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ABSTRACT

The current diagnostic process at hospitals is mainly based on reviewing and comparing images coming from
multiple time points and modalities in order to monitor disease progression over a period of time. However, for
ambiguous cases the radiologist deeply relies on reference literature or second opinion. Although there is a vast
amount of acquired images stored in PACS systems which could be reused for decision support, these data sets
suffer from weak search capabilities. Thus, we present a search methodology which enables the physician to fulfill
intelligent search scenarios on medical image databases combining ontology-based semantic and appearance-based
similarity search. It enabled the elimination of 12 % of the top ten hits which would arise without taking the
semantic context into account.
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1. INTRODUCTION

The objective is to develop a content-based image retrieval system that uses similarity search extended by a
semantic model of lymphoma to increase the quality of an image search. Lymphoma is a cancer that originates
in the lymphatic cells of the immune system and presents as a solid tumor of lymphoid cells and sometimes
affects abdominal organs∗. Recent work1,2 tends towards the same direction but often lose track of the global
picture. In the MEDICO project, we want to provide the user with a holistic view on the patient supporting him
with a tool to search for similar-appearing lesions restricted to an individual organ, but additionally including
extra-organ disease processes at the lymph nodes.

We want to provide queries such as looking for similar patients, i.e. patients showing similar anatomical
and pathological characteristics. Investigating the anamnesis and the successful treatment could then give good
advice for the case considered. The ability to compare images with those obtained in other patients has the
potential to provide real-time decision support to practicing radiologists by showing them similar images with
associated diagnoses and, where available, responses to various therapies and outcomes.

2. MATERIALS AND METHODS

We currently use whole-body CT images from our clinical partner for lymph node inspection and lesion search.
100 images have been semantically annotated with terms from the MEDICO-ontology,3 combining background
knowledge represented in medical ontologies such as the Foundational Model of Anatomy (FMA)4 and RadLex.5

For lesions, an expert annotated lesions within liver, spleen and kidney in 186 images.

To avoid large efforts in annotating images we recently proposed a semantic reporting process6 which makes
use of an image parsing system7 and a semi-automatic semantic reporting tool. The image parsing system
automatically detects anatomical structures and generates an initial annotation list, whereas the reporting tool
allows the radiologist to complement them. The semantic reporting tool provides the user with term suggestion,
fast volume navigation through directly jumping to or zooming into an anatomical region and hyperlink report
text passages with the appropriate image location.

∗The spleen is subordinated the abdominal organs, even if physicians consider it a lymphatic structure not an organ.



For search we currently provide two complementing mechanisms: query by concept enables the user to query
the image database by the use of regular expressions where the terms are coming from the MEDICO-ontology.
The second search mechanisms is called query by scribble: the query interface provides the user with a drawing
tool to define arbitrary regions. In our case, we use it to enclose a reference lesion. Combining these two
mechanisms, the query language is tremendously extended versus classical content-based image retrieval systems
(CBIR). Subsequently, we explain the mechanism with the following sample query:

Find all patients with similar lesions in the liver and with thoracic lymph nodes enlarged.

The image database can be searched for images containing similar regions based on the visual appearance.
This is a close approach to classical content-based image retrieval systems (CBIR). The main advantage of our
system is that the CBIR results can be restricted by the query by concept (here: enlarged thoracic lymph nodes).
This mechanism furthermore allows to fully automatically limit the results to lesions within the organ which is
currently of interest (here: the liver).

2.1 Query by Concept

The semantic annotations are stored
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Figure 1. Annotation ontology scheme supporting temporal, multi-modal
and text-to-image relations.

in the Annotation Ontology (see Fig-
ure 1), which is part of the MEDICO
ontology stack. The blue arrows are
used to depict properties, rectangles for
classes and black arrows are inheritance
dependencies. The annotation ontology
scheme moves the patient to the cen-
ter. Every patient owns some studies
defined by a unique identifier and a spe-
cific time period. The MEDICO study
is more than just a DICOM study: it is
a container for all annotations from im-
ages, texts, clinical data within a given
time period. This is the cornerstone
to enable temporal queries as well as
queries considering multiple modalities.

