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Abstract
Uncertainty handling plays an important role during shape
tracking. We have recently shown that the fusion of mea-
surement information with system dynamics and shape pri-
ors greatly improves the tracking performance for very
noisy images such as ultrasound sequences [22]. Never-
theless, this approach required user initialization of the
tracking process. This paper solves the automatic initial-
ization problem by performing boosted shape detection as
a generic measurement process and integrating it in our
tracking framework. We show how to propagate the local
detection uncertainties of multiple shape candidates during
shape alignment, fusion with the predicted shape prior, and
fusion with subspace constraints. As a result, we treat all
sources of information in a unified way and derive the pos-
terior shape model as the shape with the maximum likeli-
hood. Our framework is applied for the automatic track-
ing of endocardium in ultrasound sequences of the human
heart. Reliable detection and robust tracking results are
achieved when compared to existing approaches and inter-
expert variations.

1. Introduction
Measurement uncertainty plays an important role during
shape tracking. It has been shown that the fusion of such
information with system dynamics and shape priors greatly
improves the tracking performance especially for very noisy
images [22, 23]. In this paper, we aim at solving the auto-
matic initialization problem through detection, and present
a framework to incorporate information from all sources in-
volved in the detection and tracking process.
Recent studies show that component-based object detec-

tors can deal with large variations in pose and illumination,
and are more robust under occlusions and heteroscedastic
noise [19, 21, 9, 2, 6]. Analogously, for our motivating ap-
plication of echocardiogram (ultrasound heart sequences)
analysis [22], local appearance of the same anatomical
structure (e.g., the septum) is similar across patients, while
the configuration or shape of the heart can be dramatically
different due to viewing angles or disease conditions, etc.

Therefore, we propose to apply individually trained compo-
nent detectors to exploit relatively stable local appearances,
while using global shape models to constrain the component
fusion process.
We estimate uncertainties in component detection in

the form of covariance matrices, to take full advantage of
the heteroscedastic [12, 10, 14] nature of the underlying
anatomic structure and of the noise. A key step of com-
ponent fusion with uncertainty is the constraint from a prior
statistical model. The ideal formulation is to simultaneously
optimize the component locations and the invariant trans-
form that aligns the detection and the model. But close-
form solutions are difficult to obtain and do not exist even
for simple transforms. We use a sequential approach where
two optimization processes propagate the uncertainties and
provide us with the maximum likelihood solutions.
For capturing local appearance variations, classical solu-

tions (e.g., Active Appearance Model [5]) rely on the Gaus-
sian assumption. Recently, this assumption has been re-
laxed through the use of nonlinear learning machines such
as SVM [19] or Boosting [7]. It has been demonstrated that
AdaBoost-based object detectors are fast and effective for
face and people [20] detection. In this paper, we use Ad-
aboosting for component detection.
The state-of-the-art solutions such as those from Blake

and Isard [4], Cootes, Taylor, and Cristinacce [5, 6], Jacob
et al. [11], and Mitchell et al. [17], did not address the
uncertainty issue for the detection and tracking of shapes
beyond Kalman. We estimate and propagate detection and
measurement uncertainties, and provide a unified view on
different information sources involved in the shape detec-
tion and tracking process. As compared with existing pure
detection schemes (e.g., [20, 6]) we incorporate tracking
naturally within a joint fusion framework: the uncertainty of
local detectors, the subspace statistical model, and the dy-
namic prediction are jointly considered during shape align-
ment, regularization, and tracking. Our contributions in-
clude: 1. a unified framework for optimally fusing uncer-
tainties from local detection, motion dynamics, and sub-
space shape model during automatic shape detection and
tracking; 2. boosted component detectors for left ventricle
border localization in echocardiography sequences.



Next we state the problem and discuss boosted compo-
nent detection. In Section 4 we present our handling of un-
certainties in a unified detection and tracking framework.
Experimental evaluations are presented in Section 5.

