2D fluo-
roscopic videos. The method can robustly detect and tracking
needles, even with the presence of image noises and large nee-
dle movements. The method first introduces an offline learned
needle segment detector that detects needle segments at indi-
vidual frames. Based on detected needle segments, a needle is
interactively detected at the beginning of an intervention, and
then is automatically tracked based on a probabilistic track-
ing framework. A multi-resolution kernel density estimation
is applied to handle large needle movements efficiently and
effectively. Experiments on phantom and clinical sequences
demonstrate that the method can successfully track needles
in fluoroscopy, and can provide motion compensation for ab-
dominal interventions.

Index Terms— needle, tracking, detection, fluoroscopy

1. INTRODUCTION

Many applications in image guided interventions require a
fast and robust method to compensate breathing motions. For
example, the predominant breathing motion need to be com-
pensated in order to accurately register a 3D model, which
may be acquired from pre-operational data, to 2D fluoroscopy
that is acquired real-time [1]. In abdominal interventions,
needle movements, when without pulling, is mainly caused
by breathing motions. This paper presents a method of using
needle detection and tracking in fluoroscopy to compensate
2D breathing motions in abdominal interventions.

Although many existing methods have been developed for
different types of object tracking tasks [2], the needle track-
ing remains a challenging problem that needs specialized so-
lutions due to some unique characteristics of interventional
procedures. First, the image quality of 2D fluoroscopy is usu-
ally poor because of desirable low radiation. Traditional edge
and ridge detectors will produce many false detections, while
missing thin needles. Second, since a needle is a thin one-
dimensional structure, it is sometimes difficult to distinguish
from cluttered background and other line structures in 2D flu-
oroscopic images, as shown in Fig. 1. The methods that use
regional features such as holistic intensity, textures, and color
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Fig. 1. Needles for interventions. (a): a phantom needle; (b):
a fluoroscopic image containing a needle in a clinical case

histogram [2], cannot detect and track the thin needle well.
Third, the need of real-time speed in abdominal interventions
poses additional challenges to the needle tracking.

The existing tracking methods for image guided interven-
tions can be categorized into electromagnetic based [3] and
image based methods[1, 4]. The electromagnetic tracking can
provide 3D positions at near real-time with good accuracy, but
the high expense and needs of additional devices limit its ap-
plications. Image based methods, on the other hand, provide
an inexpensive alternation without major modifications in an
imaging procedure. However, traditional image based track-
ing methods, such as the template matching [2, 1] and active
contour based methods [5], have difficulties in handling the
low image quality and large breathing motions that are are
typically seen in clinical cases.

In this paper, we present a novel method that addresses the
above mentioned challenges, and demonstrates its robustness
through extensive experiments of using both phantom and real
clinical data. The method includes two major components:
learning based needle detection, and multi-resolution proba-
bilistic needle tracking. At each individual frame, the learn-
ing based method detects needle segments, based on which
the needle is interactively detected at the beginning of inter-
ventions, and is continuously tracked throughout the inter-
vention under a multi-resolution probabilistic tracking frame-
work. Finally, the motion parameters obtained by the nee-
dle tracking provide motion compensation for abdominal in-
terventions. The presented method is a general framework,
and can be applied to other tasks, e.g., catheter tracking. Ex-
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Fig. 2. Steps in the needle detection and tracking. (a): the needle segment detections at the first frame, shown in green; (b):
interactive detection results, shown in blue; (c):a tracked needle shown in yellow; (d) a tracked needle at another frame.

periments on phantom and real clinical data demonstrate that
the presented method can effectively and efficiently track nee-
dles, even with the presence of image noises and large needle
movements.

2. METHOD

2.1. Overview

The workflow of the presented method is illustrated in Fig.
2 and Fig. 3, and is briefly summarized here. As shown in
Fig. 3, the learning based detection serves two purposes in
our method: it first provides features for the interactive nee-
dle detection to initialize the needle tracker at the first frame,
and then continuously provides primitive features for the sub-
sequent tracking. It has been shown in many applications
that the learning based methods are more effective than those
based on low level filtering methods, and are well suited to
the image guided interventions [4, 6].

Fig. 3. Illustration of the needle detection and tracking
method

The multi-resolution needle tracking continuously identi-
fies the position of the needle, to provide the breathing motion
compensation for abdominal interventions. A kernel density
smoothing method has been incorporated into a probabilistic
framework formalized for the needle tracking. By varying the
kernel bandwidth in the kernel based density smoothing, the
needle tracking can effectively track large needle movements
from coarse to fine, while maintaining satisfactory accuracy.