The scheme is illustrated in Figure
1 and the design was driven by the fol-
lowing requirements:

• Link report text passages with related image regions: Annotations from images and texts must be stored in
the same model which should consider the fact that reports summarize annotations from multiple images.

• Disease progression: Changes to anatomy due to a pathology over time should be represented. A combined
examination of studies with their pre-studies needs temporal relations.

• Multi modality: Diagnosis often needs a synoptic view of images acquired with different modalities, e.g.,
CT, MRI, US. Therefore, the underlying annotation ontology should link annotations not only across time,
but also across different modalities.

• In order to adopt hospitals preferred wording, the stack of used ontologies should be extensible, e.g., some
of the hospitals have already made experience with SNOMED CT or AIM.8 Therefore, the annotation
scheme should not only incorporate RadLex and FMA but also support further ontologies. For the ontology
alignment we developed the KEMM-methodology.9

An image region is an arbitrarily shaped spatial sub image which is defined as landmark point, triangulated
mesh or image mask. The triangulated meshes are currently used to describe organs, detected by the image
parsing system,7 and image masks to define scribbles.



The class mano:Finding relates anatomical annotations, such as liver, spleen with the anatomy qualifying
describing annotations, such as enlarged, hypodense, jagged margin. Currently, FMA and the anatomical tree of
RadLex are used to define the anatomy and the imaging observation and visual modifier trees of RadLex for
description. If an anatomical term of a finding is missing in the existing vocabulary, spatial annotations allow
the user to paraphrase it with spatial relations such as nearTo or inBetween, e.g., the lymph node near to renal
hilus. If the finding is a specific area or volume, we can add a mano:Measurement to store the values of the
parameter. All other additional information can be archived by mano:FreeText. To free the user from selecting
the right anatomy term, we added a query expansion mechanism which recursively infers sub-classes in FMA.
Thus, the sample query Thoracic lymph node results in 90 sub-classes:

Thoracic lymph node → Mediastinal lymph node
→ Pretracheal lymph node
→ Esophageal lymph node, ...
→ ...

2.2 Query by Scribble

The goal of MEDICO’s visual similarity search is to allow the user to quickly outline a region of interest (ROI)
and to ask the system for similar ROIs, without having to take the time for an exact segmentation. We call such
a quick ROI specification a scribble. We support 3D scribbles, however, in favor of a faster query specification,
we expect most queries to be posed as 2D selections. Since 2D image features will have the highest descriptive
power due to their maximized image resolution, we represent one 3D annotation by a collection of 2D image
features. We treat such a collection like a classical multi-instance problem, where one object is represented by
an unknown number of instances of a fixed representation. On the one hand, this causes a loss of information,
since we discard the slices’ order. On the other hand, the multi-instance perspective allows the comparison of
various slice permutations, which can very well contribute to lesion similarity.

In our experiments, we found a combination of grey value histograms and Haralick texture features10 to
perform best for the given problem. For each 2D ROI ri of the complete region of interest we generate one
histogram of 150 bins (hist) over the given Hounsfield space, as well as a Haralick descriptor for the 9 subwindows
of a 3 by 3 grid imposed on each ri (har). Since one Haralick descriptor for 5 different pixel distance values
(1, 3, 5, 7, 11) contains 13 · 5 = 65 statistics, this amounts to descriptors of sizes 100 and 65 · 9 = 585 for each
slice covered by the lesion’s bounding box. Finally, we add a third lesion representation (size) representing the
extension of the lesion’s bounding box in all three dimensions.

For each slice representation j, we define a feature-wise lesion distance dj on the instances {a0,j , . . . ,as−1,j}
representing the s slices of a lesion as the Sum of Minimum Distances (SMD), using the Manhattan distance as
instance distance on the slices’ feature vector representations.

