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Abstract. Determining spinal geometry and in particular the position and orien-
tation of the intervertebral disks is an integral part of nearly every spinal examina-
tion with Computed Tomography (CT) and Magnetic Resonance (MR) imaging.
It is particularly important for the standardized alignment of the scan geometry
with the spine. In this paper, we present a novel method that combines Marginal
Space Learning (MSL), a recently introduced concept for efficient discriminative
object detection, with a generative anatomical network that incorporates relative
pose information for the detection of multiple objects. It is used to simultaneously
detect and label the intervertebral disks in a given spinal image volume. While a
novel iterative version of MSL is used to quickly generate candidate detections
comprising position, orientation, and scale of the disks with high sensitivity, the
anatomical network selects the most likely candidates using a learned prior on the
individual nine dimensional transformation spaces. Since the proposed approach
is learning-based it can be trained for MR or CT alike. Experimental results based
on 42 MR volumes show that our system not only achieves superior accuracy but
also is the fastest system of its kind in the literature – on average, the spinal disks
of a whole spine are detected in 11.5s with 98.6% sensitivity and 7.3% false pos-
itive detections. An average position error of 2.4mm and angular error of 3.9◦ is
achieved.

1 Introduction

Examinations of the vertebral column with both Magnetic Resonance (MR) imaging
and Computed Tomography (CT) require a standardized alignment of the scan geometry
with the spine. While in MR the intervertebral disks can be used to align slice groups
and to position saturation bands, in CT the reconstruction planes need to be aligned. In
addition to the position and orientation of the disks, physicians are interested in labeling
them (e.g. C2/C3, C5/T1, L1/L2, . . . ). Such a labeling allows to quickly determine the
anatomical location without error-prone counting. As manual alignment is both time-
consuming and operator-dependent, it is desirable to have a robust, fully automatic, and
thus reproducible approach.
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An automatic procedure for extracting the spinal geometry faces various challenges,
however. Varying contrasts and image artifacts can compromise the detection of inter-
vertebral disks based on local image features. Thus, a global spine model is required
to robustly identify individual disks from their context. Such a model must also cope
with missed detections and subjects with an unusual number of vertebrae. Finally, the
overall approach should run within seconds to allow clinical application.

In this paper we propose a novel approach that combines efficient local object detec-
tion based on Marginal Space Learning (MSL) [14] with a global probabilistic model
that incorporates pose priors on the nine dimensional parameters spaces that encode
position, orientation and scale of the individual disks. The whole approach follows the
database-guided detection paradigm [4] and can thus be easily trained for spine detec-
tion in CT as well as MR acquired with different sequences.

1.1 Related Work

Recently, the detection and analysis of spinal geometry has regained interest. Boisvert et
al. [1] present a model that describes the statistical variations of the spine in terms of
sequential rigid transformations of the local vertebra coordinate systems. Using princi-
pal component analysis on the Riemannian manifold of rigid transformations they can
extract clinically meaningful eigenmodes. Although relying on the same metrics we
formulate a probabilistic spine model that is applied for detection rather than statistical
analysis.

The detection of intervertebral disks in 3D MR scout scans has recently been ad-
dressed by Pekar et al. [8]. They propose a three-step approach using a special-purpose
2D image filter for disk candidate detection, followed by a customized spine tracking
method and a final labeling step based on counting. Since their approach is designed to
work on MR data only, it might not be easily adapted to CT image volumes.

Schmidt et al. [10] propose a trainable approach based on extremely randomized
trees in combination with a complete graphical model. They employ an A ∗-search based
inference algorithm for exact maximum a posteriori (MAP) estimation. The approach
only considers the position of the intervertebral disks, while we also determine their
orientations and scales. However, their parts-based 3D approach appears most related
to ours and their results based on 3D T1-weighted composed multi-station MR data can
best be compared with ours.

Corso et al. [2] argue that a two-level probabilistic model is required to separate
pixel-level properties from object-level geometric and contextual properties. They pro-
pose a generative graphical model with latent disk variables which they solve by gener-
alized expectation maximization (EM). Although the approach only provides position
estimates and has only been evaluated for lumbar disks in 2D T 2-weighted MR data, it
could in principle be extended to full 3D estimation. But since EM only finds a local
optimum of the expected log likelihood, which can render such an approach very sensi-
tive to initialization, it is not clear how the approach would scale to higher-dimensional
estimation including 3D position, orientation, and scale.
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2 Methods

Our approach can be subdivided into three major steps (cf. Fig. 1). To constrain the
search range for the disks, the spine is roughly located within the given volume first.
Second, disk candidates are generated with high sensitivity using a novel iterative ex-
tension of the MSL approach [14]. Finally, a global probabilistic spine model is used to
select the most likely disk candidates based on their appearance and relative pose and
to determine the appropriate label for each disk.
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Fig. 1. Overall approach.

