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ABSTRACT

A reliable method to evaluate and follow the course of arthri-
tis is given by examination of the carpal bones within the wrist
joint. Humans typically have eight such small angular bones
arranged in two rows. The small size as well as the num-
ber make manual segmentation for an analysis of the disease
progression a tedious process. Further, fully automatic ap-
proaches are still not very reliable. To support medical treat-
ment we present a fully automatic machine learning approach
which (i) finds a bounding box around every bone and (ii) out-
lines the contour and computes a 3-D model of every carpal.
The proposed approach has been successfully evaluated on
110 clinical wrist data sets of arthritis patients. The datacon-
sists of 59 T1 and 51 T2 weighted MRI images. With the
point-to-mesh error deviating from ground truth an average
of 0.48± 0.45 mm / 0.59± 0.49 mm on T1 / T2 modality,
accurate segmentation results have been achieved.

Index Terms— arthritis, segmentation, wrist bones, 3-D
model

1. INTRODUCTION

Approximately 22% adults in the United States report having
doctor-diagnosed arthritis and by 2030, an estimated 67 mil-
lion Americans ages 18 years or older are projected to have
doctor-diagnosed arthritis [1]. Besides significant limitations
in vital activities, work related implications are reported [2].
But most importantly arthritis and other rheumatic conditions
have been and remain the most common cause of disability in
the United States [3].

It is well known that arthritis erodes the carpal bones.
Thus one possibility to evaluate and follow the course of dis-
ease is given by examining the wrist. It is however a tedious
process to manually segment the eight carpal bones within
both wrists accurately. Considering the amount of patients
reported in above quoted statistics, this is certainly an in-
tractable task. Therefore we present a reasonably fast, yet
accurate framework that enables automatic segmentation of
the eight carpal bones for both hands.

∗This work was partially conducted while Martin Koch and Alexander G.
Schwing were with Siemens Corporate Research, Princeton, NJ, USA.
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Fig. 1. (a), (c) show slices of the T1 and T2 volumes respec-
tively. Our resulting 3-D model is illustrated in(b) and(d).

Taouli et al. [4] showed that magnetic resonance imaging
(MRI) is a good technique to visualize bone erosion. They
did not observe a significant difference between high-field
1.5-T(esla) MRI and low-field 0.2-T MRI. We aim at pro-
cessing either T1- or T2-weighted sequences of the wrist in
any orientation as exemplarily shown in Figure1(a)and Fig-
ure 1(c) respectively. The final 3-D(imensional) model ob-
tained with our approach described in Section3 is illustrated
in Figure1(b)and Figure1(d).

Before diving into the details we review related work in
Section2. We present and discuss our results on a heteroge-
neous 3-D data set consisting of 59 T1- and 51 T2-weighted
volumes of patients from three different clinics using different
scanners in Section4 and conclude in Section5.

2. RELATED WORK

Despite the previously described necessity, there is relatively
few work on segmentation of carpal bones in 3-D MRI se-



quences.
Sebastianet al. describe an approach to segment carpal

bones from computed tomography (CT) sequences using
skeletally coupled deformable models [5]. They emphasize
that the non-uniformity of bone tissue, the irregular shape
of closely packed carpal bones and small inter-bone spaces
compared to the resolution render the segmentation of carpal
bones a challenging task. Additionally we need to cope with
the lower Signal-to-Noise ratio of MRI compared to CT se-
quences. The authors use a curve evolution implementation
of region growing from manually initialized seeds, where
growth is modulated by a competition between neighboring
regions.

Similarly Duryeaet al. describe their semi-automated ap-
proach using CT data [6]. However, their tool was developed
to assist in a study of rheumatoid arthritis progression that
used CT as well as MRI. From a technological perspective a
reader had to segment a baseline volume semi-automatically,
i.e. supported by slice based edge tracking. A 3-D image reg-
istration algorithm was applied to follow up scans. They men-
tion that MRI has great potential as an imaging modality for
arthritis which causes inflammation of the soft tissue which
in turn is visible with MRI. According to our evaluation pre-
sented in Section4, MRI data can be used to segment the
bones. Further the segmentation can be used to tremendously
reduce the search space for possible inflammations.

