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Abstract— This paper presents a robust method of passing
vehicle detection. Obstacle detection algorithms that rely on
motion estimation tend to be sensitive to image outliers caused
by structured noise and shadows. To achieve a reliable vision
system, we have developed two important techniques, motion
estimation with robust information fusion and dynamic scene
modeling. By exploiting the uncertainty of flow estimates,
our information fusion scheme gives robust estimation of
image motion. In addition, we also model the background and
foreground dynamics of road scenes and impose coherency
constraints to eliminate outliers. The proposed detection
scheme is used by a single-camera vision system developed
for driver assistance. Our test results have shown superior
performance achieved by the new detection method.

I. INTRODUCTION

In a monocular vision system designed for driver assis-
tance, a single camera is mounted inside the ego-vehicle
to capture image sequence of forward road scenes. Various
vehicle detection methods have been developed to detect
vehicles in the central field of the view [7], [14]. In this
paper, we study the problem of passing vehicle detection,
i.e. detecting vehicles that are passing the ego-vehicle
upon the left or right and entering the field of view at a
higher speed. Figure 1 shows such an example. Passing
vehicle detection has a substantial role in understanding
the driving environment. Because of the potentially unsafe
driving situation that an overtaking vehicle could create, it
is important to monitor and detect vehicles passing by.

Since passing vehicles need to be detected earlier on
while they are entering the view and only partially visible,
we can not completely rely on appearance information.
Instead, characteristic optical flows are generated by a
vehicle passing by. Hence, motion information becomes
an important cue in detecting passing vehicles. Several
obstacle detection methods using optical flow have been
reported in literature [7], [8], [9], [11], [12], [15]. The
main idea is to compare a predicted flow field calculated
from camera parameters and vehicle velocity with the actual
image flows calculated from motion estimation. An obstacle
is declared if the actual flows do not match the predicted
flows. These methods work well if neither strong noise
nor illumination change is present. However, structured
noise and strong illumination change happen quite often in
practical situations. They can cause spurious image features

Fig. 1. Examples of vehicle passing by.

and unreliable flow estimates. To address this problem, we
have developed a highly reliable method to detect events
of vehicle entering and trigger warnings in real time. In
particular, a robust motion estimation scheme using variable
bandwidth density fusion is proposed. It enables highly
reliable analysis on scene dynamics and leads to superior
detection performance.

The rest of the paper is organized as follows. An overview
of the proposed detection method is provided in section II.
In Section III and IV, we introduce the dynamic models of
road scenes and derive the corresponding hypothesis testing
method. In Section V, we present variable bandwidth density
fusion for robust motion estimation. Experimental results
are presented in Section VI and conclusions are drawn in
Section VII.

II. PASSING VEHICLE DETECTION

Vehicle passing is a sporadic event that changes the scene
configuration from time to time. As Figure 1 shows, when
a vehicle enters the field of view (t2 ∼ t3), it forms
a local foreground layer that temporarily blocks the road
scene. Both image appearance and image motion around
the entry point deviate from road scene dynamics. Thus,
the problem is formulated as detecting changes in the scene
dynamics around entry points. To solve the problem, we
need to address three issues: modeling the dynamics of



Fig. 2. Passing vehicle detection module.

road scene and vehicle passing, deriving a decision rule for
passing vehicle detection, and estimating relevant features
and statistical quantities involved in hypothesis testing. The
proposed solution is illustrated in Figure 2. We characterize
the dynamics of road scenes and passing vehicles through
modeling image intensity and image motion around entry
points. For the event of vehicle passing, the temporal
coherency in vehicle movement is imposed. The decision
rule is implemented as a decision tree. We monitor the
image intensity and image motion inside analysis windows
placed around entry points, and detect any change of scene
dynamics. Relevant parameters used in hypothesis testing
are updated over time in response of detection results. An
important contribution of our work is the robust motion esti-
mation using variable bandwidth density fusion(VBDF)[1].

