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Abstract

Accurate characterization of data distribution is of
significant importance for vision problems. In many
situations, multivariate visual data often spread into a
nonlinear manifold in the high-dimensional space, which
makes traditional linear modeling techniques ineffective.
This paper proposes a generic nonlinear modeling scheme
based on parametric data representations. We build a
compact representation for the visual data using a set of
parameterized basis (wavelet) functions, where the
parameters are randomized to characterize the nonlinear
structure of the data distribution. Meanwhile, a new
progressive density approximation scheme is proposed to
obtain an accurate estimate of the probability density, which
imposes discrimination power on the model. Both synthetic
and real image data are used to demonstrate the strength of
our modeling scheme.

1. Introduction

We address the problem of learning parametric models
from multivariate data. In many pattern recognition and
vision applications, an interesting pattern is measured or
visualized through multivariate data such as time signals and
images. Its random occurrences are described as scattered
data points in the high-dimensional space. For accurate
representation and effective use of the decisive information,
it is important to explore the intrinsic low dimensionality of
the scattered data and to obtain an accurate statistical model
for the data distribution. The general procedure of
parametric modeling approximates the data distribution with
a family of parameterized density models and then estimates
model parameters for the best fit to the data.

Among the commonly used techniques, principal
components analysis (PCA) [1,2] adopts a low-dimensional
linear representation and approximates the multivariate data
by a low rank Gaussian density model. Linear factor analysis
[3] approximates class distribution as a Gaussian distribution
with structured covariance matrix. These linear modeling
schemes are capable of representing the data distributions
with ellipsoidal shape, but they are unable to handle the
situations where data samples spread into a nonlinear
manifold that is no longer Gaussian. The nonlinear structure
of multivariate data distribution is not unusual even when the
internal decisive variables of the pattern have a unimodal
distribution. For example, images of an object under varying
poses form a nonlinear manifold in the high-dimensional

space. The expression variation can lead to structural non-
linearity on the data distribution of single view face images.
Similar situation happens when we model the images of cars
with a variety of outside designs. One way to handle the non-
linearity is through multimodal approximation using a
mixture density model [4, 5]. Alternative methods have been
proposed to directly identify the nonlinear principal manifold
[6, 7, 22, 23]. However, no probabilistic model is associated
with these approaches.

This paper presents a new statistical modeling scheme
that not only characterizes the nonlinear structure of the data
distribution but also represents it with a probabilistic
distribution model. The modeling scheme is built by defining
a parametric function representation for multivariate data.
We statistically model the random function parameters to
obtain a density estimate of the data distribution. Compared
to other nonlinear modeling schemes, the probabilistic
distribution model obtained by our scheme provides a
likelihood measure therefore has the discrimination power
essential for pattern identification.

The paper is organized as follows. In section 2, we
introduce the parametric function representation for
multivariate data. In section 3 and 4, a new progressive
density approximation scheme is proposed to obtain the
probabilistic distribution function. Experimental results on
both synthetic and real data are presented in section 5. We
finish with conclusions and discussions in sections 6.

2. Parametric function representation

In addition to the traditional vector representation nR∈y
for n-dimensional multivariate data, we associate a smooth
function for every data sample. A length-n vector

T
nyy ],[ 1 L=y is associated with a smooth function

)(:)( 1112 RtRRLty ∈→∈ interpolated from its discrete

components ),,1()( niyty ii L== . When the multivariate

data are images, functions defined on 2R ,

)),((:)( 2
21

122 RttRRLy ∈=→∈ tt , are adopted for the

representation. The function association applies a smoothing
process to the discrete data components and is unique when
only smooth functions are involved. In practice, these
functions may be immediately available from data generating

process. As a result, in the function space 2L , there is a
counterpart of the scattered multivariate data located in
vector space.



Compared with linear representation in PCA or Gaussian
mixtures model, the advantage of function association lies in
its ease to handle the non-linearity by parametric effects
embedded in the data. It has intensive use in functional data
analysis [8,9,19] for recovering principal curves in 1D
signals. In [6], spline functions are used to parameterize the
nonlinear principal manifold of an arbitrary data distribution.
In [10], the parametric representation also provides a high-
level semantic description of the pattern.
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Figure 1. Parametric function representation through
space mappings. Multivariate data y is represented in
function form y(t) parameterized by {W,Θ}.

Figure 1 illustrates the idea of parametric function
representation. Let }{ θb be a base set for the function space

2L . The basis function RRbb d →= :);()( θθ tt )( dR∈t is

parameterized and indexed by parameter θ , where θ can
take a continuous range of values. Examples of such base
sets include wavelets, splines and trigonometric functions.