2. Problem Statement
We first define some terms used in this paper and our scope
of discussion.

2.1. Pre-shape and Shape Space
We are concerned with sets of k labeled points in a 2-D
Euclidean space where k ≥ 2, and a set of invariant trans-
forms. A set of k points will be called a pre-shape [13]. Any
two pre-shapes will be regarded as having the same shape
if either of them can be transformed into the other. With
a common reference, the assemblage of all possible shapes
forms the shape space1.
By shape tracking instead of contour tracking, we stress

that we detect and maintain point labels throughout the de-
tection and tracking steps. This facilitates alignment and
structural analysis, and tangential motion estimation.

2.2. Pre-shape Candidate Detection
Given an input image sequence, e.g., an ultrasound se-
quence of the heart in our case, the goal is to detect and
track some underlying structures, such as the endocardial
border, based on image appearance and prior knowledge re-
garding the shape. We adopt a component-based detection
and tracking scheme in which we produce detection maps
for local components separately. A “component” is one of
the k points of a pre-shape. Mode detection is applied in the
detection map with covariances estimated around each peak
location. Each unique combination of detected components
becomes a Gaussian in the 2k-dimensional pre-shape space.

2.3. Model-Guided Optimization
Prior knowledge about geometry or configurations is rep-
resented by a pre-trained shape model using ground-truth
data. The shape model, built in the shape space as defined
above, captures variations among pre-shapes modulo some
invariant transforms [13], such as similarity transforms.
Principal component analysis (PCA), its kernel version, or
independent component analysis (ICA) can be applied for
finding the lower-dimensional subspace containing mean-
ingful variations. We adopt PCA mostly because it enables
concise analytical solutions in our framework.

1This definition of shape space is analogous to Kendall et al.’s definition
[13], and are in agreement with that of Cootes and Taylor [5], but somewhat
different from that of Blake and Isard ([4], p. 74) which is defined as linear
subspace of the pre-shape space.

The transformation-free shape model is used to evaluate
and optimize among multiple detection candidates, based
on a maximum likelihood formulation. The challenge is to
simultaneously obtain the maximum likelihood point loca-
tions and the associated optimal transform, taking into ac-
count uncertainties in detection.

2.4. Tasks and Emphasis
Our tasks include: building a shape model using training
data; detecting the candidate pre-shapes; pruning and opti-
mization of the pre-shapes in the shape space guided by the
model and by the system dynamics (during tracking).
The emphasis of this paper is on the estimation and prop-

agation of uncertainties in local detection, and their influ-
ences over or interactions with: 1. the invariant transforma-
tion into the shape space (Section 4.1); 2. the shape space
model constraint (Section 4.2); and 3. the tracking of the
overall shape (Section 4.3).

3. Boosting for Component Detection
Boosting techniques [7] have been successfully applied in
face and people detection [20]. The advantage of boosting
as oppose to traditional Gaussian appearance models is that
it can deal with complex distributions such as multi-modal
distribution, which is common for our application. Boosting
is also much faster than other non-linear alternatives such as
kernel support vector machines [9].
In this work, we apply AdaBoosting for local component

detection, training one detector per point on the pre-shape.
Unlike existing work where a “winner-takes-all” strategy is
applied on component localization [9], we perform mode
finding on each detection map and retain multiple modes,
each with an estimated full covariance matrix characterizing
the anisotropic uncertainty of that candidate location. The
covariance matrix is obtained as a function of the Fisher in-
formation matrix or Hessian matrix estimated in the neigh-
borhood of the peak location [12] (see Figure 6(d)∼(f)).
One difficulty involving ultrasound images is the local

signal drop-outs due to the directionality of the ultrasound
beam [18] (Figure 1(b)), 6(a), 7(a) and (d)). A component-
based scheme provides us with the flexibility of screening
out training image patches from the drop-out regions. To do
this, we simply delete training patches with very small trace
for the Hessian matrix estimated in the patch (Figure 1).
The size of a training patch is adapted with respect to

the heart size, which is measured by the average distance
among control points.
With probabilistic component detection, we are faced

with the issue of pre-shape candidate evaluation, and the
problem of model-guided shape constraining. Even if we
only have one candidate pre-shape, it would still be “fuzzy”
with uncertainties in its point locations. The treatment of



(a) (b)
Figure 1: Training and detection windows for AdaBoost-
ing. (a) apical view: an open contour with 17 points; (b)
parasternal short axis view: a closed contour with 18 points.
non-informative patches, such as those from the drop-out
region in (b), are screened out (see text).

such uncertainty in the context of other constraints is the
focus of the next section.