2.1 Global Probabilistic Spine Model

The typical spatial structure of the spine gives rise to a prior on the relative poses of the
spinal disks. This has been modeled by the factor graph [7] depicted in Fig. 2. We have
chosen a chain model with potentials considering position, orientation and scale of the
spinal disks. Each of the (vector-valued) random variables b 1 to bN represents the pose
of a certain spinal disk, thus bs holds a 3D position ps = [xs, ys, zs]T , a unit quater-
nion qs representing the orientation [6] and an anisotropic scale s s = [sx

s , sy
s , s

z
s]T for

every disk s ∈ {1, . . . , N}. Thus, a distribution over disk poses is defined by the log
probability

log Pr(b1, b2, . . . , bN |Θ, I) =
∑

s

Vs(bs |θs, I) +
∑

s∼t

Vst(bs, bt |θst) − A (1)

where A is the log partition function, I represents the image data and Θ = {θ s, θst}
subsumes all model parameters which are detailed in the following.

The pair potential between two neighboring disk b s and bt combines relative posi-
tion, relative orientation and relative scale terms:

Vst(bs, bt |θst) = Vpos,st + Vrot,st + Vsca,st (2)

Each of the terms is defined as a Gaussian pair potential, i.e.,

Vpos,st(bs, bt) = −1
2

dT
pos(bs, bt)Σ−1

pos,st dpos(bs, bt) (3)

Vrot,st(bs, bt) = −α(qtq
−1
s μ−1

rot,st)
2

2σ2
rot,st

(4)

Vsca,st(bs, bt) = −1
2

dT
sca(bs, bt)Σ−1

sca,st dsca(bs, bt) (5)
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Fig. 2. Factor graph modeling the relation between the spinal disks.

with the rotation angle α(q) = α([q0 q1 q2 q3]) = 2 arccos(q0) and with dpos(bs, bt) =
R−1

s (pt −ps)−μpos,st and dsca(bs, bt) = st − ss −μsca,st where Rs is the rotation
matrix associated with the quaternion qs. In summary, the pair potential parameters
θst are the mean parameters μpos,st, μrot,st, μsca,st and the (co-)variance parame-
ters Σpos,st, σrot,st, Σsca,st. To keep the number of estimated parameters small, both
Σpos,st and Σsca,st are constrained to diagonal matrices.

Both, the position and the scale potentials are defined based on Euclidean distance.
The required mean parameters μpos,st and μsca,st and the covariance matrices Σpos,st

and Σsca,st are determined from the training data. The rotation potential in Eqn. (4)
uses the intrinsic metric α(q) of the corresponding manifold SO 3. Consequently, the
mean rotation is determined as the Frećhet mean [9]. Collecting all instances of a certain
disk pair (bs, bt) into the training sample Pst, the Frećhet mean for the corresponding
rotation potential is determined as

μrot,st = argmin
|q|=1

∑

(bs,bt)∈Pst

α(qtq
−1
s q−1)2. (6)

It can be efficiently computed using the eigen-decomposition proposed in reference [6].
The Gaussian variance is estimated with

σ2
rot,st =

1
|Pst| − 1

∑

(bs,bt)∈Pst

α(qtq
−1
s μ−1

rot,st)
2. (7)

Finally, the single site potentials, which are determined by iterated marginal space
learning as described in the following section, encode image-based likelihood, i.e.,

Vs(bs |θs, I) = log(Pr(bs |θs, I)). (8)

Since the defined potentials are invariant under global rigid transformations (trans-
lation and rotation), the resulting distribution is insensitive towards different poses of
the spine. Furthermore, models capturing only parts of the complete spine can be easily
constructed by just omitting the superfluous disk variables. Since all potential param-
eters are determined independently (i.e., the likelihood decouples), no retraining is re-
quired and a probabilistic model appropriate for the current acquisition protocol, e.g., a
lumbar spine protocol, can be assembled at runtime.

2.2 Iterated Marginal Space Learning

In principle, the defined potentials can be evaluated for every possible position, orienta-
tion and scale. However, performing an exhaustive search on the uniformly discretized
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nine dimensional parameter space (3 position, 3 orientation and 3 scale parameters)
would require evaluating a huge number of single site as well as pair potentials. Such a
direct approach would be computationally very expensive.

Hence, we adopt the MSL paradigm [14], a novel concept that has recently proven
successful in numerous applications [3, 5, 13]. Instead of searching the whole nine di-
mensional parameter space, the MSL paradigm proposes a three-step approach. First
candidate positions for the sought object are collected by using a probabilistic machine
learning classifier to check every voxel location within a defined range. In the second
step, a number of 3D orientation hypotheses that have been derived from the training
set are evaluated by a second classifier using the the most likely object positions from
the first step. Similarly, the last step estimates three scale parameters based on the can-
didates from the second step using a third classifier.

