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Abstract
The engineering of computer vision systems that

meet application speci�c computational and accuracy
requirements is crucial to the deployment of real-life
computer vision systems. This paper illustrates how
past work on a systematic engineering methodology
for vision systems performance characterization can be
used to develop a real-time people detection and zoom-
ing system to meet given application requirements. We
illustrate that by judiciously choosing the system mod-
ules and performing a careful analysis of the inuence
of various tuning parameters on the system it is pos-
sible to: perform proper statistical inference, automat-
ically set control parameters and quantify limits of a
dual-camera real-time video surveillance system. The
goal of the system is to continuously provide a high res-
olution zoomed-in image of a persons head at any loca-
tion of the monitored area. An omni-directional camera
video is processed to detect people and to precisely con-
trol a high resolution foveal camera, which has pan, tilt
and zoom capabilities. The pan and tilt parameters of
the foveal camera and its uncertainties are shown to
be functions of the underlying geometry, lighting con-
ditions, background color/contrast, relative position of
the person with respect to both cameras as well as sen-
sor noise and calibration errors. The uncertainty in
the estimates is used to adaptively estimate the zoom
parameter that guarantees with a user speci�ed proba-
bility, �, that the detected person's face is contained and
zoomed within the image 1.

1 Introduction
Rapid improvement in computing power, cheap sens-

ing and more exible algorithms are facilitating in-
creased development of real-time video surveillance and
monitoring systems [6 ]. The deployment of video un-
derstanding systems in certain critical applications in
the real-world can be done only if performance guar-
antees can be provided for these systems. This paper
illustrates the use of systematic engineering methodol-
ogy outlined in [13] to design and validate a real-time
system with given computational and accuracy con-
straints. W e show that by judicious choice of the inter-

1Note, the higher the probability � the more conservative the

zoom factor would be. We set � to 0.99 in our current system.

mediate transforms (componen ts of the system) along
with a careful analysis of the inuence of various pa-
rameters in the system, it is possible to perform proper
statistical inference, automatically set the control pa-
rameters and quantify the limits of a dual-camera real-
time video surveillance system.

The following section discusses a review of method-
ologies for analysis and synthesis of vision systems and
outline our approach. Subsequent sections describe
surveillance system example, statistical modeling and
performance analysis, validation, and experimental re-
sults.

2 Statistical Methodologies for Vision
System Design

Past works have addressed methodological issues and
have demonstrated performance analysis of components
and systems ([5], [4], [8], [16]). However, it is still an
art to engineer systems that meet a given application
requirement in terms of computational speed as well as
accuracy. The trend in the community is to empha-
size statistical learning methods, more appropriately
Bayesian methods for solving computer vision prob-
lems (See for example [9 ]). However, there still exists
the problem of choice of the right statistical likelihood
model and right priors that suit an application. Even if
this were possible, it is still computationally infeasible
to satisfy real-time application needs.

Sequential decomposition of the total task into man-
ageable sub-tasks (with reasonable computational com-
plexity) and the introduction of pruning thresholds is
the common way to tackle the problem. This intro-
duces problems because of the di�culty in approximat-
ing the probability distributions of observables at the
�nal step of the system so that Bayesian inference is
plausible. This approach to perceptual Bayesian infer-
ence has been attempted, (see for example [13 ], [7]).
[13]'s work places more emphasis on performance char-
acterization of a system, while [7] attempted Bayesian
inference (using Bayesian networks) for visual recogni-
tion. The idea of gradual pruning of candidate hypothe-
ses to tame the computational complexity of the esti-
mation/classi�cation problem has been presented in [1].
Note that none of the works identify how the sub-tasks
(e.g. feature extraction steps) can be chosen automati-
cally given an application context. There has been prior
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work to identify system or module con�gurations that
best perform a given task using contextual models of
algorithms.

Our approach involves the following key steps (based
on [13]):

System Con�guration choice: The �rst step is to
choose the modules for the system. This is done by
use of context (in other words: application speci�c
prior distributions for object geometry, camera geome-
try and error models, illumination models). Real-time
constraints are imposed by choosing pruning methods
or indexing functions that restrict the search space for
hypotheses. The choice of the pruning functions are
derived from the application context and prior knowl-
edge. The choice of the indexing function is not neces-
sarily critical, except that the only criterion that needs
to be used is that it be of the form that simpli�es com-
putation of the probability of false hypothesis or the
probability of missing a true hypotheses as a function
of the tuning constants.