Aifeng et al. present a method for fully automatic carpal
bone segmentation and feature analysis in hand X-ray radio-
graphs [7]. The purpose of their work is to automatically
segment the carpal bones by anisotropic diffusion and Canny
edge detection techniques. To achieve segmentation they uti-
lize a four stage procedure which first finds the region of
interest within the acquired image. Secondly they apply an
anisotropic diffusion filter to remove artifacts. Their third
step is Canny edge detection followed by morphological op-
erations to clean up the result in the fourth stage.

All of the above mentioned achievements use traditional
non-learning based image processing in one or another form.
To the best of our knowledge no framework is yet described
using recent advances in machine learning,i.e. a combination
of both discriminative and generative methods, to segment the
eight carpal bones as described in the following section.

3. OUR APPROACH

Suppose given a volumetric image either T1 or T2 consist-
ing of slices exemplarily illustrated in Figure1(a) and Fig-
ure1(c). From a high level perspective our approach consists
of two steps. We first find the bounding boxes of the different
carpal bones using discriminative classifiers. We provide a
brief overview in Section3.1. Within each bounding box we
find in a second step the maximum a-posteriori (MAP) label-
ing, i.e. a mapping of each voxel to the class labelsL = {0, 1}
for no-bone and bone respectively. We provide the details in
Section3.2. Due to several reasons we split the original multi-

label task of segmenting the eight carpal bones into several
binary classification problems. First, not all classifiers can be
easily extended for the multi-label case. Second, there arenot
yet any multi-label (9 in our case) MAP algorithms that are
computationally efficient when being applied to a reasonably
sized 3-D volume.

3.1. Finding the bounding boxes

To find the bounding boxes we apply marginal space learning
(MSL) proposed by Zhenget al. [8]. Contrasting the afore-
mentioned work we however use a Random Forest (RF) clas-
sifier [9]. The fact that we target multiple modalities is the
main reason. An RF classifier is particularly well suited due
to its structure. It is formed out of multiple decision trees
which in turn are composed by nodes performing binary splits
depending on the features of a sample. The immense differ-
ences between T1 and T2 data are reflected in entirely differ-
ent feature values. Thus T1 and T2 can easily be told apart,
which in turn makes a separate treatment of T1 and T2 data
more complex than necessary. Due to the page limit and as
the procedure of finding bounding boxes as described in de-
tail in [8] is not the focus of this work, we omit the subtleties
and turn our attention in the following section to segmentation
of the carpal bones.

3.2. Segmenting the carpal bones

Given the bounding box around a carpal, computed with the
method and the deviations referenced and described in the
previous section, we now want to label theN interior vox-
els according to their probability of belonging to class1, i.e.
how likely the particular voxel adheres to a bone structure.
We denote byy ∈ LN andx = [x1, . . . , xN ]

T ∈ R
N the

final binary labeling and the intensity values respectively. To
obtain the most likely labeling we maximize the joint proba-
bility

p (x,y;θ) = exp (〈s (y) ,θ (x)〉 − A (θ (x))) (1)

modeled as a member of the exponential family [10]. The
vectors (y) denotes the sufficient statistics (i.e. that combi-
nation of the values of the labeling that is necessary to com-
pute the distribution). The parameters of the distribution(e.g.
mean and variance for a Gaussian) are summarized in the vec-
tor θ (x). The sufficient statistics depend on the chosen label-
ing y. The dependence of the parametersθ on the intensities
x is highlighted below. The log-partition function normaliz-
ing the distribution is denoted byA (θ (x)). We model the
distribution as a pairwise, binary Markov random field,i.e.
it factors according to the structure of an undirected graph
G (V, E) with node setV and edge setE ⊂ V × V and thus
a maximum clique size of two. To show that we indeed com-
pute the MAP labeling we note that

argmax
y

p (y | x;θ) = argmax
y

p (x | y;θ) p (y;θ) , (2)
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Fig. 2. Enlarged slices of detected bounding boxes for T1 and
T2 volumes are shown in(a) and(b) respectively. The corre-
sponding mixture distribution estimated from the underlying
intensity distribution is shown in(c) and(d).

