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Abstract

In this paper, we present the logarithmic total variation (LTV) model for face recognition
under varying illumination, including natural lighting condition, where we can hardly know
the strength, the directions, and the number of light sources. The proposed LTV model has the
capability to factorize a single face image and obtain the illumination invariant facial structure,
which is then used for face recognition. The merit of this model is that neither does it require
any lighting assumption nor does it need any training process. Besides, there is only one
parameter which could be easily set. The LTV model is able to reach very high recognition
rates on both Yale and CMU PIE face databases as well as on a face database containing 765
subjects under outdoor lighting conditions.

Keywords: 1.5.4.d Face and gesture recognition ; 1.5.4.m Signal processing; |.4 Image Processing

and Computer Vision; 1.5.2.c Pattern analysis;

1 Introduction

lllumination normalization is an important task in the field of computer vision and pattern recog-
nition. One of its most important applications is face recognition under varying illumination. It
has been proven both experimentally [1] and theoretically [47] that in face recognition the differ-
ences caused by varying illumination are more significant than the inherent differences between
individuals. Various methods have been proposed for face recognition, including Eigenface [43],
Fisherface[5], Probablistic and Bayesian Matching [26], subspace LDA [48], Active Shape Model
and Active Appearance Model [23], LFA[28], EBGM[45], and SVM[17]. Nevertheless, the per-
formances of most existing algorithms are highly sensitive to the illumination variation. To attack



the problem of face recognition under varying illumination, several methods have been proposed.
The predominant ones include the Illlumination Cone methods [6][14], spherical harmonic based
representations [31] [4] [46], quotient image based approaches [36] [35] [44], and correlation fil-
ter based method [34]. However, not only are the performances of most of them still far from
ideal, many of these methods require either knowledge of the light source or a large number of
training data, which are not practical for most real world scenarios. Let's take some of the most
recent methods as examples: Lee et alre points of ligh{24] method needs perfect alignment
between different images, Savvides et algrefaced34] needs several training images to reach
perfect results, and the recognition rate of Wang et s¢l§quotient imag@4] still has room for
improvement.

In addition to methods designed for face recognition, there have been methods developed
to remove lighting effects on general images. Most generally, an image)) is regarded as a
product of reflectancé& and the illuminance effect [19]. Getting R from an input imag€d is
regarded as an ill-posed problem [32]. Assuminghanges slowly compared & homomorphic
filtering [39] separates slow and fast changes by applying high-pass filter on the log of the image.
Horn et al. [18] took Laplacian of the log of the image to remdéveHowever, the assumption is
not true for images under natural lighting conditions, where shadow boundaries may create abrupt
changes in., and hence these methods would create "halo” artifacts.

Similarly, Land’s "Retinex” model [22] estimated the reflectaitas the ratio of the image
using the low pass estimatbr Jobson et al. [20] reduced the "halo” artifacts by combining several
low-pass copies as the estimation/af To reduce the "halo” artifacts, discontinuity preserving
filtering can be used to estimalfe such as anisotropic diffusion [30], bilateral filtering[41], or
mean shift filtering [11]. Relevant works include LCIS by Tumblin et al. [42] using anisotropic
diffusion, Durand et al. [12] using bilateral filtering, and perceptually adjusted weighted least
squares within a variational framework by Brajovic [7, 8]. Kimmel et al. [21] and Elad et al.
[13] provided good reviews of Retinex and related illumination compensation methods. Some face
recognition results of relevant works were reported in [16, 38]. These works have reduced the halo
artifacts a lot though not entirely. However, the parameter selection of these models are mostly
empirical and complicated, and/or the number of parameters can be as large as around eight [42].

In this paper, we propose a novel model utilizing the TW¥+model [9]to factorize an image,



which has some unique advantages compared to existing solutions, especially the simple parameter
selection. The advantages can be seen from our original analysis of the' TWedel in section

2.3 and the experimental evaluation in section 3.