Statistical modeling and Performance Characteriza-
tion: The second step involves the derivation of statisti-
cal models for errors at various stages in the chosen vi-
sion system con�guration, so that one can quantify the
indexing step and to tune the parameters to achieve a
given probability of miss-detection and false alarm rate.
In addition, we perform a validation of theoretical mod-
els for correctness (through Monte-Carlo simulations)
and closeness to reality (through real experiments). For
more details on the methodology see [13 ].

Hypotheses veri�cation and parameter estimation:
Bayesian estimation is used to evaluate candidate hy-
potheses and estimate object parameters by using a
likelihood model, P (measurementsjhypothesis) , that
takes into account the e�ects of the pre-processing steps
and tuning parameters. In addition, the uncertainty of
the estimate is derived in order to predict system per-
formance.

The rest of the paper is organized as follows. Section
3 describes an overview of the surveillance system con-
cept, the mathematics governing the geometry of the
people detection and zooming problem, system mod-
ules and statistical characterization. Section 4, 5, and
6 describe the validation of the models. Real exper-
iments point out the validity of the models in indoor
settings. W e conclude in section 7.

3 System Description
The task of the two camera surveillance system is to

continuously provide zoomed-in high resolution images
of the face of a person present in the room. These im-
ages represent the input to higher-level vision modules,
e.g. face recognition, compaction and event-logging
(not discussed in this paper).

3.1 Application Requiremen ts:
The application requirements are as follows: 1) real-

time performance on a low-cost PC 2, 2) person miss-
detection rate of xm, 3) person false-alarm rate of xf , 4)
adaptive zooming of person irrespective of background
scene structure (with maximal possible zoom based on

2Not all system resources in the PC are allocated for visual

processing.

uncertainty of person attributes estimated (e.g. loca-
tion in 3D, height, etc), with performance of the result
characterized by face resolution attainable in area of
face pixel region (as a function of distance, contrast
between background and object, and sensor noise vari-
ance and resolution) and bias in the centering of the
face. In addition to these requirements, the following
assumptions can be made about scene structure: (e.g)
the scene illuminant consists of light sources with sim-
ilar spectrum (e.g. identical light sources in an o�ce
area), the number of people to the detected and tracked
is bounded, the probability of occlusion of persons (due
to other persons) is small.

3.2 System Hardware and Software Con-
�guration:

To continuously monitor the entire scene we use an
omnidirectional sensor (OmniCam [11 ]) mounted below
the ceiling. Omni-images are used to detect and esti-
mate the precise location of a given person's foot in the
room and this information is used to identify the pan,
tilt and zoom settings for a high-resolution foveal cam-
era. Figure 1 shows the system's interface: the overview
image, and the high resolution zoomed image of the de-
tected person's face.

Figure 1: Top: omnidirectional overview image. Red sec-
tor: region of interest. Radial lines (green and red) show
detected persons. Crosses denote estimated foot/head posi-
tion. Insert: foveal camera view.

Before we describe the details of how the applica-
tion requirements translate to the design of individual
modules, we discuss the prior distributions (of the 3D
scene) reasonable for the given application and iden-
tify how these priors induce image priors. The choice
of the various estimation steps in the system are mo-
tivated from these image priors and real-time require-
ments. The camera control parameters (pan and tilt)
are selected based on the location estimate and its un-
certainty (that is derived from statistical analysis of the
estimation steps) so as to center the person's location
in the image. The zoom parameter is set to maximum
value possible so that the camera view still encloses the
persons head within the image.