Any function 2)( Ly ∈t can be closely approximated by a

sufficient number )(N of basis functions,
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The basis function );( θtb is generally nonlinear in θ . Once

the basis b is chosen, the function )(ty is completely

determined by the linear parameter set },,{ 1 Nww L and the

nonlinear set },,{ 1 Nθθ L . The vector notations NW , NΘ ,

and NΘ for the linear, nonlinear and overall parameter sets,

are used in the following discussions, where N denotes the
number of basis functions involved.
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To study data distribution, we assume mR∈x , in a vector
form, to be the underlying quantities with minimum
dimension (intrinsic dimensionality) that govern the data-
generating process. Each observed data point reflects an
occurrence of x . Our goal is to statistically characterize x
using the observed data y . With parametric function

association, the data-generating process can be formulated as

a mapping fg from the domain of x to the function space
2L , 2: LRg m

f → , or equivalently, as a mapping pg from

the domain of x to the domain of parameter set denoted by
pR , pm

p RRg →: ,
T

NNp Wg )](),([)( xxx Θ= (3)

By defining the matrix
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the multivariate data y is related to x as
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where n is introduced to account for the noise in the
observed data as well as the representation error. By
choosing a proper type of basis functions, (5) defines a
compact representation for multivariate data, and modeling
the data distribution can be resolved through modeling the
parameter set NΘ .

3. Statistical modeling through progressive
distribution approximation

Based on the parametric function representation (5), here
we discuss algorithms and criteria for modeling the data
distribution. In most situations with a single pattern involved,
the governing factor x is likely unimodal although the
observed data y may disperse into a nonlinear manifold due

to parametric effects. Our discussion is primarily restricted to
such internally unimodal data clusters. Figure 2 shows a toy

example. The observed multivariate data T
nyy ],,[ 1 L=y

consists of n equally spaced samples from a random process
),;( θwty ,

)();,;( Titwtyy iii ⋅== θ
)),(();;(),;( 0tstbwwty =⋅= θθθ

)()();( 0
0 s

tt
exptttb

−
−−=θ (6)

where w , s and 0t are random variables with normal

distributions. The data-generating process is characterized by
these three intrinsic parameters. Figure 2(a) plots a few data
samples in the form of time signals. Figure 2(b) shows the
nonlinear structure of the data distribution by plotting the
data projections on their first two linear principal
components. The linear PCA and multimodal approximation
are either incapable of or inefficient in modeling such
distribution, even though the distribution of the internal
variables },,{ 0tsw is simply Gaussian. Such phenomenon is

familiar to many situations where the visual data is generated
by a common pattern and bears similar features up to small



random deformation.
The framework of our modeling scheme is shown in

Figure 3. The basic idea is to characterize the nonlinear
structure of internally unimodal distributions by modeling
the parametric effects. Equation (6) defines a single wavelet
function denoted as the Derivative of Gaussian (DOG)
function. In practice, visual data is more complicated and
requires more basis functions to encode (1). These basis
functions are parameterized with randomized parameters to
accommodate random deformation. Wavelet functions are
primarily used in this work for compact encoding of visual
data. As the basis functions are gradually introduced, a
sequence of density estimates, which approach the true data
distribution, is also obtained.

3.1. Statistical modeling

From (3), both NW and NΘ are determined by x

through the mapping pg . Assuming that x is well modeled

by normal distribution and the mapping pg is smooth, the

linearization of )(xNW and )(xNΘ is valid around the mean

of x .
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In practice, if prior knowledge shows that the assumption
of normality or linearization does not hold well, we can
always replace the normal distribution with a more suitable
unimodal distribution form for x and include higher order
terms in (7). The following discussion remains the same.
However, to simplify the analysis, we keep normal
distribution as nominal distribution for x and assume that
linearization (7) is valid. Consequently, multivariate data y

is effectively modeled by a jointly Gaussian distribution of

NW and NΘ through (5).
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Based on this conclusion, the following discussion is devoted
to finding the particular distribution from the family defined
by (8) that best fits the observed data set.

Assume that n (5) is white Gaussian noise with zero mean

and variance 2

N
σ and )}(),({ xx NNW Θ has joint mean Nµ

and covariance matrix NΣ ,
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Denote },,{ 2
NNNN σµ Σ=Φ . Equations (8)-(10) define a

family of density functions parameterized by NΦ . Given M

independently identical distributed data samples
},,{ 1 Myy L , the density estimate )(ˆ yp , in the maximum

likelihood (ML) sense, is then defined by the ML estimate of

NΦ such that the likelihood
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= Φ=Φ Mi
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is maximized over the parameterized family (8),
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where ΩN denotes the domain of NΦ . Within the

framework of ML estimation, },,{ 2
NNNN σµ Σ=Φ defines

the hyper-parameter set.
To solve (12), we need to answer two questions. First,

how many basis functions should be used. We address this
issue by introducing a progressive density approximation
scheme. Second, given N , how to find basis functions with
randomized parameters and solve the ML estimation (12).
We answer this question in section 4.