2 Methodology

In this section, we introduce the Logarithmic Total Variation (LTV) model and explain the way it
removes varying illumination for face images . We begin with the discussion about the reflectance
model, followed by the analysis of the T+ model, which serves as the basis of the proposed
model. Finally, we propose the LTV model and discuss the choice of its parameter.

2.1 Reflectance models

¢ From our observation, the shapes, the contours, and the relative positions of small-scale facial
objects (e.g., eyes, noses, mouths, eyebrows) can be key features for face recognition. The sur-
face albedos on or in the boundaries of lower nose, mouth, eyes, eyebrows, and chins are often
different from the albedos of the large-scale skin areas and background due to different textures
(lips, eyeballs, eyebrow hair) and geometries (nares). Hence, similart& L and based on the
Lambertian model, to obtain these albedos, we propose to solve the following equation for surface

under any lighting conditions, including the natural ones:

I(z,y) = p(z,y)S(z,y) (1)

where(z,y) is the intensity of a 2D surface image at locatiany), p is the albedo and' is

the final lightreceivedat location(zx, y) that generates the observed intensity. Compared to the
Lambertian surface$(z,y) equalsA cos @ in the Lambertian model, wheré is the strength of

the light source, and is the angle between the light source direction and the surface normal. That
is, no matter what kinds of and how many light sources there are, the intensity of each location
reflects the strength of the light it receives and is with a multiplicative relationship. Obtaining
and S by solving (1) does not give complete surface information, but for illumination invariant
face recognition, we are only interested in the variation pattern of albeshogn input face image

1. Hence, the problem is simplified to how we can retrieve the variation patterfrofm a given



surfacel with possibly varying intensity. Next, we analyze the TM+model used to obtain the
of small-scale facial features in our LTV model.

2.2 The TV+L! model

In the TV+L! model [3, 27, 9], an input imag¢ is decomposed into large-scale outpuand
small-scale output, where f, u andv are functions inR?. « contains background hues and
important boundaries as sharp edgeswhich is the rest of the image, is characterized by small-
scale patterns. Since the level sets of large-scale sighalve simpler boundaries than those of
small-scale signal, we can obtain. from f by solving a variational regularization problem:

i [ [Va] + Al = ull, @)

where regularizing ternf |Vu| is the total variation (TV) of: and )\ is a scalar threshold on scale.
Let v, denote the optimal solution of (2). There are two approaches used for solving (2). PDE [9]
solves foru, as a solution of the Euler-Lagrange equation of (2), which is essentially its first-order
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Artificial time evolution iterations can approximately reach the steady state of the above heat PDE.

optimality condition:

This approach is easy to implement and requires little amount of memory. However, since the
second tern{f — u)/|f — u| is non-smooth, time steff must be very small when the system is

near its steady state. This causes numerical difficulties. This problem can be avoided by using
a more direct approach [15] which casts (2) as a second-order cone program (SOCP) and solves
it using modern interior-point methods [2]. The SOCP algorithm achieves better accuracy but
requires more memory.

2.3 Edge-preserving and scale-dependent additive signal decomposition

In this section, we analyze the properties of the TV-+odel for the purpose of edge-preserving

and scale-dependent additive signal decomposition and provide theoretical justification for our
proposed application. Just like many other TV-based models (e.g., the Rudin-Osher-Fatemi model
[33]), the TV+L! model keeps the sharp object edges if#0]. This property is very important

in illumination normalization as you can see in section 3 that the sharp boundaries of the shadows
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cast on faces are entirely keptirand therefore, their appearance does not affect the recognition
process, which is based onWhat distinguishes the TV# model from other TV-based models is

its unigue property of scale-dependent, but intensity-independent, decomposition. Using different
As when applying TV£! to input signalsf, we getu’s that only contain signals whose scales are
larger that2/\. In addition, all the jumps of the kept signals are exactly preserved Mext, we
illustrate the scale-dependency and intensity-independency properties using simple 2D examples.

e Supposef = ¢y + 11, () (i-€., f is a function which equals, + ¢ in the disk centered
aty and with radius- and equalg, anywhere else).