3.2.1 Priors Camera models, Illumination

models

The general Bayesian formulation of the person detec-
tion and location estimation problem does not suit the
real-time constraints imposed by the application. Our
approach is to use this formulation only after a prun-
ing step that rules out a majority of false alarms by
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designing an indexing step motivated by the 2D image
priors (region size, shape, intensity characteristics) in-
duced by the prior distribution in the 3D scene. The
prior distributions for person shape parameters: size,
height, and his/her 3D location are reasonably simple.
These priors on the person model parameters induce
2D spatially variant prior distributions in the projec-
tions (e.g. the region parameters for a given person
in the image depends on the position in the image)
whose form depends on the camera projection model
and the 3D object shape.3. In addition to shape pri-
ors, the image intensity/color priors are of importance
in our application. Typically we do not assume any-
thing about the object intensity (e.g. homogeneity of
object since people can wear variety of clothing and the
color spectrum of the light source is not necessarily con-
strained). However, in the surveillance application, the
background is typically assumed to be a static scene (or
a slowly time varying scene) with known background
statistics (Gaussian mixtures are typically used to ap-
proximate these densities). To handle shadowing and
illumination changes, these distributions are computed
after the calculation of an illumination invariant mea-
sure from a local region in an image. The prior distri-
bution of the spectral components of the illuminants in
our application are assumed to have same but unknown
spectral distribution. Finally, the noise model for the
CCD sensor noise is to be speci�ed. This is typically
chosen to be i.i.d. zero mean Gaussian noise in each
color band.

3.2.2 System Software Con�guration

The software is composed of four functional modules:
calibration, illumination-invariant measure computa-
tion at each pixel, indexing functions to select sectors
of interest for hypothesis generation, statistical esti-
mation of person parameters (e.g. foot location esti-
mation), and foveal camera control parameter estima-
tion. Figure 2 illustrates the step by step transfor-
mations applied to the input. The input color image,
R̂(x; y); Ĝ(x; y); B̂(x; y), is transformed (T : R3 ! R2)
typically to compute an illumination invariant measure
r̂c(x; y); ĝc(x; y). The statistical model for the distribu-
tion of the invariant measure is inuenced by the sensor
noise model and the transformation T (:). The invari-
ant measure mean (Bo(x; y) = (rb(x; y); gb(x; y))) and
covariance matrix �Bo

(x; y) , is computed at each pixel
(x; y) from several samples of R(x; y); G(x; y); B(x; y)
for the reference image of the static scene. A change

detection measure d̂2(x; y) image is obtained by com-
puting the Mahalanobis distance between the current
image data values r̂c(x; y); ĝc(x; y) and the reference im-
age data Bo(x; y). This distance image is used as input
to two indexing functions  1() and  2().  1() discards
the radial lines � by choosing hysteresis thresholding pa-
rameters that satisfy a given combination of probability
of false alarm and miss-detection values, while 2() dis-
cards segments along the radial lines in the same man-
ner. The result is a set of regions with high probability
of signi�cant change. At this point we employ our full

3For this applicationwe found that modeling the person as an

upright cylinder is a reasonable approximation.

blown statistical estimation technique that uses the 3D
model information, camera geometry information, pri-
ors on objects, shape, and 3D location to estimate the
number of objects and their positions. The last step is
to estimate the control parameters for the foveal camera
based on the location estimates and uncertainties.

The following sub-sections describe the system, the
statistical models, rationale for indexing steps chosen
based on application priors, foot position estimation
scheme and control parameter selection scheme. First,
we outline the omni-directional/pan-tilt camera geo-
metric relations.
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Figure 2: Block diagram: boxes with rounded corners rep-
resent transformations while boxes represent data objects.

3.2.3 Calibration and Geometry

The projection model for the two cameras are discussed
in this section. W e denote the geometric model param-
eters as follows (see Figure 3, 4):
� Ho height of OmniCam above oor (inches)
� Hf height of foveal camera above oor (inches)
� Hp person's height (inches)
� Rh person's head radius (inches)
� Rf person's foot position in world coordinates
(inches)

� Dc on oor projected distance between cameras
(inches)

� p(xc; yc) position of OmniCam center, (in omni-
image) (pixel coordinates)

� rm radius of parabolic mirror (in omni-image) (pix-
els)

� rh distance person's head { (in omni-image) (pix-
els)

� rf distance person's foot { (in omni-image) (pixels)

� # - angle between the person and the foveal camera
relative to the OmniCam image cen ter (Please see
�gure 4).
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� � - angle between the radial line corresponding to
the person and the zero reference line (please see
�gure 4).

where capital variables are variables in 3D, and small
variables are given in image coordinates. During the
calibration step (combination of real world and image
measurements)Ho;Hf ; Dc; rm and p(xc; yc) are initial-
ized.

