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Abstract. Congenital heart defect (CHD) is the primary cause of death
in newborns, due to typical complex malformation of the cardiac system.
The pulmonary valve and trunk are often affected and require complex
clinical management and in most of the cases surgical or interventional
treatment. While minimal invasive methods are emerging, non-invasive
imaging-based assessment tools become crucial components in clinical
settings. For advanced evaluation and therapy planning purposes, car-
diac computed tomography (CT) and cardiac magnetic resonance (CMR)
are important non-invasive investigation technique with complementary
properties. Although, characterized by high-temporal resolution, CMR
does not cover the full motion of the pulmonary trunk. The sparse CMR
data acquired in this context include only one 3D scan of the whole
heart in the end-diastolic phase and two 2D planes (long and short axes)
over the whole cardiac cycle. In this paper we present a cross-modality
framework for the evaluation of the pulmonary trunk, which combines
the advantages of both, cardiac CT and CMR. A patient-specific model
is estimated from both modalities using hierarchical learning-based tech-
niques. The pulmonary trunk model is exploited within a novel dynamic
regression-based reconstruction to infer the incomplete CMR temporal
information. Extensive experiments performed on 72 cardiac CT and 74
MR sequences demonstrated the average speed of 110 seconds and accu-
racy of 1.4mm for the proposed approach. To the best of our knowledge
this is the first dynamic model of the pulmonary trunk and right ventricle
outflow track estimated from sparse 4D MRI data.

1 Introduction

Congenital heart defect (CHD) is the primary cause of death in newborns charac-
terized by complex malformations of the heart and great vessels. Often, the right
side of the heart is affected and especially the pulmonary trunk, as in Tertalogy
of Fallot (TOF) and pulmonary artesia or stenosis. The clinical management of
such conditions is confronted with complex treatment decisions, which include
pulmonary valve procedures in the majority of the cases.



Percutaneous interventions for pulmonary valve replacement are emerging as
feasible treatment alternatives to classic cardiac surgery with important benefits:
less invasive, reduced risks associated with cardiopulmonary bypass, bleeding,
infections and reduced expenses for postoperative intensive care [1]. Neverthe-
less, comprehensive investigation, based on non-invasive imagine techniques, is
mandatory for clinical decision making and treatment success.

For therapy planning purposes, the pulmonary trunk is increasingly imaged
using either cardiac computer tomography (CT) or cardiac magnetic resonance
(CMR) [2]. While CT has a high spatial resolution, fast acquisition times with-
out anesthesia, it has the disadvantages of poor temporal resolution and ionizing
radiation. Contrary, MRI has high temporal resolution without X-ray radiation,
but long acquisition times and usually does not cover the full 4D information.
The regular protocol, so called sparse 4D CMR, involves an end-diastolic (ED)
3D heart image and two orthogonal cine projections 2D+t, short axis (SA) and
long axis (LA). LA passes through the main pulmonary artery and the descend-
ing aorta, while SA is aligned with pulmonary valve, perpendicular to the LA (see
Fig. 1). Ideally, clinicians would be provided with accurate morphological and
functional quantification of the pulmonary trunk, independent of the employed
imaging technique.

In this paper we present a cross-modality framework for the evaluation of
the pulmonary trunk, which combines the advantages of both, cardiac CT and
CMR, non-invasive imaging techniques. A physiological model, which captures
complex morphological, dynamical and pathologic variations of the pulmonary
trunk is presented in Sec. 2. In Sec. 4, the patient-specific model parameters are
estimated from both modalities within hierarchical learning-based framework,
which involves three-stages: landmark detection, center line detection and dy-
namics estimation. A novel dynamic regression-based reconstruction is proposed
to infer the incomplete temporal information characteristic to the sparse MRI
protocols.

Extensive experiments are performed on 72 cardiac 4D CT (720 volumes)
and 74 sparse MRI (74 3D ED volumes associated with 4736 2D slides over the
cardiac cycle) data, from which 10 patients underwent both imaging interven-
tions, CT and sparse MRI. Mean reconstruction error of 1.44 mm within 110
seconds demonstrates the strength of our proposed regression based reconstruc-
tion method.