4. Integrated Detection and Tracking
Given a candidate pre-shape denoted byN (x,Cx), a multi-
dimensional Gaussian distribution, with mean x and co-
variance Cx, the first step is to find among the sample
pre-shapes xo the one that has maximum likelihood of
being generated jointly by N (x,Cx), the shape model
N (m,Cm), and the predicted shape N (x−,Cx−) from
previous time step, under an optimal invariant transform.
An equivalent formulation is to find x∗ to minimize the

sum of Mahalanobis distances in the pre-shape space and
the transformed shape space, i.e.,

x∗ = argmin
{T ,xo}

d2, (1)

d2 =(xo0 −m)TCm−1(xo0 −m) + (xo − x)TCx−1

(xo − x) + (xo − x−)TCx−−1(xo − x−),
(2)

where xo0 = T (xo) with T being the invariant transform.
With multiple candidate pre-shapes, the one producing

the highest likelihood, considering also the likelihood value
in the detection map, wins at the decision time.
Eq. (2) requires simultaneous optimization over the lo-

cation and the transform, and does not have a close-form
solution even for simple transforms such as the similarity
transform permitting only translation, rotation, and scal-
ing2. The global optimal can be sought numerically through
iterations, but the computation can be too expensive.
A more interesting issue arises when Cm is singular,

i.e., the model resides in a subspace, the formulation breaks
down and existing approximation approach (e.g., [2]) will
not apply. One might try regularization on the covariance

2Cootes and Taylor [5] showed that for a simpler case where only one
weight matrix is considered, close-form solution exists.

Figure 2: Invariance manifold for shape alignment. Un-
der invariant transforms, the pre-shape X traverses a man-
ifold, C, illustrated by the thick curve. In general, C will
not intersect the shape model subspace F (the slanted axis
containing the model centroidM).

matrix Cm as suggested by Friedman [8], but this process
adds back the noise dimensions which were deliberately re-
moved, and it does not serve the purpose of this problem.
The difficulty stems from the fact that the manifold (i.e.,

the shape) spanned by an arbitrary pre-shape through all
possible transforms does not intersect the shape subspace
in general, especially when the subspace dimension is rel-
atively small. In our case, the shape sub-space have di-
mensions from 6 to 12, while the full Euclidean space has
dimension ≥ 34. Figure 2 illustrates conceptually this
relationship, with the thick curve depicting the manifold
spanned by a pre-shape vectorX, and the slanted axis and a
one dimensional Gaussian distribution representing the sub-
space model. The prediction is omitted here, or you may
regardX as the fusion result of the detection and prediction
(we will come back to this point in the sequel).
We propose a two-step optimization scheme as an alter-

native solution, with close-form solutions for both steps.
This scheme can be easily explained using Figure 2: The
first step is to go from X to X∗, or in other words, to find
the optimal transform from X toM, using information in
Cx. The second step is to go fromX∗ to XM, using addi-
tional information from CM. We will call the first step the
alignment step, and second the constraining step.

4.1. Shape Alignment with Uncertainty
The goal of this step is to consider the component uncertain-
ties during the transform of the pre-shape and its covariance
matrix toward the model. We minimize

d2 = (m− x0)TC0x
−1
(m− x0) (3)

where x0 = T (x) andC0x = T (Cx). To simplify notations,
we have assumed that the predictionN (x−,Cx−) has been
fused intoN (x,Cx)—we will discuss this step later.
When T is the similarity transform, we have:

x0 =Rx+ t, (4)



(a) (b)
Figure 3: Shape alignment. (a) without considering uncer-
tainties in localization; (b) with heteroscedastic [12, 10, 14]
uncertainties. The ellipses depicts the covariance on point
locations, representing information in a block-diagonalCx.
A fullCx is not easy to visualize.

where t is the translation vector with two free parameters
andR is a block diagonal matrix with each block being

Ri =

µ
a −b
b a

¶
(5)

With straight algebra we can rewrite Eq.( 3) as follows:

d2 =(R−1(m− t)− x)TCx−1(R−1(m− t)− x)
=(T −1(m)− x)TCx−1(T −1(m)− x)

(6)

By taking derivative with respect to the four free param-
eters inR and t, a close-form solution can be obtained. The
details are omitted for space but one can consult the solution
in ([5], p. 102), with an additional step to get back T from
T −1. Figure 3 illustrate shape alignment with and without
considering uncertainties in point locations. The intuition is
to trust more the points with higher confidence.