Using the geometric features of OmniCam (see [11 ]),
and under the hypothesis that the person is standing
upright, the relationship between rf respectively rh and
Rp can be shown to be:

Rp = aHo with a = 2
rmrf
r2m � r2f

(1)

Rp = b(Ho �Hp) with b = 2
rmrh
r2m � r2h

(2)

Let �, and � be the foveal camera control parameters

OmniCam

H

Ceiling

Person
Image Plane

α

Foveal

Mirror

f

k

Floor

r

p

Parabolic

p=

H

Camera
Blind Spot

h

p

Dc

rm

D

rf

r

Rp

H0

Figure 3: Geometry (viewed from the side) in real world
and omni-image coordinates. OmniCam is looking into the
parabolic mirror at the ceiling.

for the tilt respectively pan angle, and Dp the projected
real world distance between the foveal camera and the
person. Assuming, the person's head is approximately
located over his/her feet, and using basic trigonometry
in Figure 3 and 4, it can easily be seen that Dp, �, and
� are equal to:

Dp =
q
D2
c + R2

p � 2DcRp cos(#) (3)

tan(�) =
Hp�Rh�Hf

Dp
; sin(�) = Rp

Dp
sin(#) (4)

where # is the angle between the person and the foveal
camera relative to the OmniCam position.

θ 0Dc

R pDp

Person

Foveal Camera

β

θ

Omni Camera

ϑ

Figure 4: 3D geometry, viewed from atop.

3.2.4 Illumination Invariant Measure Estima-

tion

This step is the module that takes in as input the cur-
rent color image (R̂(x; y), Ĝ(x; y); B̂(x; y)), normalizes
it to obtain (r̂c(x; y), ĝc(x; y)) and compares it with
the background statistical model (Bo(x; y);�Bo

(x; y))

Figure 5: Covariance image for �r̂;r̂. Bright regions in
the normalized space denote high variance; these regions
correspond to dark areas in the RGB image.

to produce an illumination invariant measure image
d̂2(x; y). This section illustrates the derivation of the

distribution of d̂2(x; y) given that the input image mea-

surements R̂; Ĝ and B̂ are Gaussian with mean R;G;B,
and identical standard deviation �.

As indicated in section 3.2.1 the illumination prior
assumption is that the scene contains multiple light
sources with the same spectral distribution with no
constraint on individual intensities. To compensate
for shadows which are often present in the image we
employ a shadow invariant representation of the color
data ([17], pp.347). Let S = R + G + B. The illumi-
nation normalizing transform T : R3 ! R2 appropriate
to our assumption is: r = R

R+G+B ; g =
G

R+G+B It can
be shown that, the uncertainties in the normalized es-
timates r̂ and ĝ are dependent not only on sensor noise
variance, but also on the actual true unknown values
of the underlying samples (due to the non-linearities in
the transformation T (:)). Based on the assumption of
a moderate signal to noise ratio (i.e. � � S), we ap-
proximate (r̂; ĝ)T as having a normal distributed with
pixel-dependent covariance matrix�

r̂
ĝ

�
� N

��
r
g

�
;�r̂;ĝ

�

with �r̂;ĝ =
�2

S2

 
1� 2R

S
+ 3R

2

S2
�R+G

S
+ 3RG

S2

�R+G
S

+ 3RG
S2

1� 2G
S

+ 3G
2

S2

!
(5)

The values of �2r̂;r̂ are shown in Figure 5 for an entire
OmniCam frame. Note, that in the normalized space
the covariance matrix for each pixel is di�erent: Bright
regions in the covariance image correspond to regions
with high variance in the normalized image. These re-
gions correspond to dark regions in RGB space.