Co OS)\< %,
uy =4 {co+slp,)(x) : 0< s <1} A=2, 4
co + CllBT(y)($> =f A > %

A proof can be found in [9, 10]. We note thaf the parameter which determines whether

uy containsc; 15, () () or not, depends only on the disk radiudut not on the valuesg,

andc; and the disk centey. When) = 2/r, TV+L! has multiple optimal solutions, but

in general, the solutions are not unique for at most countably man] (i.e., taking O
Lebesgue measure). Therefore, we omit these values in the forthcoming analysis and in the
numerical tests. This property can be extended to:

e Supposef = ¢y + c1lp, () (T) + c2lB,, (4)(7), Whered < r, < rpandey,c; > 0 and
B?“z (yQ) - BT1 (yl)' then

o 0</\<%,
uy =4 co+c1lp, () % <A< %7 (5)
f A> 2

Figure 1 (A) illustrates this property and is proved by us in [10]. In 2D images, the scale of a
simple disk signal is defined as its radiuglivided by 2. To extend the property to the facial
feature signals with non-regular shapes and varying intensity, we would expect a generalized scale
measure that is consistent with the\ scale threshold of TV&!. The G-norm of theG space is

the answer.

Definition 2.1 [25] Let spaceG denote the Banach space consisting of all generalized functions
v(z) defined orR™ which can be written as

v=div(@). G=(g1- .- 9a) € ()" (6)
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Figure 1. (A)Additive signals with one included in the other can be extracted one by one using

increasing\s. s separately shows the four components piled.iiB)Input image and: the result
of the TV+L! model.p’ andS’: the results of the LTV model with the used in parentheses.

Its norm||v|| is defined as the infimum of dlP* norms of||g(x)||;> and the infimum is computed

over all decompositions (6) eof In short, supposing the infimum is attainedjatwe can write

—k

g = arginf{[|[g(z)]e ||~ : v =div(g)},

lolle = 17" (@)l [l =

In the previous examples, tiie-norms of 1D signalf = 1j,) and 2D disk signaf = 15, () are
bothr /2 with
1D: g*( / f)dt —r/2,

and [25]
2D: g* = (-le(lx|)>$2w(‘x|)) 3

wherew(t) = 1/21if 0 <t < randw(r) = r?/(2t*) if t > r. TheG-norms of the other signals in

the previous examples can be easily derived from these two.

The connection between the TY+ model andG-norm is given in the following theorem
[10, 29]:

Theorem 2.2 Let f € L'(Q), where) is bounded and contains the supportfotbe the input and
uye (vre = f — uy ) be the unique solution of the approximate TA+model

min/ IVu| + M/ (f —u)? + eda.

Q

According, letsign, (v)(z) := v(z)/+/|v(x)]? + € denote the approximate signum function. Then,
uxe = 01if ||sign. (f)||a < 1/A,
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and
[sign,(vac)lle = 1/Aif [|sign.(f)[le > 1/A.

Letu, denote the unigue solution of the T¥4model. Then

lim [ue —uallzr =0, lim fJose —vaflzr =0.
The reason that we use the solutions of approximate/T'te derive the7-norm based properties

and let the solution sequence converge to the TVsolution is that thel.!-norm functional is
non-differentiable and it derivative is a set-valued function. The main point of this theorem is
that TV+L! decomposeg into u andv using1/\ as a threshold ofisign,(v)||¢. The previous
examples on simple signals demonstrate this. To see that smaller scale (or stronger oscillation)
functions have smalle&-norms, consider(x) = cos(nx) andg* = sign(nx)/n. ||v|lc = 1/n
decreases when the oscillation:oincreases (i.en increases). Another example [25] is, for any

[ € L>™(R?), ||exp(iwz) f(z)|l¢ < C/|w|, whereC only depends orf. This explains the scale-
dependency of TV£! decomposition. The intensity-independency property simply follows from

the use of the signum function @&-norm.