4.2. Model Constraining with Uncertainty
With the pre-shape aligned with the model, we seek the
shape with maximum likelihood of being generated by the
two competing information sources, namely, the aligned de-
tection/prediction versus the (subspace) model.
With a full-space model, the formulation is directly re-

lated to information fusion with Gaussian sources, or BLUE
(best linear unbiased estimator) [3, 15].

4.2.1 BLUE
Given two noisy measurements of the same n-dimensional
variable x, each characterized by a multidimensional Gaus-
sian distribution,N (x1,C1) andN (x2,C2), the maximum
likelihood estimate of x is the point with the minimal sum
of Mahalanobis distances, D2(x,xi,Ci), i = 1, 2, to the
two centroids, i.e., x∗ = argmin d2 with

d2 =D2(x,x1,C1) +D
2(x,x2,C2)

=(x− x1)TC−11 (x− x1) + (x− x2)TC−12 (x− x2)
(7)

Taking derivative with respect to x and setting it to zero, we
get the best linear unbiased estimate (BLUE) of x ([3, 15]):

x∗ = C(C−11 x1 +C
−1
2 x2) (8)

C = (C−11 +C−12 )
−1 (9)

However, when the model resides in a subspace, the orig-
inal fusion formulation needs to be modified as follows:
4.2.2 Subspace BLUE
Assume that, without loss of generality, C2 is singular.
With the singular value decomposition of C2 = UΛUT ,
where U = [u1,u2, . . .,un], with ui’s orthonormal and
Λ = diag{λ1, λ2, . . ., λp, 0, . . ., 0}, we rewrite Maha-
lanobis distance to x2 in Eq. (7) in the canonical form:

D2(x,x2,C2) =(x− x2)TC−12 (x− x2)

=
nX
i=1

λ−1i [UT (x− x2)]2
(10)

When λi tends to 0, D2(x,x2,C2) goes to infinity, unless
UT
0 x = 0, where U0 = [up+1,up+2, . . .,un]. Here we

have assumed, without loss of generality, that the subspace
passes through the origin of the original space. Since x2
resides in the subspace,U0

Tx2 = 0.
BecauseU0

Tx = 0, Eq. (7) now becomes:

d2 =(Upy− x1)TC−11 (Upy− x1)+
(Upy− x2)TC+2 (Upy− x2)

(11)

where y is a 1×p vector.
Taking derivative with respect to y yields the fusion es-

timator for the subspace:

y∗ = Cy∗U
T
p (C

−1
1 x1 +C

+
2 x2), (12)

Cy∗ = [U
T
p (C

−1
1 +C+2 )Up]

−1, (13)
with equivalent expressions in the original space:

x∗ = Upy
∗ = Cx∗(C

−1
1 x1 +C

+
2 x2) (14)

Cx∗ =UpCy∗U
T
p (15)

It can be shown that Cx∗ and Cy∗ are the correspond-
ing covariance matrices for x∗ and y∗. Notice that this
solution is not a simple generalization of Eq. (8) by sub-
stituting pseudoinverses for regular inverses, which will not
constrain x∗ to be in the subspace.
Alternatively, we can write Eq. (12) and (13) as

y∗ = (UT
pC
−1
1 Up+Λ

−1
p )−1(UT

pC
−1
1 x1+Λ

−1
p y2) (16)

Here y2 is the transformed coordinates of x2 in the
subspace spanned by Up, and Λp = diag{λ1 , λ2 ,
. . ., λp}. Eq. (16) can be seen as the BLUE fu-
sion in the subspace of two Gaussian distributions,
one is N (y2,Λp) and the other is the “intersection”
(not projection!) of N (x1, C1) in the subspace,
N ((UT

pC
−1
1 Up)

−1UT
pC
−1
1 x1, (U

T
pC
−1
1 Up)

−1) .