MSL has been designed to detect a single, specific object such as, for example, a
particular organ or landmark. If multiple objects of the same type are to be detected,
as in our case, the described MSL approach may end up with detections for the most
salient disks only, i.e., many disks would be missed. Although the sensitivity could be
improved by drastically increasing the number of considered candidates in each step,
this is not practicable since MSL would then loose its computational efficiency.

We therefore propose a novel extension to MSL, iterative MSL (iMSL), to cope
with multiple objects of the same type (cf. Fig. 3). It is designed to achieve a higher
sensitivity than usual MSL at moderate computational costs. First, the position detec-
tor is evaluated in each voxel of the given image volume region. The N 0 most likely
candidates are collected in the set of initial position candidates P0. Then, the best Npos

(Npos < N0) candidates from P0 are evaluated using the orientation detector whose
top candidates are evaluated using the scale detector. The resulting set D sca contains
disk candidate detections with all estimated parameters. Using pairwise average-linkage
clustering with Euclidean distance, clusters of candidate disks are obtained. The most
likely NA box candidates of each resulting cluster are averaged and added to the set
of detected disk candidates D. After removing all position candidates from P 0 that are
closer than a specified radius R to any of the detections in D, orientation and scale de-
tection are repeated on the remaining position candidates until no position candidates
are left or no new disk candidates are detected.

Like Zheng et al. [14] we employ the probabilistic boosting tree (PBT) classifier us-
ing Haar-like features for the position detector and steerable features for the orientation
and scale detectors.

The probabilistic spine model described in the previous section is discretized us-
ing the disk candidates detected with iMSL. Each random variable b s is transformed
into a discrete random variable where each state represents one of the detected disk
candidates. In order to allow for missed detections, an extra “missing” state is intro-
duced. Note, that iMSL detects disk candidates with high sensitivity which usually re-
sults in more disk candidates than actual disks. The MAP estimate, i.e. the maximum
of Eqn. (1)), provides the optimum assignment of a disk candidate to one of the disk
variables according to the probabilistic spine model. Thus, only those disk candidates
that form a valid spine are selected and are implicitly assigned a suitable label.
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Input: R, N0, Npos, Nort, Nsca

Output: Set D of detected disk candidates
D := {};
P0 := the N0 most likely candidates according to the position detector;
repeat

P0 := {p ∈ P0 : d(p, q) > R ∀q ∈ D};
Dpos := the Npos most likely candidates from P0;
Dort := the Nort most likely candidates from Dpos according to the orientation
detector;
Dsca := the Nsca most likely candidates from Dort according to the scale detector;
Perform hierarchical agglomerative clustering on Dsca ∪ D;
foreach cluster C do

if |C| ≥ NA then
Aggregate the top NA candidates and add the resulting box to D;

end
end

until |P0| = 0 or |D| remains constant;

Fig. 3. Pseudo-code for Iterated Marginal Space Learning (iMSL).

The MAP is efficiently computed by belief propagation where, due to the tree struc-
ture of the factor graph (cf. Fig. 2), a single forward-backward pass yields the exact
solution [7]. An additional speed-up is obtained by constraining the search for disk
candidates to the area of the spine. For this purpose, bounding boxes around the lum-
bar, thoracic and cervical regions of the spine are detected first using the usual MSL
approach as described in reference [14].

3 Experimental Results

3.1 Data

Experiments have been conducted based on 3D T 1-weighted MR volumes (FL3D-VIBE
sequence) from 42 volunteers. About one half of the volumes has been acquired on two
1.5T scanner models (MAGNETOM Avanto and MAGNETOM Espree, Siemens AG,
Erlangen) with TR = 5/4ms, TE = 2ms and a flip angle of 10◦. The other half has
been obtained from two 3T scanner models (MAGNETOM Trio, MAGNETOM Verio,
Siemens AG, Erlangen) with TR = 4/3ms, TE = 1ms and again a flip angle of 10◦.
Each of the volumes was recorded in a two station scan and subsequently combined to
a volume covering the whole spine (approximately 860mm× 350mm× 190mm) with
an isotropic resolution of 2.1mm. Susceptibility artifacts and intensitiy variations due
to magnetic field inhomogeneities were present in the data. No bias field correction was
performed.
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3.2 Results

To obtain ground truth, each intervertebral disk has been annotated with four defined
landmarks. From these, ground truth boxes have been derived for the intervertebral
disks as well as the lumbar, thoracic and cervical spine regions. For disk detection,
iMSL was employed with a cluster radius of R = 6mm, N0 = 3000 initial position
candidates and 500 detection candidates for the remaining detection estimation steps
(Npos = 500, Nort = 500, Nsca = 500).