To determine an appropriatefor the small-scale facial features is straightforward. Itis clear
from the above analysis that a singlés good for all the faces with the same size. Alternatively,
we can pick a\ that is slightly smaller than/||m||, wherem is the facial feature mask function
which equals 1 over the small-scale facial objects and 0 anywhere else. Today for the large numbers
of functions for which we have not known a analytic way to derive ghe(hence th&;-norms),
Goldfarb and Yin [15] introduced a second-order cone programming based method to compute

G-norm numerically.

Besides, readers may know the famous T¥-odel (the Rudin-Osher-Fatemi model [33)).
It is a model more suitable in denoising, but the TA/+model works much better in scale-based
image decomposition. The?* term || f — ul| 2 penalizes bigf (z) — u(x) values much more than
small f(z) — u(z) values, so the TV&? model allows most small point-wise values (like most
noise) inf —u. The L' term|f — u|, however, penalizes the difference betwgeandu in a linear
way. TheL'! term does not favor noises, but when used With(u), it lets f — u contain nearly all
the signals with scale= 1/X w.r.t. G-norm and with their original amplification. This is also one
main difference between our work and Brajovic's work [8]. The TW+4model can successfully



extract small-scale signals like the edges, lines, and corners of facial features form a face image
with an appropriate,, but being an additive model, it cannot reflect the multiplicative illumination
effect in equation (1). Figure 1(B) Column 1 depicts theutput of the TV+.! model applied to

the input image which is under an extreme lighting condition. Just like the input, the left half of
barely contains any perceivable signal. To overcome this limitation, we propose the LTV model.

2.4 The LTV model

To factorize a surface under multiplicative models (e.g. the Lambertian model), we take the ap-
proach by extracting the small intrinsic facial structures, where the albedos vary a lot. We observe
that one of the differences between the intrinsic structure and the illumination pattern of a face
image is the scale difference. The former is mostly composed of lines, edges, and small-scale
objects. The later, which is consisted of direct light illumination and/or shadows cast by bigger
objects (e.g., noses), is often of a larger scale. From the analysis in Section 2.3, it is clear that we
can utilize the edge-preserving and scale-dependent decomposition capacity of thervdel.

To apply the addictive TVE! model to the multiplicative model, we take the logarithm of
the input image, followed by applying the TV#+ model:

I(z,y) = p(z,y)- S =(p/p) - (Sp1) =p -5

u = argmin,, [, |[Vu| + Nlog(I) — u| dz,

v=1log(I) —u (7)

u = log(S"), andv ~ log(p')

wherep, denotes the albedos of large scale skin areas and background. Since logarithm preserves
structures and TVA' decomposes images by scales, the albegda$ large-scale areas are kept
along with theS in u(or S’). Neverthelessy = p/p, is sufficient for face recognition as it promotes

the variation patterns of the albedos of the small-scale facial features.

It is worth pointing out that for face recognition purposes, the intrinsic structuygswiich
are in general of a smaller scale than extrinsic illumination artifacts and shadows, contribute as
discriminants. As long as the illumination fields or shadows are of a larger scale than the intrinsic
structures, the LTV model can remove them by keeping thefi.imhis assumption is validated
by the experimental results in Section 3. Before presenting these results, we first illustrate how to
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Figure 2: (A) Input facef with size100 x 100 andu obtained by\ = 0.80. (B) Input facef with
size200 x 200 andu obtained by\ = 0.40. (C) The least square difference betweefh = 0.40)
in figure 2 (B) and the: with different values of\ (horizontal axis) in figure 2 (A).

select an appropriatg the only parameter in the LTV model.