4.3. Incorporating Dynamic Prediction
The above subspace fusion provides a general formulation
for (subspace) model constraining, treating the shape mea-
surement (with heteroscedastic uncertainty) and the PCA
shape model as the two information sources. In the fol-
lowing, we add a third source that represents the dynamic
prediction from tracking.
The crucial benefits we gain from tracking, on top of de-

tection, are the additional information from system dynam-
ics which governs the prediction, and the fusion of informa-
tion across time. Based on the analysis above, the solution
to Eq. (1) has the following form:

x+ =Cx+(T {(Cx− +Cx−1)−1

(Cx−x− +Cx
−1x)}+Cm+m),

(17)

Cx+ =Up[U
T
p (T {(Cx− +Cx−1)−1}

+Cm
+)Up]

−1UT
p ,

(18)

This solution puts information from detection, shape
model, and dynamic prediction in one unified framework.
When the predicted shape is also confined in a subspace,

we can simply apply the subspace BLUE formulation (Sec-
tion 4.2.2) in a nested fashion inside the transform T .
The prediction N (x−,Cx−) contains information from

the system dynamics. In our case, we use it to encode
global motion trends such as expansion and contraction, and
slow translation and rotation. N (x−,Cx−) can be obtained
using traditional method such as the prediction filter in a
Kalman setting:

Cx− = SCx+,prevS
T +Q, (19)

where the system dynamics equation is

x− = Sx+,prev + q, (20)

and Q is the covariance of q, and “prev” indicate informa-
tion from the previous time step.
Figure 4 shows a schematic diagram of the analysis steps

where the uncertainty of detection is propagated through all
the steps. In a nutshell, we evaluate at each frame multiple
detection candidates by comparing their likelihood in the
context of both the shape model, and the prediction from
the previous frame based on the system dynamics.

5. Experiments and Evaluations
In this paper we apply and evaluate our complete frame-
work using echocardiographic images, in particular, the 2-
D B-mode sequences. This is an very important applica-
tion because ultrasound imaging of the heart provides di-
rect visualization of cardiac structure and movement, and
enables quantitative evaluation of heart structure and func-
tion. Computerized automatic detection and tracking assist

− ← σ → +

Figure 5: The PCA shape model for the apical view of left
ventricle. The two dominant variations with multiples of
standard deviations in both positive and negative directions.
The thick green curve is the model mean.

such tasks by extracting myocardial borders in the image
sequence so that diagnostic information can be computed
such as the ventricular volumes and geometry, cardiac out-
put, and ejection fraction, etc. [18]
To train models of appearance and shape, we use manu-

ally traced left ventricle endocardial borders (the inner bor-
der) as the training set. For apical views we use open con-
tours each with 17 control points and for parasternal short
axis views we use closed contours of 18 control points. The
contours are drawn with a common starting point based on
anatomy so that point correspondence can be maintained
both across contours and with anatomical structures. Typ-
ical anatomical landmarks are the apex, the papillary mus-
cles, and the septum. To train the boosted component detec-
tors, image patches around the corresponding points from
the manual borders are used (see Section 3 and Figure 1).
Before learning shape variations, the training contours are
first aligned to cancel out invariant transforms. In this paper,
we consider global translation, rotation, and scaling as in-
variant for shapes, and model such transforms into the sys-
tem dynamics instead. This ensures a small and meaningful
shape subspace for the training set. The similarity align-
ment is achieved using an iterative Procrustes analysis ap-
proach [5]. PCA is then performed for each view. Figure 5
shows the dominant eigenshapes for the apical view along
with its model mean.

5.1. Performance Measure
As performance measures, we use Mean Absolute Distance
(MAD) [16] defined as follows: for the sequence Si with
m frames/contours, {c1, c2, ..., cm}, where each contour cj
has n points {(xj,1, yj,1), (xj,2, yj,2), ..., (xj,n, yj,n)}, the
distance of Si from the reference sequence S0i is

MADi =
1

m

mX
j=1

MADi,j

=
1

m

mX
j=1

1

n

nX
k=1

q
(xj,k − x0j,k)

2 + (yj,k − y0j,k)
2

(21)

The overall performance measure for a particular method
is the averaged distance on the whole test set of l sequences:



Figure 4: Uncertainty propagation during shape detection and tracking. The small red ellipses illustrate the location un-
certainties. Notice that uncertainties are transformed with the shape during alignment and fused with the model and the
(predicted) prior information during likelihood estimation and tracking.