2 Physiological Pulmonary Trunk Modelling

In this section we introduce our physiological model of the RVOT and pulmonary
trunk, which represents both morphological and dynamical variations. Similar
as in [3], the anatomical complexity is reduced by employing a coarse to fine pa-
rameterization which includes: anatomical landmarks, pulmonary artery center
line and full surface model of the pulmonary trunk. As illustrated in Fig. 1(a),
the considered anatomical landmarks include, Trigone (Lt), RVOT (Lrvot) and
Main-Bifucation (Lmb), each represented in the Euclidean 3D space, Lx ∈ R3.
The centre line CL passes through the pulmonary artery center and is parame-
terized by 12 points, CL = CL0 . . . CL11. The surface model S is represented by



Fig. 1. 3D MRI scan of the whole heart in the ED phase (a). 2D long axis (LA) plane
(b) and short axis (SA) plane (c) of the pulmonary artery over the cardiac cycle

a structured grid, spanned along two anatomical directions, u−circumferential
and v− longitudinal, using 50×40 vertices (see Fig. 1(c)). Point correspondence
in time and across patients is enforced by intrinsic re-sampling of S, using a set of
anatomical-driven cutting-planes, described by center line points CLx and cor-
responding tangential directions. Given the different modalities supported and
characteristic imaging protocols, we differentiate among two dynamic extensions
of the proposed physiological model. The definition of a full 4D model, which
can be directly estimated from 4D cardiac CT data, is rather straightforward
and realized by concatenating a time variable t:

Modelfull4D = {Lt, Lrvot, Lmb, CL, S}t (1)

However, given the sparse 4D acquisition, common to MRI exams, the exten-
sion to a temporal model includes two additional representations: LA and SA.
LA - describes the contour of S intersected with the plane with the origin in Lrvot

and the normal obtained from the cross-product between the Ltrigone and Lrvot,
and the center line tangent at CL0 - these represents a specific 2D+time long
axis acquisition (Fig. 1(a)). SA - describes the contour of S intersected with the
plane center in CLmiddle and the corresponding tangent as normal (Fig. 1(b)).
Hence, the sparse dynamic model is parameterized as follows:

Modelsparse4D = {Lt, Lrvot, Lmb, CL, S}ED + {LA, SA}t (2)

3 Dynamic Regression Based 4D Model Reconstruction

As describe above, the dynamic information in case of MRI 4D is incomplete but
rather available only in two orthogonal projections, as opposed to 4D cardiac CT,
which provides full dynamics over the cardiac cycle. In this section we propose a
novel dynamic regression method to learn the pulmonary trunk spatial-temporal
variation from a heterogonous training population and apply it to predict a full
dynamic model from partial 4D usually provide by MRI.

In regression a solution to the following optimization problem is normally
sought [4]:



ˆR̂(x) = argminR∈=

N∑
n=1

L (y(xn),R(xn)) /N (3)

where = is the set of possible regression functions, L(◦, ◦) is a loss function that
penalizes the deviation of the regressor output R(xn) from the true output, and
N is the number of available training examples. In our case the reconstruction
task is defined as a regression problem between the full dynamic model of the
pulmonary trunk extracted from 4D CT data and the sparse one extracted from
the sparse MRI data:

Y (Modelfull4D) = R̂ (X(Modelsparse4D)) + ε (4)

In our regression problem we focus on shape information and completely
neglect volume data. As descriptors both for the input X(Modelsparse4D) and
output elements Y (Modelfull4D) of the models we choose coordinates of mesh
vertices normalized with the generalized procrustes analysis. This representation
has been already used before, with the purpose of model classification into dis-
eased and healthy, and has a uniform representation of the input and the output
data. The training set T used to generate the regression model includes feature
vectors Ti as follows:

Ti =< (SED
i , LAt

i, SA
t
i)MRI , (S

t
i )CT >, (5)

where t is the time step within the cardiac cycle, SED
i is a set of 3D coordinates

representing each point of the end-diastolic model (2000 3D points), LAt
i and SAt

i

are point sets (80 and 50 3D points respectively) representing the model curves
extracted from the MRI’s long axis stack and short axis stack respectively, for the
current time step t, and (Si

t)CT are the corresponding point coordinates for the
point set to be reconstructed (238 3D points). Due to the dense representation
of our model (2000 3D points) we reconstruct only the most significant 238 3D
points from the associated CT model. The rest of the points are interpolated
and projected onto the PCA shape space from which the complete final model
is then obtained.