2.5 Parameter selection

One of the main advantages of our model over existing solutions is that there is only one parameter
need to be set, and the choice of it is only dependent on the scales but independent of the intensities
of the image, hence independent of the illumination. In other words, one parameter can serve for
all face images with similar size. Finding an appropriate straightforward simply because the
features of different faces have similar scales amglin inverse proportion to the scale of the face
(4)(5). Following the guidelines of selection in Sec. 2.3, we recommend the followigalues

for different face sizes: 100x100 (pixels):= 0.7 to 0.8, 200x200A = 0.35 to 0.4, 400x400A =

0.175 to 0.2. Figures 2 illustrates and presents statistically that the LTV outpudwith.4 of a

face in a 200x200 size is almost the same as the LTV outputwath.8 of the same face in a down
sampled 100x100 size. Therefore, a singl@.75) is consistently used throughout our experiments

in section 3. Figure 1 (B) illustrates the effects of differardand figure 3 (A) illustrates the LTV
algorithm.

2.6 TVQI

One variation of the LTV model, which parallels the idea of Brajovic [7] and Wang [44] is that we
can divide the original imagé by S to recoverp: p = L. Using the TV4' model with similar
parameten\ as the LTV model, we can get an estimationsofisingu in (2). We call this model
the total variation quotient image model (TVQI)[10]. The LTV model and the TVQI model are
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essentially the same. The only difference is that the log operator removes the noise of the image
which makes it possible to promote the useful signals more and improve the performance.

3 Experimental Results

In this section, we evaluate the proposed algorithm by several experiments. We first compare our
models with 3 other methods (QI[36], QIR[35], SQI[44]) on Yale face database B and CMU PIE
database. Then an outdoor database is used for evaluating the performance of natural lighting
condition. We evaluate the face recognition by two different methods, template matching and
PCA. The former uses a very simple similarity metric, the normalized correlation, to match images.
Recognition is defined as matching, a query image a set ofreference image¥. We name an

image of subject theidealimage if the angle of the light source direction is O.

3.1 Data preparation

We use both Yale face database B [14] and CMU PIE database [37] as our testbed to compare
different algorithms. The frontal face images of the 10 subjects in the Yale face database B, each
with 64 different illumination, and the frontal face images of the 68 subjects in CMU PIE database,
each with 21 different illumination, are used for evaluation. All images are roughly aligned be-
tween different subjects and resized to 100 x 100. Images are cropped so that only the face region
of each image is used. Images in the Yale face database B are divided into 5 subsets based on [14].
Other than these two benchmark databases, we also evaluate our methods on an outdoor database

containing 765 subjects, each with 2 to 5 different illumination.

3.2 Results on Yale face database B

In the first experiment, we use each image (except the ideal cases for each person) from subset 1
to subset 5 as a query image and match it with thed&@l images, which serves as theference

images Table 3 (B) shows the results. The recognition rates of both the LTV model and its
variation (TVQI) reach 100%.

After simple template matching, we also conducted PCA recognition on Yale database, the
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W[ 1. T — mput image (I = p' - 57) @[ subset [1 [2 [3 | 4 | 5 |

2. Take the logarithm: QI 100 | 983 | 61.86 | 34.06 | 23.28
J—log(I). f =u+wv u=log(s'),v=Ilog(p') QIR 100 | 100 | 100 | 9058 | 78.84

3. Solve for u and v in the TVle model: SQI 100 100 100 96.37 97.88
U= argminu fQ |Vu(1)| 4= )\‘f('(‘) e 'U.(.I‘)‘ dr TV‘QI 100 100 100 100 100

4. Obtain the intrinsic part: LTV 100 | 100 100 100 100
v=f—u=log(p) o . .

5. Calculate the real intrinsic structure represented by p (C)| Method ‘ QI ‘ QIR | S5QI ‘ rval | L1V ‘

6. Illumination normalized result — p’ | Recog. Rate | 75.66 [ 88.65 | 97.91 | 100 [ 100 |

Figure 3: (A) The LTV algorithm. (B)Recognition Rate (%) on Yale database B. (C)Average
recognition Rate (%) on CMU PIE database.