3.2. Progressive density approximation

Involving more basis functions may increase the effective
dimension of the model (8)-(10), i.e. the dimensionality of

NΘ , as well as the computational load. On the other hand,

the involvement of more basis functions extends the
parametric family of distributions (8) and therefore may
increase the accuracy of density estimation (12). Intuitively,
N should be large enough to assure the accuracy of density
estimation. Meanwhile, N should be bounded to avoid over-
fitting.

Figure 2. Nonlinearly distributed manifold. (a) Curve
samples. (b) 2D visualization of the data distribution.

(b)
P1

P2

(a)
t

yi

Introduce new
basis function

Density Estimate

EM/MLE

Stopping rule?
YesNo

Stop

Figure 3. Proposed modeling framework. Basis
functions are gradually added into the data
representation until the stopping criterion is satisfied.



Before introducing the progressive density approximation
method, we first derive a measurement for the accuracy of
density estimation. Assume )(ytp is the true density

function for the observed data samples },,{ 1 Myy L , and

)(ˆ yp is the estimated density. The Kullback-Leibler

divergence )ˆ||( ppD t is an effective measure to evaluate the

similarity between the two density functions,
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)ˆ||( ppD t is nonnegative and equal to zero only when the

two densities coincide. Since the term )]([log ytp pE
t

is

independent of the density estimate )(ˆ yp , an equivalent

similarity measurement can be defined as
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)ˆ( pL increases as estimated density p̂ gets closer to the true

density tp . It is upper bounded by )]([log ytp pE
t

. Since

tp is unknown, )ˆ( pL , the expectation of )(ˆlog yp , can be

estimated in practice by its sample mean.
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Figure 4 illustrates the process of density estimate. By
introducing more basis functions, the density estimate
gradually approaches the true distribution. The algorithm is
summarized below. A similar idea of progressive density
approximation is also found in a recent work [11] where the
basic components directly modify the density function.

Progressive Density Approximation

Step 1: Start with 1=N .
Step 2: Find the ML density estimate Np̂ (12).

Step 3: Increase N by 1, and repeat Step 2 until the stopping
rule is satisfied.

Fact: Np̂ gets closer to the true density tp as N increases.

The algorithm produces a sequence of density estimates
},ˆ,,ˆ,ˆ{ 10 LL Nppp ,
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Since the domain NΩ of the parameter set NΦ is included

into 1+Φ N ,

111 }1)0(,:{ +++ Ω⊆==Ω∈ΦΦ=Ω NNNN wP (17)

and )ˆ(ˆ pL (15) is the exact target function for the ML

estimate (12), the sequence )}ˆ(ˆ{ NpL is increasing

monotonically,

LL ≤≤≤≤ +− )ˆ(ˆ)ˆ(ˆ)ˆ(ˆ
11 NNN pLpLpL (18)

This indicates that the sequence of density estimates }ˆ{ Np

progressively approaches the true density. To avoid over-
fitting, a practical stopping rule is to examine the increasing

of )ˆ(ˆ
NpL and stop at the point where the increasing of

)ˆ(ˆ
NpL saturates.

4. Hyper-parameter estimation

The progressive density approximation assures increasing
accuracy of the density estimates. For fixed N , we need to
solve (12) to get the ML estimate of NΦ . The expectation-

maximization (EM) algorithm is ideally suited to such a
problem because of the unknown variable set NΘ .

4.1. EM algorithm

In our problem, NΘ is the unknown parameter set,

},{ 1 MY yy L= is a group of independently observed data,

and },,{ 2
NNNN σµ Σ=Φ are the hyper-parameters to be

estimated. Here Nµ , NΣ and 2
Nσ denote respectively the

mean and covariance of NΘ and the variance of n. The

density function for the observed data Y is
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E-step: Compute the expectation of the likelihood
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Figure 4. Progressive density approximation. A
sequence of density estimate Np̂ progressively

approaches the true density function pt as more
basis functions are introduced.
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),( ΣµN denotes multivariate Gaussian density function with

mean µ and covariance Σ . EM algorithm starts from an

initial guess of NΦ and proceeds iteratively. Each iteration

increases the likelihood function )|,,( 1 ΦMp yy L until a

global or local maximum is reached.
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4.2. Practical implementation