The formulated regression problem is solved by learning the regression func-
tion R with two different methods: boosting-based additive regression [5] and
random forest [6]. Two main reasons motivate our choice. First, these techniques
were shown to be robust to high-dimensional data with many irrelevant, redun-
dant and noisy features, without the need for additional data pre-processing and
feature selection. This was shown both for classification [7],[8] and regression [4]
tasks. Second, both boosting-based and random forest-based models are rela-
tively fast to train and to evaluate comparing for example with Support Vector
Regression. In the spirit of [7],[4], we use simple 1D linear regression as the base
learner for boosting-based regression. At each boosting iteration, a feature which
results in the smallest squared loss with linear regression is added to the pool of
already selected features. Each weak learner is thus a simple linear regressor of
the form:

y = β0x+ β1 (6)



where x is the selected scalar input coordinate and y is a scalar output coordi-
nate. Using more sophisticated weak learners such as CART decision trees and
multiple linear regression with greedy forward feature inclusion, has proven to
always result in a worse or no better performance while the resulting model gets
significantly more complicated. Using simple 1D binary decision stumps as in [4]
has also proven to lead to suboptimal accuracy; the reason for this is perhaps
the nature of the data, as it is rather impossible to generate as many candi-
date decision stumps with the coordinate - based features as it is possible with
the Haar-like features. For each boosting-based model, we generate 200 weak
learners. The accuracy plateaus with this number of component models, and the
further accuracy increase is always insignificant with this data.

For random forests, we always generate 25 component trees. The accuracy
usually remains same or even decreases with the addition of more trees to the
model. The minimum leaf size is set to 1; the trees are thus generated to the
full with no pruning. The number of features considered at each node is set to
the value recommended by Breiman [6], which is one third of the total number
of features for regression. Using other parameter settings was shown to lead to
worse or no better accuracy in our preliminary experiments.

In boosting-based regression the output function is assumed to take a linear
form as follows [4]:

ˆR̂(x) =

T∑
t=1

αtht(x) ∈ H (7)

where ht(x) is a base (weak) learner and T is the number of boosting iterations.
Having a linear base learner (simple linear regression), a linear final solution is
thus also found. In contrast to this, random forests seek for a non-linear function
approximation, recursively splitting the feature space in the nodes of component
decision trees.

In contrast to [4], we use naive decoupling of the regression problem into a
number of single output problems. While multi-output regression solutions do
exist both for boosting [4], for our task multi-output optimization was not shown
to lead to error decrease and time savings were rather insignificant.

4 Estimating Patient-Specific Model Parameters

The patient-specific model parameters described in Section 2 are estimated from
cardiac acquisition using a learning-based algorithm. Detectors are learned sep-
arately for both modalities, CT and MRI, and applied to estimate model param-
eters in a hierarchical three-stage approach: Anatomical Landmarks Estimation,
Center Line Estimation and Full Surface Model Estimation.

Anatomical Landmarks Estimation By defining the localization as a classifica-
tion problem, the anatomical landmarks, Lt, Lrvot, Lmb, are estimated within the
Marginal Space Learning (MSL) framework [9]. Separate detectorsDL

t , D
L
rvot, D

L
mb,

are learned using the Probabilistic Boosting Tree (PBT) [8] in combination with
Haar-like feature from a training dataset annotated by experts.

p(Lx|x, y, z) = DL
x (x, y, z), (x, y, z) ∈ σx (8)



the trained detectors DL
x models the target posteriori distribution p(Lx|x, y, z)

for a specific search space σx given by the training set. MSL is applied to ex-
haustively search the parameter space using the learned detectors and obtained
the location of the anatomical landmarks. Note that in case of 4D cardiac CT
anatomical landmark are detected in each volume to obtain the dynamic param-
eters {Lt, Lrvot, Lmb}t, while in sparse cardiac MR only a static detection in the
end-diastolic volume is performed {Lt, Lrvot, Lmb}ED,

Center Line Estimation CL passes through the centre of the pulmonary trunk
and is initialized by the previously detected landmarks Lt and Lrvot. A robust
detector DCL is learned using the same MSL framework to detect circular struc-
tures, parameterized by center line points CLx, corresponding tangent and fixed
radius r = 20mm obtained from the average value in the training set. An in-
cremental approach is used to search circles on a series of successively updating
planes. Please note, as for the Anatomical Landmarks Estimation, a temporal
center-line model CLt is detected in CT and a static CL in MR.

Full Surface Model Estimation The full model of the pulmonary trunk S is ini-
tialized in the end-diastolic frame using the estimated landmarks and centerlines,
using a piecewise affine transformation along the center line [3]. Robust bound-
ary detectors Ds, trained using the PBT and steerable feature [9] are applied to
locally refine the surface by moving it along normal directions towards the posi-
tion with highest boundary probability. To obtain spatially smooth delineation,
the final results is obtained by projecting S to a previously learned shape space
model.