III. BACKGROUND AND FOREGROUND DYNAMICS

In the absence of passing vehicles, the visible road scene,
i.e. the background, is moving consistently in the field of
view as the camera is moving along with the ego-vehicle.
Given the vehicle velocity and camera calibration, the image
motion and image intensity of the background scene is
predictable over time. In other words, the background scene
follows a dynamic model defined by camera parameters and
camera motion. Denote the image intensity at time instance
t by I(x, t) and the motion vector by v(x, t), where x is
the spatial coordinate of an image pixel. The hypothesis of
the dynamic background is described as

Hroad :
{

I(x + v(x, t) · δt, t − δt) = I(x, t) + nI

v(x, t) = h(x, V0(t),Θ)
(1)

The true image motion v(x, t) is decided by the vehicle
speed V0(t) and camera parameters Θ. Under the bright-
ness constancy condition, image intensity is predictable
from previous frames given the true motion. Nevertheless,
brightness constancy is frequently violated in practice due to
changing illumination. In addition, intensity is also affected
by various image noise. Therefore, a noise term nI is
adopted to account for the perturbation on intensity. These

(1) (2)

Fig. 3. Dynamics of passing vehicles. (1)Two subwindow A and B lie on
the trajectory of passing vehicles. (2) Admissible paths of state transitions.

hypotheses on scene dynamics impose useful domain-
specific constraints.

When a passing vehicle enters the view, the dynamics of
the background scene is violated. From (1), violations of
background dynamics can be detected through hypothesis
testing on image intensity and image motion. However, a
violation can happen under conditions other than vehicle
passing, such as strong illumination changes and structured
noise. To validate that a violation is indeed caused by
a passing vehicle, it is necessary to exploit the domain-
specific constraints introduced by passing vehicles as well.

Considering the diversity of vehicle appearance and ve-
locity, we characterize the dynamics of passing vehicles by
underlining the coherency present in vehicle motion. As
Figure 3-1 illustrates, to describe the motion coherency,
we take two subwindows A and B along the trajectory
of a passing vehicle and study the motion pattern. As a
passing vehicle enters the field of view, it arrives at A and
B in an orderly fashion. For a vehicle to arrive B, it has
to arrive A first. Thus violation of background dynamics
should happen in A no later than in B. In contrast, such
coherency is lacking in the case where the violation of
scene dynamics is a consequence of irregular causes such as
sudden illumination changes, structured noise and shadows.
Therefore, the hypothesis made on passing vehicles helps
to further distinguish events with coherent motion from
irregular causes known as outliers. Denote SA and SB as the
state variable of subwindow A and B respectively. Use R to
represent the state where motion and intensity comply with
road dynamics, and V for the state where the road dynamics
is violated. The event of vehicle passing is described as a
series of state transitions of SASB starting with RR and
ending with V V . As Figure 3-2 shows, coherent events are
distinguished by a set of admissible paths of state transitions

Hvehicle : P = {RR → V R → · · · → V V }. (2)

The preceding formulation of passing vehicle dynamics has
been demonstrated to work well in our tests. However, it
is necessary to point out that a more general framework
of hypothesizing domain-specific constraints is through
extensive learning [6].

IV. DECISION TREE

In solving the problem of passing vehicle detection, we
encounter different contexts in the analysis windows, e.g.



Fig. 4. Decision tree.

road scenes, outliers and vehicles. Decision trees classify
these contexts by sorting them through a series of hy-
pothesis testing represented in a tree form. The decision
tree adopted in our algorithm is shown in Figure 4. Image
motion and image intensity are tested against the dynamic
model of the road scene (1). Coherency test is performed on
the contexts that violate the scene dynamics. The decision
rule for passing vehicles is summarized as follows.

(background dynamics is violated)
∧ (conherency is satisfied)

(3)

A. Hypothesis testing on background dynamics

The true motion v(x, t) of the road scene is given
in (1). Assume the observed image motion v̂(x, t) can
be estimated. Then the hypothesis testing on background
dynamics is expressed as

violation of background dynamics if

(||v̂(x, t) − v(x, t)|| ≥ τmotion) ∨ (||R(x, t)|| ≥ τresidual)
(4)

where R(x, t) = I(x + v(x, t) · δt, t − δt) − I(x, t) is
the residual from motion compensation and reflects the
mismatch between the predicted image and the actual
image. By testing motion and residual, we classify all
the instances into two groups, instances complying with
background dynamics and instances violating background
dynamics.

Although further testing is performed to classify instances
of violations, it is important to have reliable motion estima-
tion v̂(x, t) that faithfully reflects the context for an accurate
initial classification. We have developed a robust motion es-
timation algorithm using variable bandwidth density fusion
and spatial-temporal filtering. The next section is devoted to
detailed discussions on our approach towards robust motion
estimation.