When the nonlinear basis function )(θb is involved in

the integrand in (20), the computation of function Q is not
always tractable. We propose a suboptimal solution to

estimate NΦ . )|( )(k
NNQ ΦΦ is defined as the expectation of

a function of NΘ (20), and we approximate the integration

by the function value at the point of the ML estimate of NΘ .
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The approximation is accurate when the distribution of NΘ
is well concentrated around its mean. Thus, the EM
algorithm reduces to the iterative ML estimation of NΘ and

NΦ .
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The ML estimate of NΘ (23) can be solved through

nonlinear optimization. When the density functions involved
in (24) are Gaussian, the update rules for NΦ are
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As the number of basis functions N increases, the
random vector NΘ is likely to belong to a lower dimensional

space, i.e. its covariance matrix NΣ is singular and we can

no longer write out the density function )|( NNp ΦΘ used

in (19), (23)-(24). In such cases, we reduce the dimension of

NΘ through the linear transformation N
TA Θβ ⋅= ;

βΘ ⋅= AN , where A is composed of the eigenvectors of

NΣ corresponding to the nonzero eigenvalues, and the

covariance matrix of β has full rank. The density

approximation and parameter estimation are actually
performed on β .

4.3. Adding a new basis function

The estimate }ˆ,ˆ,ˆ{ˆ 2
NNNN σµ Σ=Φ is used to initialize

},,{ 2
1111 ++++ Σ=Φ NNNN σµ . Assume that },{ 11 ++ NNw θ are

the parameters for the newly introduced basis function. One
choice is to initially assume independence between

},{ 11 ++ NNw θ and NΘ , and the initialization for 1+Φ N
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where c is an arbitrary positive value.
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NNN wE +++ = θµ is the initial parameter mean of

the unknown )1( +N -th basis function. Initialization of

0,1+Nµ essentially requires searching for the new basis

function that best approximates the multivariate data.
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where jiw ,ˆ and ji,θ̂ are elements of NΘ̂ .



5. Experimental results

5.1. Modeling 1D curves

In this academic example, we want to learn the data
distribution from 100=M synthesized samples. A set of
M curves )}(),({ 1 tftf ML are obtained from a reference

curve )(0 tf by random translation d , scaling s and

amplification w , and by adding a white noise term n ,
nsdtfwtf iiii +−= )/)(()( 0 . Figure 5(a) shows 10 curve

realizations. Every curve )(tf i is sampled at

50=n common locations },,{ 1 ntt L and generates a length-

n vector T
niii tftf )](),([ 1 L=y as observed data. These

vector samples spread into a cluster of points in nR with
intrinsic dimension 3. For better visual effect, we plot the
distribution manifold by projecting it onto the plane spanned
by the first two linear principal components since 80% of the
data variance is concentrated in this subspace. The number
of data samples M may be small compared to the vector
length n , but is large compared to the intrinsic dimension.
However, the information of intrinsic dimension as well as
curve parameterization is unknown to our modeling scheme.

The progressive density approximation was applied to
modeling the data. The parameterized family of DOG
wavelets defined in (6) is adopted as basis functions. Each
time a new basis function is added on, the MLE algorithm is
carried out to obtain the best density estimation Np̂ . This

process continues until no strong increasing is found in the

similarity measure )ˆ(ˆ
NpL (15). Figure 5(c)-(f) shows the

density estimate in each step as N increases from 1 to 4.
With 3 basis functions, the estimated density is already close
to the true distribution.

A similar example with only parameterized translation
involved is discussed in [6]. Compared to the work in [6]
which intends to find the one-dimensional principal
manifold, we obtain a density estimate of the data. By
performing PCA on the parameter set NΘ , we actually

perform nonlinear PCA(NLPCA) on the original data. Thus,
one-dimensional PCA approximation of NΘ gives the one-

dimensional principal manifold of the data distribution.
Figure 5(g) compares the mean curves obtained by linear

PCA and NLPCA with the true signal mean, where the
nonlinear mean is produced by the mean of NΘ . While the

linear PCA produces a blurred mean curve, the nonlinear
mean curve better approximates the true mean, which is
generated by the true parameter mean. Figure 5(h) shows that

the increasing of the similarity measure )ˆ(ˆ
NpL begins to

saturate after 3 basis functions are introduced. Figure 5(i)
illustrates one-dimensional linear and nonlinear PCA
approximation of the distribution. The nonlinear principal
manifold of dimension 2 is also shown in Figure 5(j). N is

set to 4 in Figure 5(g), (i) and (j).