We form the overall distance between two lesions as a weighted sum over the single representations’ distances.
We require two kinds of weights: sj , representing the standard deviation of distances of representation j for
ensuring a comparable distance scaling. Note that this simple distance joining procedure assumes that the
single representations’ distances follow comparable distributions. Additionally, the weights wj represent an
actual weighting factor to be assigned to representation j. The combined distance measure d for a set of lesion
representations R is: dcombined = 1∑

j∈R wj

∑
j∈R wjsjdj .

Even though this distance measure is well-suited for lesion comparison, similarity among medical images
remains a difficult application. The appearance of a CT image depends on the setting of the image kernel and
the time and kind of the applied contrast agent. In many cases, the latter is not even available to the computer.
Therefore, image similarity alone can hardly be a significant indication of a similar patient case.

The MEDICO system thus exploits all available, manually specified and automatically generated meta-
information of the query volume for restricting the search space to annotations which are actually relevant.
MEDICO can automatically determine the position of the ROI w.r.t. a number of organs and landmarks6 or
within a standardized body atlas,11 as well as any available information on the patient’s prior history in the
accessible database collection.



Figure 2 shows an example scribble and the position of a query by scribble in the combined search workflow.
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Figure 2. Query by Scribble: retrieve similar regions of interest (ROIs) via a quick selection mark on an ROI. Query by
Concept: retrieve image list using semantic filtering criteria, some of which can be automatically generated. Combined
Search: use (some of) the output of a Query by Concept as filter list for a Query by Scribble and combine the resulting
lesion lists.

2.3 Combined Search

In our example, the query by concept and query by scribble interact in two ways: first, we restrict the lesion
search to the area of the liver which is automatically detected by the MEDICO image parsing system in less than
2 min.7 This significantly reduces the number of search results and in parallel it increases the search quality
since, e.g., lesions in the spleen or the kidneys are a-priori eliminated. The added search for thoracic lymph
nodes results in about 90 SPARQL queries due to the built-in query expansion mechanism.

Currently, the result list from semantic search is used as a filter for similarity search (Fig. 3). This not only
returns a merged list but also reduces the runtime in querying the Image Feature Database.

2.4 Search Infrastructure

MEDICO provides the user with an easy-to-use web-based form to describe a search query. Currently, a search
consists of a semantically rich data set composed of DICOM tags, image annotations, text annotations and
gray-value based 3D CT images as reference. This leads to a heterogeneous multimedia retrieval environment
with multiple query languages for retrieval: DICOM information is stored in PACS systems, image and text
annotations are saved in a triple store and the CT scans are accessible by a image search engine performing a
similarity search.

Apparently, all these retrieval services are using their own query languages for retrieval (e.g., SPARQL or SQL)
as well as the actual data representation for annotation storage (e.g., OWL). Beside all differences, these describe
a common (semantically linked) global data set. To fulfill a meaningful semantic search, these interoperability
issues had to be solved. Furthermore, it is essential to formulate queries that take the aforementioned diverse
retrieval paradigms into account. For this purpose, MEDICO integrates the AIR12 multimedia middleware
framework which implements the MPEG Query Format (MPQF)13 which is currently the most specific query
language for multimedia retrieval. This framework has been especially designed to serve as a mediator between a
search interface and an arbitrary amount of backends. AIR is able to support both, distributed query processing
as well as local query processing.

The lesion representations used for the visual similarity ranking are all stored in the Image Feature Database,
which uses SQL tables for enabling a quick retrieval of candidate lesions via the specification of a filter set of
candidate volumes provided by the Annotation Database with the Filtered Ranked List. If no filter is specified,
our system supports spatial indexing structures for accelated ranking queries.



Query Lesion:
5 most similar lesions:

5 most dissimilar lesions:

Query Lesion:
5 most similar lesions:

5 most dissimilar lesions:

Figure 3. Example rankings for two query by scribbles. The annotations are displayed by the red bounding box with a
close-up to the top left. These excerpts only show the center slice of the annotations, which may heavily vary in height.

The Annotation Database stores the semantic image and text annotations. It is implemented using a Jena
text database (Jena TDB), which directly supports OWL/RDF and SPARQL. We selected the Jena library
because of its good scalability and runtime performance.14 See Figure 1 for the OWL developed to store the
semantic annotations.