i.e. the posterior is proportional to the likelihood multiplied
with the prior, and recall

p (x,y;θ) = p (x | y;θ (x)) p (y;θ (x))

= exp (−E (y,θ (x)) − A (θ (x))) (3)

with the energy function

E (y,θ (x)) = −〈s (y) ,θ (x)〉

=
∑

ij∈E

θij (yi, yj) +
∑

i∈V

θi (yi) . (4)

Instead of maximizing Equation (3) usinge.g. max-product
(loopy) belief propagation [11], the energyE can as well
be minimized using a linear program [12] or due to binary
labels by using a graph-cut formulation [13]. Our choice
for a graph-cut formulation is mainly guided by the simplic-
ity of this approach. Note that we use the associated vector
θ = [θi ∀i ∈ V, θij ∀ij ∈ E ]T , where[·]T denotes the
transpose.

The pairwise potentialsθij ∀ij ∈ E are modeled accord-
ing to the squared loss1

2β
(xi − xj)

2 with regularization pa-
rameterβ = 16. When discussing our approach in Section4
we evaluate two methods for choosing the singleton poten-
tials θi ∀i ∈ V. As a simple idea a region around the center
of the estimated box is assigned a high potential of belonging
to the bone and the boundary of the estimated box obtains a
high potential for the background label. The remaining nodes
have equal potential for being bone or background. We name
this first method “Simple” and compare it to an “Enhanced”
approach, where the parametersθi ∀i ∈ V are enhanced via a
generative Gaussian mixture on the voxel intensities within a
bounding box.

To do so we model the intensity distribution within
an estimated bounding box as a superposition of Gaus-
siansN (x | µ, σ) with meanµ and varianceσ in the form
p (xi) =

∑K

k=1
πkN (xi | µk, σk). The responsibilities are

denoted byπk. For T1 data we chooseK = 2. Due to
bright speckles, also visible in Figure2(b), K = 3 for T2
data. The parametersπk, µk, σk ∀k are estimated using
expectation maximization (EM) [14]. For the T1 and T2
volume illustrated in Figures2(a)and2(b), we show the rel-
ative frequency of the intensityx and a scaled variant of the
estimated mixture model in Figures2(c)and2(d). The agree-
ment between intensity histograms and estimated distribution
is immediately apparent. Before choosingK, we however
need to determine the data modality,i.e. T1 or T2. A simple
yet fast thresholding on the average statistics of the volume
under investigation was in our case more than sufficient for
that task. To this end, the mean intensity of the center voxels
for every box, representing the bone, is compared with the
mean intensity of the voxels on the boundaries, mainly repre-
senting background. The final classification of the data set is
based on majority voting among the eight boxes.

Instead of just assigning the center and the boundary of
the estimated bounding box to a particular label as done in the
method named “Simple,” we now enhance all potentials via a
prior belief. For a voxel with intensityxi in a T1 volume we
use the log odds ratio

log
p (zi = 0 | xi)

p (zi = 1 | xi)
= log

π1N (xi | µ1, σ1)

π2N (xi | µ2, σ2)
. (5)

Note, thatzi denotes the hidden label of voxeli from the com-
plete data likelihood maximized via EM. For volumes of type
T2, we apply the probability ratio

log
p (zi = 0 | xi)

p (zi = 1 | xi) + p (zi = 2 | xi)
=

log
π1N (xi | µ1, σ1)

π2N (xi | µ2, σ2) + π3N (xi | µ3, σ3)
. (6)

Having obtained a binary labelingy by maximizing Equa-
tion (3) using a graph cut approach, we apply a marching
cubes algorithm [15] to obtain the meshes shown in Fig-
ures1(b) and 1(d) for T1 and T2 data respectively. In the
following section we will quantitatively assess the two meth-
ods investigated in this work.