2.2. Needle Detection

2.2.1. Learning based needle segment detection

The purpose of needle segment detection is to identify if an
image patch belongs to a part of needle. It serves as a funda-
mental step toward a whole needle body detection, and also
provides primitive features for the subsequent needle track-
ing. Compared to conventional edge or ridge detection meth-
ods based on image derivatives, the learning based detectors
are constructed based on machine learning techniques from
a set of collected data, which includes both objects (positive
samples) and background (negative samples), and can be eas-
ily adapted to specific detection tasks. The advantages make
the learning based detectors well suited to image guided in-
terventions.

Our method uses the probabilistic boosting tree (PBT) [7]
to build the needle segment detector. PBT is a supervised
learning method that extends the AdaBoost [8] into a tree
structure with a better generalization capability in object de-
tection tasks. For the consideration of speed, computationally
efficient Haar features [9] are extracted from images to be
used in the PBT classifier. For training, many images con-
taining thin line structures that are similar to needle are col-
lected. Please refer to literature [8, 7, 9] for the details about
AdaBoost, PBT, Haar features, and training procedures.

2.2.2. Interactive needle body detection

The needle tracking can be initialized either by automated de-
tection, or interactive detection. To ensure the accuracy and
robustness, a user-constrained interactive detection method
[10] is used. In the interactive detection, at least two clicks,
one at each end of a needle, are required to initialize a needle.
The detected segments are used to construct a graph, based
on which the dynamic programming is applied to search the
best path between two user clicks. In case the initial detection
given two points are not satisfactory, additional user clicks
are provided to constrain the algorithm and to obtain refined
detection results.



2.3. Multi-resolution Needle Tracking

2.3.1. A Probabilistic Tracking Framework

Most tracking tasks can be formalized in a probabilistic
framework, i.e., the Bayesian inference framework [2]. Fol-
lowing the same principle, we formalize the needle tracking
as to maximize the posterior probability of a tracked needle
given 2D fluoroscopic images. In this framework, a needle
hypothesis Γt at the t-th frame is deformed from the needle
at the t− 1-th frame:

Γt(u) = T (Γt−1,u) (1)

where T is a needle shape transformation function, and
u is its parameter. Based on a Markov assumption of
P (Γt|Γt−1,Zt−1) = P (Γt|Γt−1) , the posterior probabil-
ity P (Γt|Zt) is given in Eqn. (2).

P (Γt|Zt) ∝ P (Γt)P (Zt|Γt(u)). (2)

Zt denotes the fluoroscopic image at time t. The tracked nee-
dle Γ̂t is then estimated as the needle candidate that maxi-
mizes the posterior probability, i.e., Γ̂t = arg

Γt

maxP (Γt|Zt).

In Eqn. (2), P (Γt) is a prior probability, which can be
propagated from previous tracking results. We model the
prior probability as:

P (Γt) =
1√

2πσΓ

exp(
−|D(Γt,Γt−1)|2

2σ2
Γ

), (3)

where D(Γt,Γt−1) is the average of the shortest distances
from points on Γt(u) to the shape template Γt−1(x). A large
kernel size σΓ is chosen to allow for a large needle movement
between two frames.

We define the measurement model P (Zt|Γt(u)) as:

P (Zt|Γt(u)) =
1

|Γt(u)|
∑

xi∈Γt(u)

P (Zt|xi) (4)

where P (Zt|xi) is the measurements at individual points on a
needle, and |Γt(u)| is the needle curve length. We adapt the
learning based detection results to define the measurements at
individual needle segments. It has been shown [11] that the
numeric output of an AdaBoost classifier, denoted as f(xi)
given a image patch at the position xi, can be interpreted into
a probabilistic measurement:

P (Zt|xi) ∝ ef(Zt,xi)

e−f(Zt,xi) + ef(Zt,xi)
. (5)

2.3.2. Multi-resolution Needle Tracking

The needle tracking aims at recovering the motion parame-
ter of a needle between two successive frames. In the needle
tracking, the parameter u in Eqn. (1) contains global trans-
lation, rotation and scale changes, i.e., u = (c, r, θ, sc, sr),

where c, r and θ are the translation and rotation parameters,
and sc and sr are the scaling factors. Therefore, the motion
parameters are estimated by maximizing the posterior proba-
bility under the parametric motion model:

ût = arg
u

ˆΓt(u) = arg
u
maxP (Γt(u)|Zt) (6)

Exhaustively searching over all possible parameters u is
time consuming, and does not satisfy the real-time require-
ments in interventions. We here present a multi-resolution
scheme, which is based on a kernel-based measurement
smoothing method, to expedite the needle tracking. In the
kernel-based estimation, measurements are made at a set
of samples xsj , instead of a whole parameter space. In
the method, xsj are those points that are detected as nee-
dle segments. We can conveniently assume the Markov
conditional independence that the observations at sampling
points xsj are independent with the un-sampled points xi,
i.e., P (Zt|xi, xsj) = P (Zt|xsj). Therefore, the kernel-based
measurement estimation is represented as Eqn.(7):

P (Zt|xi) =
∑
j

P (Zt|xsj)Gσ(xsj , xi), (7)

where P (xsj |xi) = Gσ(xsj , xi) is a Gaussian kernel with a
bandwidth σ. The kernel-based measurement estimation can
obtain smooth measurements in a neighborhood, and reduce
computations.

The multi-resolution tracking can be efficiently imple-
mented using variable bandwidths in the kernel-based mea-
surement smoothing. For example, the translations searching
is performed at multiple resolutions with searching intervals
decreased from coarse to fine, and the corresponding band-
width in Eqn. (7) varies accordingly. At each resolution, the
bandwidth is set the same as the translation searching step. At
coarse resolutions, larger kernel bandwidths can help avoid
missing tracking; and at fine resolutions, using smaller kernel
bandwidths can obtain accurate tracking results. Usually with
3 or 4 resolutions, the tracking converges to the true needle
positions. As the result, the needle tracking can run around 8
to 10 frames per second at a Core 2 Duo 2.0GHz computer.

3. RESULTS

The presented tracking method is evaluated on a set of fluo-
roscopic sequences, including both phantom and real clinical
cases. The testing sets contain 3 phantom sequences (totally
395 frames), and 10 clinical sequences ( totally 1312 frames).
Some tracking results are shown in Fig. 4. The pixel size
of the sequences is between 0.15mm and 0.21mm per pixel.
To establish a ground truth for evaluation, we carefully an-
notate the needle body in those sequences. Some sequences
contain catheters, instead of needles. Since our method can
be directly applied to catheter tracking, these sequences are
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Fig. 4. Some needle tracking results:(a)-(b): tracking rotated a phantom needle; (c)(d)(e): tracking a needle under rotations and
translations; (f): extending the needle tracking to catheter tracking

also included in the evaluations. To quantitatively evaluate
the performance of needle tracking, we measure both track-
ing pixel error, and frame tracking rate. The tracking pixel
error is defined as the shorted distance from the points on the
tracked needle to the corresponding annotated ground truth.
The frame tracking rate is used to evaluate the percentage of
frames where the needle tracking provides accurate motion
compensations. Here, a frame is asserted to be successfully
tracked when the corresponding pixel error is smaller than a
threshold (e.g. 10 pixels in the experiment).

Table 1. Quantitative evaluation on clinical data
Initialization frame tracking rate Pixel error

median mean std
Full 96.3% 1.31 2.96 5.16
Partial 94.6% 1.83 3.07 4.71

The quantitative evaluation results on clinical sequences
are summarized in Table 1. The needle tracking is evaluated
under two experiment settings. In the first experiment, the
tracker is initialized at the first frame with the annotation to
simulate the situation where the interactive detection is care-
fully done. As shown in the Table 1, with full initialization,
the median tracking error is around 1.3 pixels, and the mean
error is around 3 pixels. More than 96% of frames are suc-
cessfully tracked.

Fig. 5. Partial initializations to test tracking robustness

At the second experiment, a user is asked to randomly
initialized the needle at a random length. The user repeated
the random initialization 20 times for each clinical sequence,
therefore totally 200 tracking results with different initializa-
tions have being evaluated. This experiment is to evaluate the
tracking performance with partial initializations. As shown in
Table 1, under partial initialization, the median tracking error

is around 1.8 pixels, the mean error remains around 3 pixels,
and more than 94% frames are successfully tracked.

4. CONCLUSION
This paper presents a framework of needle tracking in fluo-
roscopy for motion compensation in abdominal interventions.
Our method has applied a learning based method to detect
needle segments, and to track needle motion from coarse to
fine. The experimental results demonstrate that the track-
ing method has a great potential in clinical applications for
breathing motion compensation.
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