When motion estimation is not reliable, the residual
test helps to identify background scenes. For instance, the
aperture problem [2] has been encountered very often in
our experiments with real videos captured on highways. In

such scenarios, it is very difficult to obtain accurate motion
estimation. Thus, the presence of background can not be
identified by motion but can be easily identified by testing
the image residual.

The thresholds τmotion, τresidual as well as the ad-
missible state transitions P are part of the decision tree
solution. There are generally two ways to solve them, offline
learning and online learning. Offline decision tree learning
has been studied previously [6]. Online learning enables
system adaptation to the gradual change of scene dynam-
ics. Take τresidual as an example, online learning can be
achieved by modeling the residual data {R(x, T ), R(x, T −
1), R(x, T − 2), · · · } computed online. Our nonparametric
density estimation and mode finding techniques [1] can
be used to cluster the data, obtain a Gaussian mixture
model and update the model over time. The mixture model
learned online is then used to predict the context from new
observations R(x, T + 1).

B. Hypothesis testing on passing vehicles

The coherency test is performed on instances where
background dynamics is violated. The purpose of this test
is to further rule out outliers caused by structured noise and
sudden illumination changes. From the hypothesis formu-
lated on passing vehicles (2), the decision rule is expressed
as

passing vehicle :
{· · ·SA(t − 2)SB(t − 2), SA(t − 1)SB(t − 1),
SA(t)SB(t)} ∈ P
outlier :
{· · ·SA(t − 2)SB(t − 2), SA(t − 1)SB(t − 1),
SA(t)SB(t)} �∈ P

(5)

V. MOTION ESTIMATION

In this section, we introduce the technique of variable
bandwidth density fusion and an robust motion estimation
algorithm.

A. Initial estimates of image motion

Following the assumption of brightness constancy, the
motion vector for a given image location is computed by
solving the linear equation

�xI(x, t) · v = −�t I(x, t) (6)

The biased least squares solution is given by[1], [3]

v̂ = (AT A + βI)−1AT b (7)

where A is a matrix defined by the spatial image gradients
�xI in a local region, and b is vector composed of temporal



Fig. 5. Variable bandwidth density fusion. 45 initial motion estimates with
covariance are plotted as blue ellipses. The trajectory of mode propagation
through scales is shown in red. The convergent point is shown as a large
solid circle in red.

image gradients �tI . To describe the uncertainty of the
motion estimation, we also define its covariance [4] as

C = σ̂2(AT A + βI)−1

σ̂2 =
1

N − 3

N∑
i=1

(�xI(xi, t) · v̂ + �tI(xi, t))2.
(8)

where N is the number of pixels in the local region and σ̂2

is the estimated variance of image noise. Unreliable flow
estimates are associated with covariance matrices with a
large trace. This information is very important for robust
fusion.

A multiscale hierarchical framework of computing v̂ and
its covariance C is discussed in [1]. For every frame, the
initial motion vector is estimated at different spatial loca-
tions inside the analysis window. Thus, we get a sequence
of motion estimates with covariances {vx,t, Cx,t} in space
and in time.

B. Variable bandwidth density fusion

The initial motion estimates are sensitive to structured
noise and illumination changes which introduce outliers
in motion estimates. To overcome these outliers, joint
spatial-temporal filtering is performed on the initial motion
estimates through a technique called variable bandwidth
density fusion (VBDF). VBDF is a fusion technique first

introduced in [1]. In contrast to conventional BLUE and
covariance intersection fusion, with the presence of multiple
motions, VBDF is able to locate the most significant mode
of the data and thus is robust again outliers. Given the
initial motion estimates vx,t and covariance Cx,t across
multiple spatial and temporal locations x = {x1, · · · ,xN},
t = {T, T − 1, · · · , T −M}, we apply VBDF to obtain the
dominant motion in the analysis window of the T -th frame.