MAD = 1
l

Pl
i=1MADi. These measures do not give

higher weights to longer sequences which simply have more
cycles. We also record the standard deviation of the dis-
tance for each frame and average the results for each se-
quence first, and then across sequences, again without over-
weighing longer sequences.
A crucial difference between our distance measures and

those of [1] or [16] is that we have the point correspon-
dence, and we want to measure the performance of these
correspondences. In [1, 16], no correspondence is assumed
and the nearest point from the other contour is taking as the
corresponding point–As a result, motion component along
the tangent of the contour cannot be evaluated. In real-
ity, global or regional tangent motion are common during
a cardiac cycle, and they reveal crucial information regard-
ing cardiac function.

5.2. Localization Performance
It is observed during our interaction with cardiologists and
sonographers that inter-expert variabilities on border local-
ization are significant, especially for noisy cases. This is
also evident in our training data. It would be insightful to
put the performance of our algorithm in the context of such
expert variabilities.
We tested our algorithm on data outside of the training

set from 15 patients. Each patient has either one or two se-
quences, with about 600 frames. All sequences are traced
by one expert, and some sequences or frames are traced
by another expert (typically on end-diastolic or end-systolic
frames). The overall detection and tracking performance is
measured with reference to the first expert using MAD and
compared with that of the second expert which serves as a
measure of inter-expert variations. The results are shown

Table 1: Performance of proposed method as compared to
variations between experts.

MAD σ̄MAD

ExpertVariation 7.7435 3.6800
DetectionTracking 8.8432 4.4126

in Table 1. We see that the performance is similar and also
robust with a comparable standard deviation.

5.3. Does Uncertainty Help?
A more interesting observation we have is that the inter-
expert variabilities on border localization are much more
significant than the variabilities onmotion tracking. In other
words, experts often do not agree on precise border loca-
tions, but they more or less agree on the relative motion of
the border across frames3. Therefore, it is reasonable to
evaluate algorithms against multiple experts, given that we
always use for each expert his or her first contour for initial-
ization. The resulting MAD value, unlike the previous case,
should be zero ideally, if the expert is perfect in estimating
motion and the algorithm agrees. Table 2 shows the results
over the 15-patient test set where we use the first contour
from an expert as the initialization and compare the overall
performances with and without propagating uncertainties.
The table clearly shows the improvement by estimating and
propagating uncertainties, not only in terms of reduction of
averaged error in motion capturing but also in terms of re-
duced variance.
Some detection and tracking examples are shown in Fig-

ure 6 and Figure 7.
3This is probably explainable by the superb ability of human visual

system in capturing relative motion



(a) (b) (c)

(d) (e) (f)
Figure 6: Left ventricle endocardial border detection. (a) input image; (b) detected contour; (c) contour by an expert; (d)∼(f)
the local detection map for the 4th, 10th, and 17th point, respectively. Notice the heteroscedastic nature [12, 10, 14] of the
local detection uncertainties (depicted by the ellipses in (d)∼(f)). Local detection ambiguities (not only between multiple
modes, e.g., (d) and (e), but also within one mode) are resolved in the context of tracking and shape constraints.

(a) (b) (c)

(d) (e) (f)
Figure 7: More detection results. From left to right: the input image; the detected contour; and the contour by an expert.



Table 2: Performances with and without using the uncer-
tainty information.

MAD σ̄MAD

WithoutUncertainty 4.0543 3.0239
WithUncertainty 3.4075 2.6488

6. Conclusions
The focus of this paper is on the uncertainty handling with
a shape space constraint and a dynamic model. We pre-
sented a unified way of treating boosted detection uncer-
tainties in an automatic shape tracking framework. From
another angle, the detection benefits from the prediction in-
formation and information fusion across time. Future re-
search includes uncertainty propagation for multiple hy-
pothesis tracking, with the maximum likelihood formula-
tion extended to multiple frames to achieve additional per-
formance boost.
Acknowledgments: We would like to thank Sriram Krish-
nan from Siemens Medical Solutions for insightful discus-
sions.
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