4. EXPERIMENTS AND DISCUSSION

In the previous section we described two approaches for seg-
menting the carpals once we found a rough estimate for the
bounding box. The “Simple” method just uses the informa-
tion about the boundaries of the bounding box to assign po-
tentialsθi, whereas the “Enhanced” approach extracts global
information from the entire interior to ensure a more accurate
segmentation.



Table 1. Segmentation results in terms of area under the receiver operator characteristic (AUC) and Point-to-Mesh Error
(PME) divided in(a) and(b) according to the underlying data. The results represent theaverage per carpal bone, labeledb1

to b8 (trapezium, trapezoid, capitate, hamate, scaphoid, lunate, triquetral and pisiform bones), for the 59 T1 and 51 T2 images
respectively.

(a) T1 data sets.

Method b1 b2 b3 b4 b5 b6 b7 b8

AUC mean in % “Simple” 84.22 85.29 81.63 83.46 85.49 83.99 79.91 81.25
AUC Standard deviation in % “Simple” 12.81 14.07 14.31 15.01 13.79 13.19 15.23 15.60

AUC mean in % “Enhanced” 89.17 90.29 86.03 88.74 90.42 87.98 84.59 86.81
AUC Standard deviation in % “Enhanced” 8.25 8.49 10.43 10.44 9.83 11.17 13.24 11.41

PME mean in mm “Simple” 0.51 0.60 0.60 0.84 0.70 0.57 0.74 0.75
PME Standard deviation in mm “Simple” 0.39 0.65 0.49 0.94 0.80 0.48 0.65 0.69

PME mean in mm “Enhanced” 0.37 0.42 0.48 0.54 0.49 0.47 0.56 0.51
PME Standard deviation in mm “Enhanced” 0.26 0.41 0.39 0.51 0.54 0.37 0.55 0.48

(b) T2 data sets.

Method b1 b2 b3 b4 b5 b6 b7 b8

AUC mean in % “Simple” 79.06 76.65 71.14 67.88 72.20 76.50 71.62 74.89
AUC Standard deviation in % “Simple” 15.46 17.15 17.01 17.09 17.44 16.09 16.82 16.17

AUC mean in % “Enhanced” 91.17 92.64 84.76 86.21 89.08 87.61 85.78 87.91
AUC Standard deviation in % “Enhanced” 2.34 1.65 12.07 11.97 8.60 9.35 9.27 9.83

PME mean in mm “Simple” 0.71 1.03 1.16 1.88 1.49 0.94 1.18 1.05
PME Standard deviation in mm “Simple” 0.53 0.78 0.78 1.19 1.07 0.73 0.77 0.79

PME mean in mm “Enhanced” 0.36 0.40 0.57 0.77 0.89 0.61 0.58 0.53
PME Standard deviation in mm “Enhanced” 0.27 0.14 0.50 0.65 0.62 0.52 0.47 0.29

The data consists of 59 T1- and 51 T2-weighted medical
MRI wrist volumes acquired from three different sites. The
data sets are arbitrarily rotated, showing left and right wrists,
with a resolution of0.365× 0.365× 0.734 mm3

voxel
. To facilitate

a quantitative comparison we got all volumes professionally
annotated manually. The evaluation was performed against
the ground truth segmentation and conducted separately for
each imaging modality. For an assessment we draw conclu-
sions from two different measures. Those are the Point-To-
Mesh Error (PME) and the area under the receiver operator
characteristic (AUC). Whereas the first measure operates on
the final meshes,i.e. after conversion of the labelingy using
marching cubes [15], the latter directly compares the labeling
y with the ground truth labeling obtain from the profession-
ally annotated volumes. Note that the AUC measure is used in
the statistics, machine learning and medical diagnostics com-
munity as shown in [16] and references therein. Point-To-
Mesh error is also a commonly used error metric to quantify
segmentation accuracy [8]. A brief overview is given below.