Since the covariance matrices in the normalized
space are pixel-dependent we calculate the test statis-
tic, i.e. the Mahalanobis distance d2, that provides a
normalized distance measure of a curren t pixel being
background. Let �̂b be the vector of mean rb, and
mean gb at a certain background position (mean bb is
redundant, due to normalization), and �̂c be the corre-
sponding vector of the current image pixel. Since�

r̂c � r̂b
ĝc � ĝb

�
� N

��
rc � rb
gc � gb

�
;�r̂c;ĝc + �r̂b;ĝb

�
(6)

we can de�ne for each pixel a metric d2 which corre-
sponds to the probability, that �̂c is background pixel:
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d̂2 = (�̂b � �̂c)
T
(2�r̂b;ĝb )

�1
(�̂b � �̂c) (7)

For background pixels, d̂2 is approximately �2 dis-
tributed with two degrees of freedom. For object pixels
d̂2 happens to be non-central �2 distributed with two
degrees of freedom, and non-centrality parameter c.

3.2.5 Indexing for Hypothesis generation

To address real-time computational requiremen ts of the
application it is crucial to identify sectored segments in
the image that potentially contains people of interest.
To perform this indexing step in a computational e�-
cient manner we de�ne two index functions  1() and
 2() that are applied sequentially as shown in the sys-
tem block diagram (2). Essentially  1() and  2() are

projection operations. For instance, de�ne d̂2(R; �) as
the change detection measure image in polar coordi-
nates with coordinate system origin at the omni-im age
center p(xc; yc). Then,  1() is chosen to be the projec-

tion along radial lines to obtain M̂� , the test statistic
that can be used to identify changes along a given di-
rection �. This test statistic is justi�ed by the fact
that the object projection is approximated by a line-set
(approximated as an ellipse) whose major axis passes
through the omni-image center with a given length dis-
tribution that is a function of the radial foot position
coordinates of the person in the omni-image. This sec-
tion derives the expressions for the probabilities of false
alarm and misdetection at this step as a function of the
input distributions for d̂2(R; �), the prior distribution
for the expected fraction of the pixels along a given ra-
dial line belonging to the object, and the noncentrality
parameter of d̂2(R; �) in object locations.

Let Lxc;yc�
be a radial line trough p(xc; yc), param-

eterized by angle �, and M̂ (�) =
P

r
d2�(r) denote the

accumulative measure of d2 values at image position
p(�; r) parameterized by angle � and distance r in a po-
lar coordinate system at p(xc; yc). Applying Canny's

hysteresis thresholding technique ([13]) on M̂ (�), pro-
vides the sectors of signi�cant change bounded by left
and right angles �l respectively �r . Let rm be the to-
tal number of pixels along a radial line Lxc;yc� , and k
be the expected number of object pixels along this line
(The distribution of k can be derived from the projec-
tion model and the 3D prior models for person height,
size, and position described previously, see [15]). The
distribution of the cumulative measure is:

Background M� � �22rm(0) (8)

Object M� � (rm � k)�22(rm�k)(0) + k�22k(c)(9)

with c 2 [0 : : : inf).
To guarantee a false-alarm rate for false sectors of

equal or less than xf% we can set the lower threshold
Tl so that Z Tl

0

�2
M̂�

(�)d� = 1� xf% (10)

To guarantee a misdetection rate of equal or less than
xm%, theoretically, we can solve for an upper threshold
Tu similarly by evaluating the distribution in eqn. (9).
Note that k is a function of Hp; Rf , and c (see [15]).

Figure 6: Area of signi�cant change (Left and right lines
correspond to �l and �r; Center line denotes the angular
position �̂f .) Inserts show corresponding radial pro�le M�.

Therefore we would need to know the distributions of
Hp; Rf , and c to solve for Tu. Unfortunately, we cannot
make any assumptions about the distribution of non-
central parameter c, so we have to resort to the use of
a LUT Tu(xm) generated by simulations instead.

The second index function  2() essentially takes as
input the domain corresponding to the radial lines of
interest and performs an pruning along the radial lines
R. This is done by the computation of �d2�f (r) the inte-

gration of the values d̂2() along �f = � + �=2 (within
a �nite window whose size is determined by the prior
density of the minor axis of the ellipse projection), for
each point r on the radial line �. The derivation of the
distribution of the test statistic and the choice of the
thresholds are exactly similar to the above step.

