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Aortic valve stenosis is a serious heart disease affecting
a large group of elderly people. Recently minimal invasive
procedures, such as the Transcatheter Aortic Valve Implanta-
tion (TAVI), are beginning to substitute conventional surgical
techniques. Current methods [1] can extract basic biomark-
ers for TAVI such as optimal C-arm angulations, area and di-
ameter measurements. However as the most prevalent TAVI
complications (stroke and paravalvular leakages) are corre-
lated with calcium and leaflet interactions within the valve a
more advanced solution is needed. We propose a fully in-
tegrated system to extract automatically the patient specific
model of the aortic valve including the volumetric model of
the aortic valve leaflets and calcium from high resolution sin-
gle phase CT. Based on the volumetric model advanced clini-
cal parameters can be derived and used for e.g. patient selec-
tion, paravalvular leakage prediction and patient stroke risk
assessment. We employ robust machine learning algorithms
to estimate the valve model parameters. A multi-class clas-
sification method is introduced to label regions of calcium,
leaflet and blood pool within the aortic valve and extract vol-
umetric models of the aortic valve leaflets. Extensive quanti-
tative and qualitative experiments on 198 volumetric data sets
demonstrate an accurate DICE similarity score, i.e. 0.7 for
the aortic valve leaflets and 0.86 for calcium tissue. Within 6
seconds a complete patient-specific model of the aortic valve
can be estimated.

1. INTRODUCTION

Valvular heart disease (VHD) affects a large number of people
and often requires costly diagnostic and interventional proce-
dures and long-term management [2]. Traditionally, valvu-
lar heart disease has been treated with surgical repair or re-
placement. Over the last several years, there have been im-
portant advances in concepts, tools, techniques, and patient
selection for treatment of valvular heart disease using non-
surgical procedures. One of the most prevalent procedures is
the Transcatheter valve implantation (TAVI) where a replace-
ment valve is delivered via a catheter using one of several

Fig. 1. Patient specific volumetric model of the aortic valve
estimated from high resolution single phase CT. Model in
blue represents the aortic valve root, green the aortic valve
leaflets and white calified regions within the aortic valve.

access methods: transfemoral, transapical, subclavian and di-
rect aortic. The procedure offers the potential to reduce pro-
cedural morbidity, mortality, and costs of valve treatment and
is currently being utilized in non-operable and high-risk sur-
gical patients [2].

Computed Tomography (CT) has been emerging as the
main pre-operative imaging modality, which can provide key
biomarkers for patient selection and procedure planning in-
cluding: aortic valve annulus for device sizing [3] and or-
thogonal angulations for C-arm positioning [4]. Recent lit-
erature reports indicate that more complex biomarkers, such
as calcium volume / distribution and leaflet tissue characteris-
tics, can become important predictors for outcome success of
TAVI procedures [5]. However current planning tools allow
only for manual measurements, which are not reproducible,
and enable only the extraction of basic parameters.

In the current field of medical image analysis there has
been several proposals to construct models from established
diagnostic modalities [6]. In the context of valvular disease
management, the authors in [7] proposed to estimate mitral
valve models from MRI. [1] and [8] proposed the modeling



of the aortic valve from cardiac CT.

However, these methods were evaluated on a smaller data
set where challenging diseased cases such as severe calcifi-
cations displayed in aortic valve TAVI patients were not con-
tained. Moreover, previous methods only focus on surface
models of the aortic valve anatomy, neglecting the true volu-
metric physiology of the aortic root and leafiets.

In this paper we propose a fully automated method to es-
timate a patient-specific volumetric model of the aortic valve
and corresponding tissue characterization for TAVI planning.
We use discriminative learning-based methods to estimate
key anatomic landmarks and the shape of the aortic root and
leaflets. Constrained by the previous model, a multi-class
classification method is introduced to label regions of three
tissue types: calcium, leaflet and blood pool. A final markov
random field is constructed and optimized using graph-cuts
to delineate the final volumetric model of the aortic valve.
Our system was trained on a large data base containing 198
data sets with a variety of cardiovascular diseases including
stenotic aortic valve cases with severe calcifications.

Our method provides a significant advantage to the cur-
rent workflows as it adds capability for advanced analysis.
Tissue characterization, especially calcium and its relation
with native anatomies which can be useful to analyse the two
most dramatic side effects of TAVI: paravalvular leakages and
stroke.

2. ESTIMATION OF AORTIC VALVE
MORPHOLOGY

We propose a physiological model of the aortic valve capa-
ble to capture complex morphological and pathological vari-
ations. The central anatomical structures consist of 11 land-
marks including three commissures, three hinges, three leaflet
tips, two ostias and the aortic root. To efficiently handle the
anatomical complexity, the model representation and corre-
sponding parametrization is constructed hierarchically using
1) the non-rigid landmark model m and 2) the full surface
model M (see Fig. 2). The landmarks m define key anatom-
ical and physiological properties of the aortic valve and are
modeled with 9 points: R-, N- and L-hinges, NL-, RN-, NL-
commissures, N-, L- and R-leaflet tips. The aortic root surface
is represented as a tubular grid. Discriminative learning-based
methods are utilized to estimated the final model parameters.
For the anatomical landmarks m and aortic valve root surface
M estimation we employ the method proposed by [9].

3. TISSUE CHARACTERIZATION AND
VOLUMETRIC MODEL ESTIMATION

3.1. Multi-class tissue Classification

We formulate our problem as a 3-class classification. Within
the aortic valve root M we compute custom features z; from

each voxel 7 (see section 3.1.1) and assign it to one of three
classes: calcifications C¢, leaflet tissue C';, and blood pool
C'p. We aim to find a learning model # such that

H(z:i) = yi yi € {Cc,Cr,Cp} (1)
where y; is the class label for voxel . We utilize binary boost-
ing classifiers using geometric and appearance features to dis-
criminate the voxels. In order to obtain the final class label
the 1-vs-all approach is utilized [10]. Hereby the voxel i is

assigned to the class with the maximum probability response
of the classifier H.