VBDF is implemented through the following mean shift
procedure [5]. First, a pointwise density estimator is defined
by a mixture function:

f(v; {vx,t, Cx,t}) =
∑
x,t

ax,tK(v;vx,t, Cx,t)

K(v;vi, Ci) =
exp(− 1

2 (v − vi)T C−1
i (v − vi))

(2π)d/2|Ci|1/2∑
x,t

ax,t = 1

(9)

Here, ax,t defines a weighting scheme on the data set, and
K(v;vi, Ci) is the Gaussian kernel with center vi and
bandwidth Ci. The variable bandwidth mean shift vector
at location v is given by

m(v) = H(v)
∑
x,t

wx,tC
−1
x,tvx,t − v

H(v) = (
∑
x,t

wx,tCx,t)−1

wx,t(v) =
ax,t

|Cx,t|1/2 exp(− 1
2 (v − vx,t)T C−1

x,t (v − vx,t))∑
x,t

ax,t

|Cx,t|1/2 exp(− 1
2 (v − vx,t)T C−1

x,t (v − vx,t))

(10)

The iterative computation of the mean shift vector recovers
a trajectory starting from v and converging to a local
maximum, i.e. a mode of the density estimate f(v; {vx,t}).

v0 = v

vj+1 = vj + m(vj) (j ≥ 0)
vj → mode(v; {vx,t, Cx,t}) as j → ∞

(11)

To treat f(v; {vx,t, Cx,t}) with multiple modes, we
introduce a series of analysis bandwidths Cl

x,t = Cx,t +
αlI (α0 > α1 > · · · > 0) which leads to multiple
smoothed density estimates f(v; {vx,t, C

l
x,t}). The number

of modes in the density estimate decreases as larger analysis
bandwidths are adopted. At the initial scale, α0 is set
large such that the density f(v; {vx,t, C

0
x,t}) has only one

mode mode0 = mode(v; {vx,t, C
0
x,t}) which is invariant

to the starting point v in VBDF. The mode point is then
propagated across scales. At each scale, VBDF uses the
mode point found from the last scale as the initial point to
locate the mode for the current scale.

model = mode(model−1; {vx,t, C
l
x,t})(l = 1, 2, · · · ) (12)

The mode point will converge to the most significant sample
estimate as αj decreases. The convergent point defines



the dominant motion v̂t inside the analysis window of
frame T . Figure 5 shows two examples of using VBDF
to obtain the dominant motion inside the analysis window.
For every frame, initial motion estimates are computed at 9
equally spaced locations in the analysis window. The initial
estimates from 5 consecutive frames are used as the input to
VBDF. Exponential forgetting is employed to weight these
initial motion estimates temporally. The results shown in
Figure 5 demonstrates the robustness of the fusion algorithm
against outliers.

Fig. 6. Passing vehicle detection results.

VI. EXPERIMENTS

To evaluate the performance of our passing vehicle
detection algorithm, we tested 59 real videos captured on
highways as well as city streets. The system is running in
real time. Ego-vehicle velocity is provided in 10 videos.
Among these 10 videos, there are 53 passing vehicles. Our
vision system correctly detected all of them and made no
false detections. For the remaining 49 videos containing
41 passing vehicles, the ego-vehicle velocity is unknown.
In such cases, we assumed forward motion of the ego-
vehicle in our test. The system missed 1 passing vehicle
due to the persistant dark lighting under a bridge. In Figure
6, a few examples of detection results along with the
estimated motion vectors are shown. Vehicles of different
shapes are correctly detected. And more importantly, the
visible illumination changes, shadows and structured noise
did not trigger any false warning. Figure 7 and 8 shows the
detection results on a video heavily contaminated by noise
caused by glares on the windshield. The structured noise
causes large mismatch of the actual flow and image from
their predictions. Our system was able to correctly detect all
three passing vehicles without triggering any false alarm.
These results demonstrate the robustness of the proposed
detection algorithm.

VII. CONCLUSIONS

We have proposed a highly reliable method for passing
vehicle detection. Robust information fusion and dynamic
scene modeling are important techniques that lead to the
success of our vision system. Through variable bandwidth
data fusion, we are able to locate the major mode of a
data set with uncertainty and disregard outliers in the data.
In addition, the hypotheses on the scene dynamics impose
useful constraints to correctly identify passing vehicles. The
superior performance achieved in our experiments including
difficult cases demonstrates the power of the new tech-
niques. These techniques also apply to effective integration
of different modules of a vision system.
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Fig. 7. Image mismatch error and flow estimates.
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Fig. 8. Passing vehicle detection results on data affected by structured
noise.