3.2.6 Hypothesis and Estimation Step

We have derived the distributions of the d̂2 image
measurements, and have narrowed our hypotheses for
people location and attributes. The next step is
to perform the Bayes estimation of person locations
and attributes. This step uses the likelihood models
L(d̂2jbackground) and L(d̂2jobject) along with 2D prior
models for person attributes induced by 3D object pri-
ors P (Rp); P (H); P (�) and P (S). In our current appli-
cation we make use of the fact that the probability of
occlusion by persons is small to assert that the prob-
ability of a sector containing multiple people is rather
small.4 The center angle �f of a given sector would
in this instance give us the estimate of the major axis
of the ellipse corresponding to the person. It is then
su�cient to estimate the foot location of person along
the radial line corresponding to �f . The center angle
�f of the sector de�nes the estimate for the angular
componentof the foot position, see Figure 6. We ap-
proximate �̂f to be normal distributed with unknown
�f and variance ��f . �f 's are estimated as the center
positions of the angular sectors given by  1(). The stan-
dard deviation of a given estimate is currently obtained
by assuming that the width of the angular sector gives
the 99 percentile con�dence interval.5

Given the line �f it is necessary to estimate the foot
position of the person along this radial line. To �nd

4Estimation when occlusions occur in the OmniImage within

a sector is a subject of future research.
5We observe that this estimate is an upper bound of the true

standard deviation and our experiments have indicated that true

variance is a small quantity for a wide range of person positions

and background to person contrasts.
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Figure 7: Top left: Bayes error as function of hypothe-
sized foot position r0f , here: most probable foot position at
position rf = 47. Bottom left: Projected person length k
as function of rf . Note: k(r0f = 47) = 43. Right: Pro-

�le �d2�f (r): by minimizing Bayes error, responses in interval

[43...90] are classi�ed as object responses.

this estimate and variance of the radial foot position
rf we choose the best hypothesis for the foot position
that minimizes the Bayes error.6 Let P (hijm) denote
the posterior probability to be maximized, wherehi de-
notes the ith out of multiple foot position hypotheses
and m the measurements ( �d2�f (r)), that are statistically

independent; hyper-script b or o denotes background re-
spectively object:

P (hijm)

= P (hbi jm
b)P (hoi jm

o) = P (hbi jm
b)
�
1� P ( �hoi jm

o)
�

=
p(mbjhbi )P (h

b
i)

p(mb)

p(mo)� p(moj �hoi )P (
�hoi )

p(mo)
(11)

where p denotes the density function. P (hijm) becomes
maximal for maximalp(mbjhbi) and minimalp(moj �hoi ),
so that

rf =
argmax

r0f
log

�
p(mbjhbi)

p(moj �hoi )

�
= (12)

argmax

r0
f

0
@r0f�1X

r=0

�d2�f (r) +

rmX
r=rh(r0f )

�d2�f (r) �

rh(r
0

f )�1X
r=rf

�d2�f (r)

1
A

Finally, we estimate the uncertainty in the foot position
rf . We do not have a close form for that yet, though,
our approach provides us with the pdf's up to the latest
step in the algorithm. At this point it is a�ordable to
simulate the distribution of rf and generate �2r̂f via per-

turbation analysis, since only few estimates with known
distributions are involved in few operations. Experi-
ments show, that one can approximate r̂f as Gaussian
distributed with unknown mean rf , and variance �2r̂f .

6The prior distributionof person heights and sizes are assumed

to be Gaussian. While we actually need to estimate the person

height as well as width on the projection using the Bayesian for-

mulation we use the assumption that the variance of the height

and size is small and just �x Hp and Sp as constants. The ge-

ometric transformations are still taken into account to identify

2D projection lengths as a function of radial position along the

radial line.

∆β1 = 0

unequal to zero

Person at Position 2

Omni Camera

Foveal Camera
Pointing to Position 1 / 2

Person at Position 1

∆Rf

∆β

Rf

2

Rf

∆ fR
tan α

α

v

Dp

H f

Rh

σf

v

H p

pD’
γ

Figure 8: Left: local dependency - same uncertainty in
Rf , di�erent ��. Right: geometric relations for vertical
angle of view calculation (view from the side).

3.2.7 Foveal Camera Con trol Parameter Esti-

mation

Once the foot position p(�f ; rf ) is known, we can ap-
ply formula 1{ 4 to estimate 3D distances Rp; Dp, and
foveal camera control parameter tilt�, pan � and zoom
factor z.