3. RESULTS AND CONCLUSIONS

We validated our search procedure with respect to the quality of the visual similarity ranking, as well as w.r.t.
the gain achieved by combining the visual query with automatically-derived and manually-specified semantic
queries.

3.1 Datasets

A medical expert annotated the 3D bounding boxes of 1293 lesions (973 liver, 130 spleen, 190 kidneys) in 577 CT
scans for 92 patients. For verifying the quality of our visual similarity metric, we selected 111 liver lesions with
a bounding box volume ≥ 5 cm3 as validation set V1 (79 volumes of 26 patients) and a medical expert annotated
them with pair-wise similarity scores on a 5-step scale from 0 (completely dissimilar) to 100 (same lesion).

Furthermore, we extended V1 by 13 spleen lesions and 62 kidney lesions (all ≥ 5 cm3) as V2 for testing the
effect of omitting the automatically-derived location knowledge.

Additionally, our medical experts annotated 100 CT scans as set V3 in a semantic reporting process6 for visible
radiological findings, mapped into the MEDICO-ontology.3 This set of volume annotations can be queried by
advanced semantic queries like enlarged thoracic lymph nodes.
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(a) Precision-Recall Curves of single descriptors.
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(b) nDCG15 Curves of single descriptors – for a better visibility, ranking scores for more than 30 objects are omitted.
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(c) Precision-Recall Curves of combined descriptors.
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(d) nDCG15 Curves of combined descriptors.

Figure 4. Evaluation of the rankings on V1 via boxplots, displaying the median enboxed by the first and third quantile.
The whiskers represent the farthest non-outliers. 4(a) and 4(b) display rankings based on single image descriptors, 4(c)
and 4(d) show rankings for the combined distance measure dcombined. The single features’ distance contributions are
weighted hist : har : size = 3 : 1 : 1.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

P
re

ci
si

on

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

(a) Precision-Recall Curves of histogram descriptor.
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(b) nDCG15 Curves of histogram descriptor.

Figure 5. Evaluation of the rankings of the randomly-sampled lesion set V ′1 (⊂ V1) of size 30 with the same validation
setting as in Figure 4 using only grey value histogram features.

3.2 Ranking Performance

In contrast to our fast box-annotation scheme, Napel et.al.1 proposed a retrieval scheme for liver lesions which
requires the exact segmentation of the lesion and an additional, manual specification of 161 semantic properties.
They tested their approach on 30 lesion annotations. Our goal is to achieve rankings of a comparable quality over
a larger database with a considerably smaller annotation effort (only box annotations, no semantic properties).

In order to minimize the annotation overhead for our large set of lesions we decided to restrict the validation
of the visual similarity search to subset V1 of 111 liver lesions. For every lesion, we generated a ranking of the
remaining lesions according to their automatically-determined visual similarity. The first and the last ranked
lesions of two such example rankings are depicted in Figure 3. In both cases, the first (and best) match in the
top row is actually the same lesion, only originating from CT scans taken on another day.

Figure 4 shows the precision-recall curves (a pair is considered to be relevant for a similarity score ≥ 75) and
the normalized discounted cumulative gain (nDCG)15 aggregated over the complete set of 111 lesions. 4(a) and
4(b) display the performance of the single features, whereas 4(c) and 4(d) validate distance measure dcombined

based on all three representations. The combination of the slice-wise grey-value histogram features (hist), and
a haralick pyramid kernel (har) with the simple size measure size results in a mean average precision of 0.74
and an average nDCG value for the 10th retrieved lesion of 0.82.

This ranking does not completely reach the quality of the validation results by Napel et.al.,1 however, this is
due to the rougher annotation quality and due to the larger dataset (111 instead of 30 lesions). When restricting
our dataset to a randomly chosen subset V ′1 of 30 lesions, the mean average precision increases to 0.89 and the
average nDCG value for the 10th retrieved lesion becomes 0.85 only using grey value histogram features. The
corresponding validation plots are displayed in Figure 5.