5.2. Modeling object pose

In this experiment, we are interested in modeling the
nonlinear manifold formed by the object appearances under
varying poses. Images used in this experiment are obtained
from the “Columbia Object Image Library”, where each
object was rotated through 360 degrees and 72 images were
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Figure 5. Modeling curves. (a) Curve samples. (b) 2D
visualization of data distribution. (c)-(f) Progressive density
estimate (N=1,2,3,4). (g) Linear, nonlinear and true mean
curves. (h) Density similarity measurement (up to a constant
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approximation with dimension 2. (N=4)

Linear mean
NL mean

0 10 20 30 40 50
-10

0

10

20

30

40
True mean

2 3 4 5 6 7-30
-20
-10

10
20

N

0

30
40

1

)ˆ(ˆ
NpL



taken per object, one at every 5 degrees of rotation. Figure
6(a) shows a few images of the object used for modeling.
Murase and Nayar have shown in their work [13] the
nonlinear shape of the data distribution. They represent the
manifold by interpolating data points in the low-dimensional
linear subspace.

In our experiment, we use 36 images for learning, one at
every 10 degrees of rotation. The remaining ones are left for
evaluating the model through pose estimation. Using the
prior knowledge that the internal variable x (pose) is better
modeled as uniformly distributed in the range from 0 to 360
degrees, the linearization in (7) would not hold well and
higher order terms of x are required. For this example, we
adopt the uniform distribution of x and the linearization in
(7) is replaced by a piecewise cubic polynomial function of
x . Thus the random variables },{ NNW Θ in (8) are

redefined as functions of uniformly distributed random
variable x . The polynomial coefficients are included in the
hyper-parameter set NΦ . Gabor wavelets [14],

parameterized by their locations, scales and orientations, are
employed as our basis functions. Figure 7(a) and (b)
visualize respectively, the true data distribution and the
distribution learnt through our modeling scheme, where we
project data points into the principal subspace of dimension
3 and produce the 3D plot.

Compared with the representation by Murase and Nayar,
our representation is associated by a density function. The
estimated density imposes discrimination power on the
model, which is demonstrated in the experiment of pose
estimation. Given an input image y , the pose estimate x̂
under this model is solved by the ML estimation instead of
the least Euclidean distance,

)ˆ|()ˆ|(maxarg

)ˆ,|(maxargˆ

Φ⋅Φ=

Φ=

xx,y

yxx

x

x

pp

p
(28)

The model obtained from the objects shown in Figure 6(a)
was used for pose estimate on three sets of images. The first
test set (T1) consists of 72 images from the same object.
Figure 7(c) shows its results. The average error in the
estimated pose value is 1.34 degrees. The second test set
(T2) consists of 72 images of a different object. In Figure
6(b), the top row shows a few examples of T2 images and

(c)
Figure 6. Modeling object pose. (a) Images used for learning. (b) Test object 2. (c) Test object
3. (b)-(c) top row: test images; bottom row: pose estimate results shown by training images.
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the bottom row shows the estimated poses using the
corresponding T1 images. The third test set (T3) is shown in
Figure 6(c). In Figure 7(d), we plot the likelihood associated
with the pose estimate. Our model clearly indicates that T2
object bears more resemblance to T1 object than T3 object
does. This result demonstrates the discrimination ability of
our model due to the density approximation. The likelihood
provided by the density estimate is a powerful tool for
pattern identification.

6. Discussions

This paper presented a general modeling scheme for the
statistical characterization of internally unimodal data. The
nonlinear structure of the data distribution is revealed by the
ML based procedure. Although the experiments included
here were only designed to demonstrate the effectiveness of
the scheme, the density estimate and the likelihood measure
provided by our model are powerful statistical tools for a
wider range of vision applications such as object
identification and tracking.

Our analysis addresses two important issues in statistical
modeling: efficiency and accuracy. Such idea is pursued in
the design of the progressive density approximation. The
algorithm finds, in a progressive fashion, the set of basis
functions that are the most efficient in term of modeling
accuracy. Through parametric function representation, we
characterize the intrinsic data information by jointly
modeling the linear and nonlinear parameter sets. If the
nonlinear parameters are deterministic, our scheme simply
becomes a linear approach that models the linear coefficients
with a fixed set of basis. However, by including the
nonlinear parameters into the model, higher order statistics
are automatically included. Hence, we can use simple
distributions for the parameters, such as the unimodal
Gaussian, to describe more complex distributions of the data.

The type of basis and parameters used in the
representation is determined by the nature of the data. The
wavelet basis is chosen in this work due to its ability of
locally decorrelating image data. Nevertheless, the choice of
basis and parameter type for a specific application is by itself
a research issue.
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