Figure 8 (left) illustrates how uncertainties in 3D
radial distance Rp inuence the foveal camera control
parameters.

We have seen that the foot position estimate er-
ror can be approximated as a zero mean Gaussian
random variate. For the following error propagation
steps we will assume that r̂m, r̂p, Ĥo, Ĥp, Ĥf , and

D̂c are Gaussian random variables with true unknown
means rm; rp;Ho, Hp, Rh, Hf , and Dc, and variances
�2r̂m ; �

2
r̂p
; �2

Ĥo

, �2
Ĥp

, �2
R̂h

, �2
Ĥf

, and �2
D̂c

respectively (all

estimated in the calibration phase). By applying lin-
earization in the geometric transformations, and mak-
ing independence assumptions on variables where appli-
cable (see sections 4, 5) it is easy to show (see [15]) how
the estimates and its uncertainties propagate through
the geometric transformations outlined in section 3. For
limited space reason we only print the �nal results for
the uncertainties in tilt �, and pan �, which were used
to calculate the zoom parameter z in section 3.2.7. (for
more details, and derivations of �2

R̂p

; �2
D̂p

see [15]):

�2tan �̂ =
�2
D̂p

D4
p

�
(Hp �Rh �Hf )

2 + �2
Ĥp

+ �2
R̂h

+ �2
Ĥf

�

+
�2
Ĥp

+ �2
R̂h

+ �2
Ĥf

D2
p

(13)

�2
sin �̂

=
Rp

2�
#̂
2 cos2 #

Dp
2 +

�
sin2 #+ �

#̂
2 cos2 #

�
�

�

 
Rp

2�D̂p

2

Dp
4 +

�R̂p

2

Dp
2 +

�R̂p

2�D̂p

2

Dp
4

!
(14)

Given the uncertainties in the estimates, we can de-
rive the horizontal and vertical angle of view for the
foveal camera, h respectively v, which map directly
to the zoom parameter z. Figure 8 (right) shows the
geometric relationships for the vertical case. Following
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equation provides the vertical angle of view.

v = 2 atan

0
@ R̂h + fv�tan �̂D̂

0

pq
R̂2
h + D̂02

p

1
Awith D̂0

p =
D̂p

cos�
(15)

where factor fv solves for
R fv

2

0 N (0; 1)d� = xz
2 % given

user speci�ed con�dence percentile xz that the head is
display in the foveal frame. Similar derivations apply
for the horizontal case.

4 Validation of Assumptions
We veri�ed the correctness of our theoretical ex-

pressions and approximations through extensive simula-
tions. Due to lack of space, we only show plots validat-
ing expressions for illumination normalization (eqn. 5,5,
Figure 9), and for foveal camera control parameters
(eqn. 13, 14, Figure 10). This validation assumes cor-
rectness of the underlying statistical models. Valida-
tion of the models on real data is done in section 5. In
the following we include plots showing theoretically pre-
dicted answers and the di�erences between these predic-
tions and simulated results, based on 10000 samples of
normal distributed parameters. For demonstration pur-
pose, parameters that represent the worst-case system
behavior were chosen (see [15] for details). The �gures
show results obtained by using the following settings
for the standard deviations: �Ĥo

= 1cm, �Ĥp
= 5cm,

�Ĥf
= 1cm, �# = 1�, �Dc

= 10cm � = 1 graylevel. For

validation of the distribution of the normalized color
values, we used a value for B = 50 while varying R and
G values in the range 0 through 255 (see Figure 9).

In reality uncertainties are calculated on-line from
the current data and are functions of the object, back-
ground and location of the object as well as the sensor
noise.

Figure 9: Color normalization: Variance �2r̂ + �2ĝ + �2r̂ĝ:

Theoretical values (left) and di�erence between simulation
and theory (right).

Plots show the correctness of the derivations and ap-
proximations, give insights of the system limitations de-
pending on user de�ned tolerances, and show, where
the assumptions hold. By examining parametric ex-
pressions for uncertainties (eqn. (13),(14), see also [15])
the di�erences between simulation, and derived predic-
tion can be explained by the linearization error, where
the assumption of low signal to noise ratio breaks.