3.3 Benefit of the Combined Search

The quality of the above results gained a lot from our information combination approach. The information about
the scribble’s anatomic position enables to exclude all entities from the search space which are not localized within
the liver. To test our hypothesis, we generated rankings on the dataset V2 containing an additional set of 75
lesions in the spleen and the kidneys. When querying V2 without using the semantic information about the organ
context of the query lesion, 12 % of the top ten hits originate from foreign organs (cf. Table 1). The miss-placed
lesions appear to be similar for the image descriptors, but they are not useful in the context of a lesion query.
This is a major advantage of the MEDICO query system in comparison to other retrieval systems, where this



Table 1. Confusion matrix of ranking test on V2 (62 kidney, 111 liver and 13 spleen lesions) and percentage of hits matching
the query organ in the 10-nearest neighbors (excluding the query). 12 % of the top 10 hits are from a foreign organ.

10-nearest neighbors
Kidneys Liver Spleen Total

Kidneys 560 55 5 62
Liver 25 1057 28 111
Spleen 3 110 17 13

10-nearest neighbors [%]
Kidneys Liver Spleen Total

Kidneys 90.3 8.8 1.1 62
Liver 2.3 95.2 2.5 111
Spleen 2.3 84.6 13.1 13

Query lesion:

Ranking on all lesions of V2 (no filter constraints):

Ranking on spleen lesions only:

Figure 6. Example rankings for a spleen lesion query without (top row) and with (bottom row) organ constraints. Ranking
all of V2 returns only liver lesions in the top 5 hits.

information has to be filled in manually. The effect is exemplified by Figure 6, where similar spleen lesions will
only appear in the top 5 ranks when applying an intelligent context filter.

The MEDICO system furthermore allows to specify manual semantic queries. In our example case the
user wants to see all patients with enlarged thoracic lymph nodes. This query can be posed to the set of 100
semantically annotated volumes V3 and it matches 34 patients in the Annotation Database. 10 patients have
assigned lesion annotations and 9 of these patients show a total of 35 liver lesions in 26 volumes. The dataset
V1 can thus be restricted to a set of 35 instead of 111 liver lesions by requesting a similar patient history.

Besides the obvious benefit of restricting the result set to semantically valid items, the combination with
semantic filter properties also speeds up the visual similarity ranking. A single query to V2 takes 1330 ms when

Query lesion:
Ranking on all lesions of V2 (no filter constraints):

Ranking on semantically-restricted set of 35 liver lesions:

Figure 7. Example rankings for a liver lesion query without (top row) and with (bottom row) the semantic constraint “in
liver, thoracic lymph nodes enlarged”. The first two hits of both rankings each show the query lesion in various stages.
When all of V2 is queried, two kidney lesions are among the top 5 hits.



the database is not cached for a quick main memory retrieval, including the time required for generating the
query lesion’s features (266 ms). The same query takes only 1033 ms when adding the organ information “liver”
(kidneys: 551 ms, spleen: 296 ms). When restricting the context to patients with enlarged lymph nodes, one
query only takes 675 ms.

Naturally, the query process can be greatly sped up by caching the query database, however, in an environment
not yet prepared for large-scale main memory storage, this procedure would interfere with other services. Thus,
an intelligent filtering of the query database is an important step for a well-performing similarity query.

3.4 Outlook

We presented a comprehensive search framework which enables the user to accomplish visual similarity search
combined with semantic search based on web 3.0 technology. This significantly extends the search capabilities
compared with currently available content-based image retrieval systems and enables the system to answer real-
world questions.

In our sample query, the total result set reduced by 12% taking the semantic information about the containing
organ of the lesion into account. Another reduction is achieved from 111 to 35 results applying the semantic search
criteria thoracic lymph nodes enlarged. With that, a meaningful result set for the given query is returned which
from the physicians perspective shows similar patients having similar pathology located in the same anatomy.

In future work we aim towards improving the quality of the image-based query component query by scribble
by testing further image descriptors and by incorporating a lesion segmentation step for detailing the imprecise
box annotations. Furthermore, we will look for ways of refining the query combination mechanism and we plan
to test our framework on larger sets of annotated data.
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