3.1.1. Geometric and Data Features

We use data and novel geometric features to discriminate the
samples. As data features we extract for each voxel i its in-
tensity in Hounsfield units (7).

z;(0) =I(i) x; € RY )
The geometric driven features z; € R'+19 are computed as

distances to the previously estimated landmarks m (see Fig.
2).
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The intuition behind the geometric features is to capture geo-
metric information of tissue distribution relative to the hinge,

commissures and leaflet tips landmarks m.

3.1.2. Training

In order to train the binary classifiers Co, Cr and Cp,
each positive example x; is assigned with a class label
y; € {Cc,Cr,Cp} extracted from user annotations. The
calcification examples are generated by an expert user defin-
ing a volume specific threshold. Only responses within the
previously estimated aortic valve root model M were taken.
The ground-truth for the leaflet tissue position is extracted us-
ing a semi-automatic segmentation approach. The blood pool
is assumed to be the remaining voxels when calcification and
leaflet tissue is subtracted from the whole set of voxels within
the aortic valve root M. Thus we train three binary classi-
fiers: Cc (calcium), Cy, (leaflets) and Cp (blood pool) using
the probabilistic boosting tree [9]. The feature responses for
each class C¢, C', and Cp are shown in Fig. 2).

3.1.3. Testing

First landmarks m and the point distribution model M are es-
timated. All pixels inside the aortic valve are evaluated using
the classifiers C¢, Cp and Cr. The final voxel 7 is assigned to
the class label with maximum probability.
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Fig. 2. Diagram showing the model estimation approach for the volumetric aortic valve model consisting of 9 anatomical
landmarks m (3 commissures, 3 hinges and 3 leaflet tips), the aortic root surface M and the final volumetric aortic leaflet

models.
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Fig. 3. Left: Custom geometric and data features utilized to classify tissues within the aortic valve root. Right: Classifier
responses for different classes of tissues overlayed on the extracted subvolume. The probability map for the blood pool is
overlayed on the blue channel, leaflet tissue in the red and calcium in the green color channel.

3.2. Volumetric Leaflet tissue segmentation

The final volumetric segmentation of the leaflet tissue is for-
mulated as a markov random field (MRF) and optimized using
graph-cuts [11]. Hereby the image segmentation problem can
be viewed as a labeling process to label the voxel set Q by
minimizing an energy function:

E(L) =Y Dy(f)+ > Voulforfd) @

PEQ gEN(p)

where F/(L) is the energy, p and q are voxels, N is the neigh-
borhood formed from the vertex connectivity, D, (f,) mea-
sures the cost of assigning the label f, to pixel p, and V,, ,
measures the cost of assigning the labels f,, f; to the adja-
cent pixels p, q. The positive and negative seeds are used
from the tissue classification stage. The outside of the esti-

mated aortic valve root model M are set as negative seeds.
Voxels classified as leaflets and calcified tissue are set as pos-
itives. The binary solutions assign the uncertain voxels either
as leaflet tissue or as background. The final surface model of
the leaflets is extracted from the classified voxels using the
marching cube algorithm. The final volumetric model of the
leaflets is shown in Fig. 3.

4. EXPERIMENTAL RESULTS

The accuracy of the proposed method was evaluated using
198 single-phase CT data sets. We selected only data sets
with axial resolutions of less than 0.3mm x 0.3mm and slice
thickness less than Imm. The ground-truth for training and
testing was obtained through an incremental annotation pro-
cess guided by experts, which include the manual placement



of anatomical landmarks and delineation of the aortic valve
root surface. The volumetric models of the leaflets, calcifi-
cation and blood pool are segmented using a semi-automatic
process. Our data set was split into 164 training and 34 test
data sets. The reported numbers were performed on the test
data set.

The accuracy of the hierarchical algorithm for landmark
m model estimation and the dense surface mesh M was re-
ported in prior work [9].

The validation of the volumetric models was done by
comparing the accuracy of our multi-class tissue classifica-
tion with the ground-truth annotations. Thus we computed
the overlap agreement using the Dice Similarity Coefficient
(DSC)

2|AN B|

DSC(A, B) A+ (B 4)
between the voxels inside the obtained segmentation and vox-
els inside the manual segmentation for the leaflet tissue (Fig 4
middle) and the calcification (Fig 4 right). A DSC value of 0
indicates no overlap and a value of 1 indicates perfect agree-
ment. We plot the Dice scores in respect to the tissue volume
size in Fig. 4 for the test data.
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Fig. 4. Left: Dice score for the aortic valve leaflet segmenta-
tion (DSC = 0.73). Right: Dice score for the calcification
segmentation inside the aortic valve (DSC = 0.79).

5. CONCLUSION

In this paper we presented a first step towards a complex
planning tool for Transcatheter Aortic Valve procedures. Our
system estimates a high-quality patient specific model of the
aortic valve root and a volumetric model of the aortic valve
leaflets. Robust machine learning techniques are employed to
estimate the final aortic valve model parameters from high
resolution single phase CT images. Advanced evaluations
necessary for comprehensive planning such as calcification
distribution assessment and tissue characteristics can be ex-
tracted from our volumetric models. In addition simulations
of TAVI device deployment procedures can be performed us-
ing our volumetric models. Future work will concentrate to
include the volumetric model of the aortic root.
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