5 Experime ntal Validation of Models
The correctness of our models is veri�ed by com-

paring ground truth values against module estimates
for mean and variance of the running system. First,
we marked eight positions P1 � P8 of di�erent radial
distances and pan angles (Figure 11 upper left image).

Figure 10: Variances of sin(�̂) and tan(�̂) plotted as a
function of person foot position in omni-image coordinates.
Left: Theoretical. Right: Di�erence between simulation and
theory.

Positions, and test persons were chosen to simulate dif-
ferent positions, illumination, and contrast. For lim-
ited space reasons we only show the table for the �-
nal foveal camera control parameters for one person.
Ground truth values for the mean values were taken by
measuring tilt angle �, and pan angle � by hand, and
are compared against the corresponding mean of system
measurements estimated from 100 trials per position
and person. The variances calculated from the system
estimates for pan and tilt angle are compared against
the average of the corresponding variance-estimates cal-
culated based on the analysis. The comparison be-
tween system output and ground truth demonstrates
the correctness of the model assumptions in the statis-
tical modeling process (see Table 1).

Table 1: Validation. First two lines show the predicted
and experimental variances for the tilt angle, respectively.
Next two lines correspond to pan angle.

�10�5 P1 P2 P3 P4 P5 P6 P7 P8

�̂2tan �̂ 2.10 2.12 1.57 1.40 1.35 1.31 1.31 1.32
~�2tan �̂ 2.05 2.04 1.60 1.34 1.36 1.32 1.40 1.31

�̂2
sin �̂

28.9 26.1 21.3 17.9 15.3 15.2 18.4 20.1

~�2
sin �̂

25.9 24.1 19.5 15.1 14.9 15.0 18.1 19.3

6 System P erformance
In this section we demonstrate the performance of

the running system. Figure 11 demonstrates how the
system can precisely track7 a person's face and zoom,
while guaranteeing that the face is in the frame. The
output of the foveal camera proved su�cient as input
for face recognition algorithms (not discussed in this
paper.)

We now illustrate, how the statistical analysis is used
to optimize the camera setup. The formulas 13, and 14
suggest that the con�guration that minimizes these un-
certainties is the one with large inter-camera distance

7The tracker uses a simple nearest neighbor prediction.
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Figure 11: Top left: omni-image; tracked path, positions
at which snapshots were taken. Left right, top down: cor-
responding foveal image.

Figure 12: Inuence of camera positioning on global and
local performance. Top: variance � ^sin �. Bottom: corre-
sponding contours. Left: close distance Dc between foveal
camera and OmniCam. Right: larger distance, better per-
formance.

Dc and foveal camera heightHf equal to the mean per-
son eye-level height Hp. Figure 12 illustrates a compar-
ison of the uncertainties in the pan angle for this setup
(right plots), versus a camera position setup with lower
distance Dc (left plots). Similar results are obtained for
the tilt angle (omitted for limited space reasons).

The system proved reliable in terms of detection and
zooming over longtime experiments within the opera-
tional limits denoted by the outer line of the upper right
contour plot in Figure 11. Outside, the zooming became
imprecise, and did not match the user de�ned tolerances
in terms of zoom precision. This is anticipated, since
the assumptions do not hold for these regions as one
can see from the plots in section 4.

Figure 12 illustrates how the setup of the system
(here placement of foveal camera) inuences precision
globally and locally. Note preferred directions of low
uncertainties (top right to lower left in upper plots).
This can be used to adapt the system to user de�ned
accuracy constraints in certain areas of the room.

7 Conclusion and Future W ork
This paper demonstrated how by careful statistical

modeling it is possible to develop and quantify a sys-
tem to perform a visual surveillance task. The essence
of the message is that by careful decomposition of the
global task into sub-pieces, statistical characterization
of the system, and incorporation of application speci�c
priors in various stages of the system, it is possible to
build computationally e�cient, but yet statistically well
motivated systems. To present this essence it was nec-
essary to make certain simplifying priors and illustrate
a working system in a constrained environment8. Ex-
tensive amount of real and synthetic data experiments
were used to validate the models derived. Although
we mainly discussed person detection and location esti-
mation alone, the actual video surveillance system has
tracking algorithms implemented. W e hope to address
systematic characterization of the tracking algorithm in
the next paper.
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