We compute the PME by finding the smallest distance
between a vertex (point) of the meshed labelingy, and the
ground truth lattice representation (mesh). Hence, the name
Point-To-Mesh. The averaged distances for all vertices re-
sult in the PME. The AUC, in contrast to PME, has no phys-
ical unit. It is a scalar measure for classifier performance
within the interval[0, 1] with 1 indicating perfect prediction.

We generally specify the percentage of perfect prediction,i.e.
100% corresponds to 1. Due to the page limit we refer the
interested reader to [16] for further details.

The results obtained by applying the proposed method to
T1- and T2-weighted MRI data sets is shown in Table1(a)
and1(b) respectively. To abbreviate, we assigned labelsbx to
the carpal bones according to the following scheme. The eight
bones are arranged in two rows, the distal row contains from
lateral to medial side the trapezium, trapezoid, capitate and
hamate bones, labeledb1 to b4. The proximal row contains
in the same order the scaphoid, lunate, triquetral and pisiform
bones, labeledb5 to b8.

In terms of AUC the enhanced approach achieves an aver-
age segmentation accuracy of88.0 ± 10.6% for T1 data sets
and88.1 ± 9.2% for T2 data sets. For T1 data sets the sim-
ple approach results in an average of83.2 ± 14.3%, which is
about 5% less. However, when processing T2 data sets the
segmentation results in terms of AUC drops to an average of
73.7±16.9%, which is about 14% below the results achieved
with the enhanced version. For T1 images the PME is on av-
erage0.48±0.45mm and0.59±0.49mm for T2 images, both
achieved with the “Enhanced” approach. The results obtained
with the “Simple” approach are worse,i.e. 0.66 ± 0.67mm
and1.18 ± 0.92mm for T1 and T2 images respectively. For
difficult cases, like those T2 volumes where intensity values
of bone and surrounding tissue hardly differ, the “Enhanced”



method outperforms the “Simple” approach. Taking into ac-
count the data set resolution, we obtain reasonable errors in
terms of PME,i.e. the same order of magnitude.

Duryeaet al. specify the reader time for the segmenta-
tion approach described in [6] to the order of one hour per
wrist. Our approach processes (detection and enhanced seg-
mentation) a wrist volume of average size422 × 422 × 51
voxel in an average time of 6.17 minutes on a standard desk-
top (2.83 GHz Quadcore). Thus our fully automatic approach
is almost 10 times faster than the semi-automatic method pro-
posed in [6]. Unfortunately, the authors of [5–7] do not pro-
vide error measures for their segmentation result.

5. CONCLUSION

We obtain accurate results like the ones shown in Figures1(b)
and1(d) on a diverse data set. Our method allows physicians
to follow the course of disease by comparing segmentation
results from different acquisitions and facilitates reduction of
the search space when looking for inflammations.

To conclude, we presented a framework forFully Au-
tomatic Segmentation of Wrist Bones for Arthritis Patients.
To this end, we proposed to detect the bounding boxes of
the carpals using MSL. For increased accuracy we enhance
the segmentation using probability ratios obtained from a
mixture of Gaussians. Additionally, we evaluated our ap-
proach on a challenging data set consisting of arbitrary ro-
tated 110 volumes showing left and right wrists. The data
was acquired from three different clinics and we achieve ac-
curate segmentation deviating from ground truth an average
of 0.48 ± 0.45mm /0.59 ± 0.49mm on T1/T2 modality.
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