All evaluation results have been obtained using 10-fold cross validation, ensuring
that training and testing data never stem from the same subject. Every ground truth
annotation for which no disk within a distance of 10mm was detected, was counted as a
missed detection. Overall, intervertebral disks have been detected with a sensitivity of
98.64% and only 7.31% false positives per volume, yielding a positive predictive value
of 99.68%. The overall processing time on a 2.2GHz dual core laptop computer was
between 9.9s and 13.0s and 11.5s on average where most of the time is spent on disk
candidate detection.

The accuracy of the detected intervertebral disks has been evaluated by the position
distance and the angle between the disk plane normals of the detected intervertebral
disks and the ground truth annotation (cf. Table 1). On average, a position error of
2.42mm (about 1 voxel) and an angular error of 3.85 ◦ was obtained.

cervical thoracic lumbar overall
mean 2.09 2.41 2.86 2.42

median 1.84 2.18 2.68 2.19
lower quartile 1.40 1.56 1.88 1.58
upper quartile 2.63 3.00 3.63 3.05

cervical thoracic lumbar overall
4.86 3.38 3.80 3.85
3.89 2.90 3.37 3.17
2.52 1.85 2.08 1.97
6.68 4.48 5.03 5.02

Table 1. Disk detection results using 10-fold cross validation based on 42 T1-weighted MR vol-
umes. Left: position error [mm]. Right: angular error between normals [degree].

Four examples from the MR data set are shown in Fig. 4. The right-most example
shows a case where the volunteer has been instructed to lie down twisted in order to
obtain a spine recording with unusual pose. Still the proposed approach could locate
and label all spinal disks reliably.

Some results on lumbar spine CT are shown in Fig. 5. While the complete proba-
bilistic spine model as well as the iMSL detectors have been trained on CT data showing
various regions of the spine, our approach allows to assemble an appropriate model for
the lumbar spine only without retraining.

The results of our proposed method compare favorably with results presented in
previous works. While with only 6s processing time the approach by Pekar et al. [8]
runs faster than ours, it has lower sensitivity (95.6% before candidate selection) and
does not provide orientation estimates.

Compared with the best cross validation results by Schmidt et al. [10], the results
obtained with our approach are significantly better. While a competitive but still smaller
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Fig. 4. Four examples from the MR data with detection results. Although the volunteer in the
rightmost example lay down in an unusual pose, all intervertebral disks were detected and labeled
correctly.

Fig. 5. Detection results for CT scans of the lumbar spine.
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sensitivity of 97% is reported, they only achieve a position error of 5.1mm. Further-
more, no orientation estimates are provided and the approach takes several minutes to
run. Furthremore, in contrast to Schmidt et al. [10], we did not perform any posterior
search at the positions of missing disks which could further increase our sensitivity.

While at the current state we did not perform systematic testing on data with patholo-
gies (e.g. scoliosis, stenosis, disk degeneration, herniation, desiccation, . . . ), we are
confident that our approach also works for disease cases. In this as well as other appli-
cations we have observed, that the MSL approach is very robust to imaging artefacts and
unusual appearences of the sought object. Using iMSL, increases sensitifity and helps
detect disks with very unusual appearence. Furthermore, since the global spine model
is restricted to candidates provided by the disk detector, scoliotic abnormalities can be
robustly handled. The volunteer with the unusual pose in Fig. 4 provides evidence to-
wards this. Finally, simple retraining of our system with some abnormal cases added,
enables the detectors as well as the prior model to handle them even more reliably.

4 Conclusion and Future Work

In this paper, we have presented a novel approach to the fully automatic detection of 3D
spinal geometry and labeling of the intervertebral disks. The approach uses an iterative
extension of MSL for disk candidate detection along with an anatomical network that
incorporates spatial context in form of a prior on the nine dimensional disk poses. Since
the entire approach is learning-based, it can be trained for CT and MR alike.

Using 42 MR volume data sets, superior sensitivity and accuracy was obtained than
in previous works. With an overall processing time of only 11.5s, the approach is also
comparably fast and can be used as routine procedure for the automatic planning of
scan geometries. Results on CT data show that the proposed approach can be adapted
to different modalities. For this purpose, the graphical model can be adjusted to handle
partial spine recordings that are commonly acquired with CT.

Apart from automatic scan alignment, the proposed system for detecting and la-
beling the intervertebral disks can be part of a computer-aided diagnosis system for
anaylizing pathologies of the intervertebral disks or the vertebrae. The detected bound-
ing boxes could, for example, be used for initializing a detailed vertebra segmentation
algorithm with subsequent analysis. Furthermore, the proposed ssystem can support se-
mantic body parsing and semantic annotation to automatically generate semantic loca-
tion description frequently used by physicians for reporting [12, 11]. Both applications
will be considered in future work.
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