Figure 4: Left: The 21 different lighting conditions for each single subject in CMU PIE database.
Right: The illumination normalized images by the LTV model.

results show that by using 2 images per subject as the training set, the LTV model reaches 99.25%
recognition rate in average. By using 3 images per subject as the training set, the LTV model
reaches 99.99% recognition rate in average. By average, we tried all the combinations of 2 and 3
from the 64 illumination as training set and get the average recognition results.

3.3 Results on CMU PIE database

Since CMU PIE face database has much less illumination on each subject (21), we do not classify
the images into different subsets according to the angle of the light source directions. In this ex-
periment, we also use th@eal imagess thereference imaged-igure 3 (C) shows the recognition

rates of the experiment. Figure 4 shows the illumination normalization images by the LTV model
of the input images. We also conducted PCA recognition on CMU PIE database. The results show
that by using 2 images per subject as the training set, the LTV model reaches 99.79% recognition
rate in average. By using 3 images per subject as the training set, the LTV model reaches 99.99%
recognition rate in average. The results of PCA recognition are at least as good as most recently
published works, e.g. Corefaces [34]. As shown in the results, the LTV and TVQI models reach
great recognition rates in the experiments on both Yale and the CMU PIE databases, which demon-
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» B S IEE |
Method | HE | SQ1 | TVQI [ LTV | \ 3 L~ t R Ni| 4 N
K =1 | Go87 | 7986 | 97.75 | 99.02 1 =, - ‘u}‘ i ,
K =2 | 7438 | 8482 | 00.02 | 9954
K=3 | 7633 | 8764 | 9943 | 99.89
K=4 | 7772 | 8884 | 0959 100

Figure 5: (A) Recognition rate(%) on outdoor face databaSes the number of nearest neighbors
retrieved. (B) The LTV results (even rows) on images under natural lighting condition(odd rows).

strates that the proposed LTV model can obtain excellent illumination invariant recognition results.
Since PCA selects the most determinant features first, the good results by PCA recognition can im-
ply that our assumption that small facial structures contribute as the key factor for face recognition
may be true.

3.4 Outdoor database

In this section, we conduct experiments on a database with 2662 frontal face images under outdoor
natural lighting conditions, including 395 females and 370 males. There are 2 to 5 images per
person under various illumination. We evaluate our face recognition algorithm by the following
scenario, which is designed for real applications. For each imagec {1, ..., 2662}, we search

for the K nearest neighbors df in the remaining 2661 images. If an image with the same subject

is retrieved, it is a successful recognition. Since there are at least 2 images per person, for each
query imag€,, there is at least one image in the remaining 2661 images mallghBsis scenario

is one possible way for a police officer to identify a criminal or look for a suspect in the database
or in similar situations. We compare our methods with SQI and a simple histogram equalization
(HE) algorithm. Figure 5 (A) shows the result. From figure 5 (A), the propdsEd algorithm

can achieve nearly perfect result (99+%) even wheis 1 and can achieve 100% whéhis only

4. Although images in the evaluated outdoor database are not allowed to be published, figure 5
(B) shows somd. TV results on images under outdoor lighting condition, which are very similar

to the images in the original database and were added into the database during evaluation. Since
PCA recognition is not suitable for this scenario and database, the results are obtained using simple

template matching algorithm.
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4 Discussion and Conclusion

In this paper, we propose the LTV model as a preprocessing technique for face recognition under
varying illumination. This method works on any single image without knowledge of 3D face
models or light sources. It minimizes the notorious halo artifacts and leaves only illumination
invariant small scale facial structures with only one simple parameter to set. One assumption of
our work is that small scale facial structures may be the key for frontal face recognition. Since
our model reaches very high recognition rate using PCA recognition, this assumption can be true.
The proposed approach has strong potential to be applied to relevant applications, such as face
alignment, face tracking, where the results are easily affected by illumination variation.
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