In case of CT, the above describe algorithm is applied in each time step
to obtain the full temporal model {Lt, Lrvot, Lmb, CL, S}t. In case of MR, the
estimated surface in the end-diastolic frame SED is used to initialize the contours
LA and SA. These are refined using a trained Dc contour detector as described
above. A full dynamic 4D model is then estimated by using a learned regression
model (see Eq. 4) to predict the missing temporal information.

5 Results

5.1 Results on Patient-Specific Model Parameters Estimation

The proposed framework for detecting a personalized pulmonary trunk model
in 4D CT and sparse MRI data was evaluated on 50 4D CT(500 volumes) and
74 sparse MRI (74 ED Volumes associated with 4736 LA/SA planes) studies
from patients with different CHD. Each volume in the data set is associated
with annotation, manually generated by experts, which is considered as ground
truth. Three-fold cross validation was used to divide the data set into training
and test data.

Table 1 summarizes the detection performance on both modalities (CT and
sparse MRI), from the test data. Point-to-mesh measurement error was used to
evaluate the detection accuracy between the ground-truth and detected model
for both modalities. Average speed of 10sec per frame was achieved for both
modalities on a standard 2.0GHz Dual Core PC.



Table 1. Detection accuracy

CT/MRI Mean Error(mm) Median(mm) Std.Dev(mm)

Landmarks 3.5/4.3 5.1/6.4 2.7/3.0

Center Line 3.0/3.3 2.3/2.3 1.7/2.0

Full Surface 1.6/1.9 1.2/1.3 0.2/0.2

5.2 Intra-modality comparison between CT and MRI

The inter-modality consistency of the model was demonstrated on a subset of
10 patients which underwent both imaging investigations, 4D CT and sparse
MRI (see Fig. 2). Ground-truth and detected pulmonary trunk models from
both modalities were compared using the abstract point-to-mesh measurement
and clinical relevant diameter measurements: RVOT, hinges and commissures.
Results are summarized in Table 2. A strong inter-modality correlation, r =
0.992, p < 0.0001 and confidence of 98%, was obtained for CT and CMR based
on the pulmonary trunk model.

Fig. 2. Pulmonary trunk model in CT (left) and MRI (middle) data for the ED phase.
Inter-modality consistency by projecting the MRI model(yellow points) into the CT
data (right).

Table 2. Model based intra-modality comparison between CT and MRI

(mm) Ground truth Estimation

RVOT 0.7 ± 0.5 3.8 ± 1.5

Hinges 1.2 ± 1.4 2.6 ± 4.7

Commissures 1.5 ± 1.2 3.2 ± 1.7

Point-to-mesh 1.4 ± 0.1 2.5 ± 0.7

5.3 Results on Regression Based Dynamic Model Reconstruction

As described in Section 1 the sparse MRI protocol is able to capture the full
anatomy of the pulmonary trunk only in the ED phase (3D volume) of the heart
and parts of the pulmonary trunk in 2D planes (LA and SA) over the cardiac
cycle. However, a full 4D model of the pulmonary trunk can be still computed
from the available sparse data by learning the full motion from 4D CT data.
For this purpose we learned a regression model as presented in Section 3 on a



training data set of 72 4D CT (720 Volumes) studies. Two different machine-
learning techniques (boosting and random forest) are used to train the regression
model and to evaluate the reconstruction error. Table 3 presents values obtained
by applying the regression method on sparse CMR images and evaluate it on
full 4D CT, for a set of 10 patients, which underwent both imaging modalities.
Figure 3 illustrates the reconstruction error distributed over the cardiac cycle.

Table 3. Reconstruction error for Random Forest and Boosting

Boosting Random Forest

Mean Err. 1.44(mm) 3.2(mm)

Std. Dev 0.21(mm) 0.23(mm)

Speed 3.07 (ms) 6.21 ms

6 Conclusion

In this paper we propose a cross-modality detection framework for estimating
a dynamic personalized model of the pulmonary trunk from the available data,
4D CT and sparse MRI. A novel regression based reconstruction method is
presented and used to infer the incomplete temporal information characteristic
to the sparse MRI protocols. The estimated model from both modalities can be
utilized to extract morphological and functional information of the pulmonary
trunk and dynamics over the cardiac cycle. Extensive experiments performed
on a large heterogeneous data set demonstrated a precision of 1.44mm data at
a speed of 11 seconds per volume. The proposed method has the potential to
significantly advance the pulmonary trunk treatment.
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